gWidgetsWWW

John Verzani, gWidgets@gmail.com

November 12, 2009

Abstract:

The gWidgets package provides an API to abstract the interface for a few of the
available GUI toolkits avaiilable through R. The gWidgetsWWW package pro-
vides an implementation of the gWidgets API for use with through the web. Using
just R commands, interactive GUIs can be produced.

The current status of the project is still experimental. The package does not have
much testing as of yet. As of version 0-0.8 the package works with internet explorer.
Although some widgets (gcanvas, gsvg) are not working equally for all browsers.

1 Overview

To create a web GUI a means must be provided to callback to the web server when
the user initiates an action and then the web server responds with commands to
manipulate the user’s page.

There are two choices for the webserver. For local use (no outside internet access)
a local server is provided. This is borrowed from the Rpad package. To use this, the
function localServerStart function is called. To allow other computers to run a
gWidgetsWWW script the RApache package http://biostat.mc.vanderbilt.
edu/rapache/, which embeds an R process within the Apache web server, is used.
Both process callbacks from the browser to the web server that can be processed
through R. To return instructions to the page, javascript is used so that the entire
page need not be reloaded, as javascript can manipulate elements on the page. The
javascript code is simplified by using the extjs javascript libraries, available from
www.extjs.com.


gWidgets@gmail.com
http://biostat.mc.vanderbilt.edu/rapache/
http://biostat.mc.vanderbilt.edu/rapache/
www.extjs.com

gWidgets

To make a GUI in gWidgets can be as easy as loading the gWidgets package
then calling

w <- gwindow("simple GUI with one button", visible=FALSE)

g <- ggroup(cont = w)

b <- gbutton("click me", cont = g, handler = function(h,...) {
gmessage ("hello world", parent = b)

by,

visible(w) <- TRUE

To run the GUI, two ways are possible. This code can be embedded in (or
sourced from) a brew template and run through the combination of brew and
RApache. Alternatively, one can configure gWidgetsWWW to process specific
URLs through this template and encode the file name in the URL. With this ap-
proach, adding a web page is a easy as adding a file to a directory and pointing a
browser at it. The main webpage for gWidgetsWWW http://www.math.csi.
cuny . edu/gWidgetsWWW contains examples of some basic GUIs. These are included
in the Examples subdirectory of the package once installed.

GUIs made with gWidgetsWWW are not as snappy as other web GUIs. The main
reason for this is the fact that callbacks to manipulate the page are sent back into
R (the server) and then returned. In many GUISs, this is avoided by using javascript
directly on the web page. The clear tradeoff is ease of programming for the R user
(R not javascript) versus speed for the user.

2 Top level windows

Web GUIs are different than desktop GUIs. Not only are they slower, as they have
lag time between the GUI and the server, there can only be one top-level windows.
The gwindow call above makes such a top-level window (a web page). Subwindows
are possible, but all other gwindow instances should use the parent argument to
specify an object that acts as the parent of a subwindow. (an animation will appear
from there, say.)

3 The containers

The gWidgetsWWW package has all the following containers:the top-level con-
tainer gwindow, subwindows also constructed through gwindow (use a parent object);

- page 2 -


http://www.math.csi.cuny.edu/gWidgetsWWW
http://www.math.csi.cuny.edu/gWidgetsWWW

gWidgets

the box containersggroup, gframe and gexpandgroup; the tabular layout container
glayout; the notebook container gnotebook, but no gpanedgroup.

To make a component appear in response to some action — such as happens with
gexpandgroup, one can add it to a box container dynamically. Or one can put it in
a ggroup instance and toggle that containers visibility with the visible method, in
a manner identical to how gexpandgroup is used.

4 The widgets

Most — but not all — of the standard widgets work as expected. This includes la-
bels (glabel), buttons (gbutton), radio buttons (gradio), checkboxes (gcheckbox,
gcheckboxgroup), comboboxes (gcombobox), sliders (gslider), spinboxes (well kind
of) (gspinbutton), single-line edit boxes (gedit), multi-line text areas (gtext),
dataframe viewers (gtable) and editors (gdf), images (gimage — the image is a url),
menu bars (gmenu — but not toolbars), statusbars (gstatusbar).

Some of the dialogs work including gcalendar, galert, gmessage. But gcon-
firm, ginput and gfile are not working.

The widgets galert, ghtml and gaction are all implemented.

No attempt has been made to include the compound widgets gvarbrowser,
ggenericwidget, gdfnotebook, gcommandline and ggraphicsnotebook.

4.1 graphics

There is no plot device avaiable. Rather, one uses the Cairo device driver to create
graphic files which are then shown using gimage. The function getStaticTempfile
should be used to produce a file, as this file will sit in a directory that can be
accessed through a URL. This URL is returned by convertStaticFileToUrl. The
Cairo package is used, as it does not depend on X11, so works in server installations
as well. An example is provided with the package.

Two package-specific widgets, gcanvas and gsvg, can be used for displaying non-
interactive graphics files through the canvas device or the RSVGTipsDevice (the
SVGAnnotation device should work as well). There are used similarly: You create
the widget, you create a file. The graphics device writes to the file (similar to the png
device driver, say). This file can be assigned to the widget at construction time, or
later through the svalue method. For gsvg the file must be accessible as a URL, so
the getStaticTempfile function should be used. The canvas device uses a newer
HTML entity, canvas, which is not supported on all browsers. The gsvg package
uses a SVG (scalable vector graphics) format. This format again has some issues

- page 3 -



gWidgets

with browsers, but seemingly fewere. The RSVTTipsDevice device has simple
features for adding tooltips and URLs to mouse events. The SVGAnnotation
package allows this an much more.

4.2 Quirks

A number of little quirks are present, that are not present with other gWidgets
implementations:

1. The top level window is not made visible at first. (A good idea in any case,
but not the default for gwindow. To create a window the visible method, as
in visible(w) = TRUE, is used. (When this is issue the javascript to make the
page is generated.)

2. The handlers are run in an environment that does not remember the loading
of any packages beyond the base packages and gWidgetsWWW. So in each
handler, any external packages must be loaded.

3. The use of the options quietly=TRUE and warn=FALSE should be used with
require when loading in external packages. Otherwise, these messages will be
interpreted by the web server and an error will usually occur.

4. Debugging can be tough as the R session is not readily available. The error
messages in the browser are useful. For development of the package the firebug
(getfirebug.com) add on to FireFox has proven very useful.

5. The local server needs to have backslashes escaped, thereby doubling up the
number of backslashes needed. This means some code may need to be modified
to run on the outside server. The check exists(".RpadEnv",envir=.GlobalEnv)
&& get("RpadLocal", envir=.RpadEnv) can be used to see if a script is being
served locally.

4.3 Data persistence

AJAX technologies are use to prevent a page load every time a request is made of
the server, but Each time a page is loaded a new R session is loaded. Any variables
stored in a previous are forgotten. To keep data persistent across pages, one can load
and write data to a file or a data base.

- page 4 -


getfirebug.com

gWidgets

4.4 Comboboxes

The gcombobox example shows how comboboxes can show a vector of items, or a
data frame with a column indicating an icon, or even a third icon with a tooltip. As
well, the gedit widget does not have a type-ahead feature, but the combobox can
be used for this purpose.

The following will set this up.

> cb <- gcombobox(state.name, editable=TRUE, cont = w)
> cb$. .hideTrigger <- TRUE ## set property before being rendered

This package is implemented independently of the gWidgetsWWW package,
and so there may be some unintended inconsistencies in the arguments. The package
uses the proto package for object-oriented support, not S3 or S4 classes. There are
some advantages to this, and some drawbacks. One advantage is the user can modify
objects or call their internal methods.

4.5 ggooglemaps

[Currently not quite working| The ggooglemaps widget provides access to a sliver of
the google maps API. This sliver could be enlarged quite easily if desired. Using this
requires the web server to be registred with google.

5 Installation

The local server is installed with the package.
Installation of the outside server requires several steps:

1. Install the gWidgetsWWW package from CRAN

2. Install the RApache module. The RApache web page has installation informa-
tion. This APache module is available for UNIX and MAC OS X. Windows
users can use the author-provided vmware appliance (www.vmware.com).

3. Configure the RApache module. A template is included with the variables that
are set in this module. There are several little steps

e Specifying the URL for the extjs javascript libraries (below)

e Specifying the script where the session file lives (the script is in the pack-
age)

- page 5 -


www.vmware.com

gWidgets

e Specifying where a web-server writable directory is by absolute path and
URL for holding the static files created by gWidgetsWWW. (This is
needed for creating graphics files.)

e Specifying how files are turned into web pages. The easiest way is the
use the gWidgetsWW Wrun script to specify directories where the files are
held and to use the appropriate URL. (In can be as easy as specifying run
as the script name, then run/file will find the file file.R in one of the
directories and run that.

The other option — and both can be used — is to use brew, as is described
in the RApache manual. This requires using a brew template. One is
provided in the Examples directory.

4. Install the ext javascript libraries so that they have a URL specified above.
These libraries are free to use for open-source use (http://www.extjs.com/
license)) and can be found at www.extjs.com. Version 3.0 or higher is needed.
A copy of these libraries is included in the basehtml/ext directory of the
package.

5. Copy the button images from the gWidgetsWWW package to an images
URL. These files are in the basehtml/images directory of the package, once
installed.

6 Security

Security — is a big deal. Web servers can be hacked, and if hacked the hacker has
full access to the server. This can be scary. The local server blocks all requests
that are not to the local IP 127.0.0.1, preventing outside access. As for outside ac-
cess, although it is not believed that RApache is any less secure than other Apache
modules, you can protect yourself by running the entire setup within a virtual ma-
chine. There is easy to install, reasonably priced (or free) commercial software
from VMWare (www.vmware.com). For open-source fans, the VirtualBox project
(www.virtualbox.org) also has software. One can install this, then run the author
provided appliance. Or one can install the virtual software, install a host OS (ubuntu
linux say), then install Apache and R then RApache etc. It actually isn’t so hard to
do.

The call from the web server back into RApache can also be source of insecurity.
The gWidgetsWWW package allows only a limited number of calls back from a
web page, which should in theory be secure. But if the script is not secure, there is

- page 6 -


run/file
http://www.extjs.com/license
http://www.extjs.com/license
www.extjs.com
www.vmware.com
www.virtualbox.org

gWidgets

nothing the package can do. Scripts must never trust that data sent from the web
page to the server is safe. It should be coerced into any desired format, and never
evaluated. Using eval say allows any one to run R commands on the server which
given the power of R means they have full control of the server.

The web server communicates back to the web browser through an AJAX call.
This is supposed to be secure, as only javascript code that originates from the same
server as the initial page is executed.

- page 7 -



	Overview
	Top level windows
	The containers
	The widgets
	graphics
	Quirks
	Data persistence
	Comboboxes
	ggooglemaps

	Installation
	Security

