flextable examples

Complex header

The following dataset is typology, a dataset containing data for table headers.

#>           col_keys         colC          colB        colA
#> 1            sep_1                                       
#> 2            sep_2                                       
#> 3             year                       Year        Year
#> 4          premium                    Premium     Premium
#> 5      latest_eval                Latest Eval Latest Eval
#> 6     cape_cod_u_l     Cape Cod Ultimate Loss       (000)
#> 7      cape_cod_lr     Cape Cod   Ultimate LR         (%)
#> 8 chain_ladder_u_l Chain Ladder Ultimate Loss       (000)
#> 9  chain_ladder_lr Chain Ladder   Ultimate LR         (%)

The following dataset is x, it will be displayed in the table body.

#>   year   premium latest_eval cape_cod_u_l cape_cod_lr chain_ladder_u_l
#> 1 2001  8.920428    4.492365         6998          60         4.970296
#> 2 2002 12.660827    5.165556         7058          69         5.980417
#> 3 2003  8.757757    6.221537         6923          69         6.392572
#> 4 2004  9.852580    5.334078         6916          83         4.400530
#>   chain_ladder_lr
#> 1        69.33936
#> 2        69.06072
#> 3        71.40414
#> 4        70.23848
double_format <- function(x){
  sprintf("%.3f", x)
}
percent_format <- function(x){
  sprintf("%.2f %%", x)
}
ft <- regulartable(
  x, col_keys = c("year", "premium", "latest_eval",
                  "sep_1", "cape_cod_u_l", "cape_cod_lr",
                  "sep_2", "chain_ladder_u_l", "chain_ladder_lr") )
ft <- set_formatter(ft, premium = double_format, latest_eval = double_format,
                    chain_ladder_lr = percent_format )
ft <- set_header_df(ft, mapping = typology, key = "col_keys" )
ft <- theme_box(ft)
ft

Cape Cod

Cape Cod

Chain Ladder

Chain Ladder

Year

Premium

Latest Eval

Ultimate Loss

Ultimate LR

Ultimate Loss

Ultimate LR

Year

Premium

Latest Eval

(000)

(%)

(000)

(%)

2001

8.920

4.492

6998

60

4.970

69.34 %

2002

12.661

5.166

7058

69

5.980

69.06 %

2003

8.758

6.222

6923

69

6.393

71.40 %

2004

9.853

5.334

6916

83

4.401

70.24 %


ft <- merge_h(ft, part = "header")
ft <- merge_v(ft, part = "header", j = 1:3)
ft <- theme_zebra(ft, odd_header = "transparent", even_header = "transparent")
ft

Cape Cod

Chain Ladder

Year

Premium

Latest Eval

Ultimate Loss

Ultimate LR

Ultimate Loss

Ultimate LR

(000)

(%)

(000)

(%)

2001

8.920

4.492

6998

60

4.970

69.34 %

2002

12.661

5.166

7058

69

5.980

69.06 %

2003

8.758

6.222

6923

69

6.393

71.40 %

2004

9.853

5.334

6916

83

4.401

70.24 %


ft <- fontsize(ft, size = 11, part = "all")
ft <- fontsize(ft, i = 1:2, size = 12, part = "header")
ft <- color(ft, i = 1:2, color = "#007FA6", part = "header")
ft <- fontsize(ft, i = 3, size = 9, part = "header")
ft <- color(ft, i = 3, color = "gray", part = "header")
ft

Cape Cod

Chain Ladder

Year

Premium

Latest Eval

Ultimate Loss

Ultimate LR

Ultimate Loss

Ultimate LR

(000)

(%)

(000)

(%)

2001

8.920

4.492

6998

60

4.970

69.34 %

2002

12.661

5.166

7058

69

5.980

69.06 %

2003

8.758

6.222

6923

69

6.393

71.40 %

2004

9.853

5.334

6916

83

4.401

70.24 %


ft <- hline(ft, border = fp_border(width = .75, color = "#007FA6"), part = "body" )

ft <- hline(ft, border = fp_border(width = 2, color = "#007FA6"), part = "header" )
ft

Cape Cod

Chain Ladder

Year

Premium

Latest Eval

Ultimate Loss

Ultimate LR

Ultimate Loss

Ultimate LR

(000)

(%)

(000)

(%)

2001

8.920

4.492

6998

60

4.970

69.34 %

2002

12.661

5.166

7058

69

5.980

69.06 %

2003

8.758

6.222

6923

69

6.393

71.40 %

2004

9.853

5.334

6916

83

4.401

70.24 %


ft <- empty_blanks(ft)
ft <- autofit(ft)
ft

Cape Cod

Chain Ladder

Year

Premium

Latest Eval

Ultimate Loss

Ultimate LR

Ultimate Loss

Ultimate LR

(000)

(%)

(000)

(%)

2001

8.920

4.492

6998

60

4.970

69.34 %

2002

12.661

5.166

7058

69

5.980

69.06 %

2003

8.758

6.222

6923

69

6.393

71.40 %

2004

9.853

5.334

6916

83

4.401

70.24 %

Conditional formatting

Formatting functions accept arguments i and j to select rows and columns to format. These arguments support formulas, index, logical (and character for columns’ names).

ft <- regulartable(head(mtcars))
ft <- color(ft, i = ~ drat > 3, j = ~ vs + am, color = "red")
ft <- bg(ft, i = ~ wt < 3, j = ~ mpg, bg = "#EFEF99")
ft <- bold(ft, i = 2:4, j = "cyl", bold = TRUE)
ft

mpg

cyl

disp

hp

drat

wt

qsec

vs

am

gear

carb

21.000

6.000

160.000

110.000

3.900

2.620

16.460

0.000

1.000

4.000

4.000

21.000

6.000

160.000

110.000

3.900

2.875

17.020

0.000

1.000

4.000

4.000

22.800

4.000

108.000

93.000

3.850

2.320

18.610

1.000

1.000

4.000

1.000

21.400

6.000

258.000

110.000

3.080

3.215

19.440

1.000

0.000

3.000

1.000

18.700

8.000

360.000

175.000

3.150

3.440

17.020

0.000

0.000

3.000

2.000

18.100

6.000

225.000

105.000

2.760

3.460

20.220

1.000

0.000

3.000

1.000

xtable objects

anova

Df

Deviance

Resid. Df

Resid. Dev

NULL

99

129.49

ethnicty

3

47.24

96

82.25

grade

1

1.73

95

80.52

ethnicty:grade

3

7.20

92

73.32

adding horizontal lines

1

2

1

1

6

2

2

7

3

3

8

4

4

9

5

5

10

rotate columns

grade

sex

disadvg

ethnicty

tlimth

6

M

YES

HISPANIC

43

7

M

NO

BLACK

88

5

F

YES

HISPANIC

34

3

M

YES

HISPANIC

65

8

M

YES

WHITE

75

5

M

NO

BLACK

74

8

F

YES

HISPANIC

72

4

M

YES

BLACK

79

6

M

NO

WHITE

88

7

M

YES

HISPANIC

87

tables

Grade 6

Grade 3

A

B

C

D

A

1

1

1

0

B

2

1

1

2

C

1

2

2

2

D

0

1

1

2

time series

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

1954

-

-

-

-

-

-

0

1

3

4

6

7

1955

9

9

11

12

11

13

15

17

17

17

18

19

1956

20

22

23

24

24

27

27

27

26

27

28

30

1957

31

31

32

33

33

33

33

33

33

34

34

37

1958

36

36

37

38

38

40

43

45

48

51

49

50

1959

54

53

54

55

58

61

62

63

64

66

64

65

1960

67

69

71

72

75

75

76

78

78

79

82

84

1961

84

83

83

83

83

85

86

86

87

88

89

89

1962

88

90

89

89

91

90

91

91

90

92

-

-

from scratch

R2

μx

F-stat

S.E.E

DW

yt-1

0.90

0.89

200.00

0.04

2.00

Using within shiny applications

Use function htmltools_value() to get the html value of the flextable (suitable for an uiOutput).

library(shiny)
library(flextable)

ui <- fluidPage(
  
  titlePanel("mtcars"),
  sidebarLayout(
    sidebarPanel(
      sliderInput("mpg", "mpg Limit", min = 11, max = 33, value = 20)
    ),
    mainPanel(
      uiOutput("mtcars_ft")
    )
  )
)

server <- function(input, output) {
  library(dplyr)
  output$mtcars_ft <- renderUI({
    req(input$mpg)
    mtcars %>%
      mutate(car = rownames(.)) %>%
      select(car, everything()) %>%
      filter(mpg <= input$mpg) %>%
      regulartable() %>%
      theme_booktabs() %>% 
      htmltools_value()
  })
}

# Run the application
shinyApp(ui = ui, server = server)