fitur is a package to provide wrapper functions for fitting univariate distributions. The main function is fit_univariate
where you can supply numeric data to the function along with the desired attributes of the distribution you want to fit. It returns a list object with the density, distribution, quantile, and random deviates functions based on the calculated parameters from the given numeric vector.
set.seed(562)
x <- rpois(100, 1)
fittedPois <- fit_univariate(x, 'pois', 'discrete')
fittedPois$d(1)
## [1] 0.3672432
fittedPois$p(1)
## [1] 0.713699
fittedPois$q(.5)
## [1] 1
fittedPois$r(100)
## [1] 3 0 1 1 1 0 1 0 2 1 0 2 1 1 1 0 1 0 2 1 2 0 1 0 0 1 2 0 0 1 0 0 1 0 1
## [36] 2 2 2 1 0 1 0 1 1 1 1 1 0 0 3 1 0 1 0 1 2 0 0 0 2 0 1 1 1 1 1 2 1 0 1
## [71] 4 0 1 0 4 1 3 0 1 1 2 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 2 1
set.seed(562)
x <- rexp(100, 1)
fittedExp <- fit_univariate(x, 'exp')
fittedExp$d(1)
## [1] 0.3671239
fittedExp$p(1)
## [1] 0.6082921
fittedExp$q(.5)
## [1] 0.7395629
fittedExp$r(100)
## [1] 2.351001e+00 2.948149e-05 2.367160e-01 1.112476e-01 2.605569e-01
## [6] 3.920280e-01 7.761996e-01 1.129285e+00 7.938331e-01 1.314894e+00
## [11] 4.626290e+00 5.474731e-01 9.630294e-01 5.589443e-02 3.522836e-01
## [16] 1.593953e+00 1.190270e+00 3.732245e-01 8.164341e-01 1.613205e-01
## [21] 1.839307e-01 1.251105e+00 1.990244e-01 6.854576e-01 9.426148e-01
## [26] 1.958607e-02 1.219231e+00 8.030401e-02 1.192183e-01 4.300381e-01
## [31] 1.519516e+00 1.900270e+00 2.342017e-01 3.429285e+00 1.128696e+00
## [36] 1.473901e+00 2.840781e+00 1.598224e+00 2.514877e+00 9.126977e-01
## [41] 2.056496e+00 6.276563e-01 5.496089e+00 7.583716e-01 1.068971e-01
## [46] 1.909485e+00 1.049224e+00 1.486235e-01 4.234806e-01 1.026815e+00
## [51] 1.353383e+00 1.920793e+00 5.790217e-01 5.668848e-01 1.338228e+00
## [56] 3.835856e-01 3.086888e-01 3.008105e-01 5.773580e-01 3.107248e-01
## [61] 3.473637e+00 3.624335e-01 1.996212e-01 1.005359e+00 8.012569e-02
## [66] 1.970946e-01 1.407484e-01 1.789542e+00 2.049385e+00 5.796875e-01
## [71] 1.179815e+00 6.653025e-01 2.514092e-01 1.190967e-01 9.912087e-01
## [76] 2.690759e-01 1.165251e+00 4.870345e-01 4.050169e-01 2.400283e-01
## [81] 1.957742e+00 3.530745e+00 1.134700e+00 4.092567e-01 1.598225e+00
## [86] 2.542079e-01 1.399733e+00 2.630077e-01 5.012669e+00 4.139787e+00
## [91] 1.646861e+00 5.261133e-01 7.217565e-01 6.484577e+00 1.311477e+00
## [96] 5.754227e-01 7.194780e-01 7.236361e-01 4.702101e-01 5.925928e-02
The package also allows users to specify empirical distributions. For discrete distributions, the function will not truncate any integer values with the given input. For continuous distributions, the function will create bins using the Freedman-Diaconis rule.
set.seed(562)
x <- rpois(100, 1)
fittedDEmp <- fit_univariate(x, family = 'empirical', type = 'discrete')
fittedDEmp$d(1)
## [1] 0.3
fittedDEmp$p(1)
## [1] 0.69
fittedDEmp$q(.5)
## [1] 0
fittedDEmp$r(100)
## [1] 3 0 1 1 1 0 1 0 2 1 0 2 1 1 1 0 1 0 3 1 2 0 1 0 0 1 2 0 0 1 0 0 1 0 1
## [36] 2 3 3 1 0 0 0 1 1 0 1 1 0 0 3 1 0 1 0 1 3 0 0 0 3 0 1 1 1 1 1 2 1 0 1
## [71] 3 0 1 0 3 0 3 0 1 1 2 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 2 1
set.seed(562)
x <- rexp(100, 1)
fittedCEmp <- fit_univariate(x, family = 'empirical', type = 'continuous')
fittedCEmp$d(1)
## (0.562,1.12]
## 0.27
fittedCEmp$p(1)
## [1] 0.69
fittedCEmp$q(.5)
## [1] 0.27883
fittedCEmp$r(100)
## [1] 0.27883 3.08000 0.27883 3.64000 0.27883 0.84100 0.84100 2.52000
## [9] 0.84100 0.27883 0.84100 0.84100 0.27883 0.27883 0.84100 0.84100
## [17] 0.84100 0.84100 0.84100 0.84100 0.27883 0.27883 0.27883 0.27883
## [25] 0.27883 1.40000 0.84100 0.27883 6.43500 0.84100 2.52000 0.84100
## [33] 1.96000 0.27883 0.84100 0.84100 0.84100 0.84100 0.84100 0.27883
## [41] 0.27883 2.52000 1.40000 0.27883 0.84100 0.27883 0.84100 2.52000
## [49] 0.27883 1.96000 0.27883 0.27883 0.27883 0.84100 0.84100 1.40000
## [57] 0.27883 0.27883 0.84100 0.27883 0.27883 0.84100 0.27883 0.27883
## [65] 0.27883 1.96000 2.52000 0.27883 0.84100 0.27883 0.27883 0.27883
## [73] 1.40000 0.27883 0.84100 0.27883 1.40000 0.84100 0.27883 0.27883
## [81] 1.96000 0.27883 0.84100 3.64000 4.20000 0.84100 0.84100 0.27883
## [89] 0.84100 0.27883 0.27883 0.84100 0.84100 1.40000 1.40000 0.27883
## [97] 3.08000 0.84100 0.84100 1.40000