Sleeper: Basics

In this vignette, I’ll walk through how to get started with a basic dynasty value analysis on Sleeper.

We’ll start by loading the packages:

  library(ffscrapr)
  library(dplyr)
  library(tidyr)

In Sleeper, unlike in other platforms, it’s very unlikely that you’ll remember the league ID - both because most people use the mobile app, and because it happens to be an 18 digit number! It’s a little more natural to start analyses from the username, so let’s start there!

solarpool_leagues <- sleeper_userleagues("solarpool",2020)

head(solarpool_leagues)
#> # A tibble: 3 x 4
#>   league_name                   league_id        franchise_name franchise_id    
#>   <chr>                         <chr>            <chr>          <chr>           
#> 1 z_dynastyprocess-test         633501761776197~ solarpool      202892038360801~
#> 2 The JanMichaelLarkin Dynasty~ 522458773317046~ solarpool      202892038360801~
#> 3 DLP Dynasty League            521379020332068~ DLP::thoriyan  202892038360801~

Let’s pull the JML league ID from here for analysis, and set up a Sleeper connection object.

jml_id <- solarpool_leagues %>% 
  filter(league_name == "The JanMichaelLarkin Dynasty League") %>% 
  pull(league_id)

jml_id # For quick analyses, I'm not above copy-pasting the league ID instead!
#> [1] "522458773317046272"

jml <- sleeper_connect(season = 2020, league_id = jml_id)

jml
#> <Sleeper connection 2020_522458773317046272>
#> List of 5
#>  $ platform : chr "Sleeper"
#>  $ season   : num 2020
#>  $ user_name: NULL
#>  $ league_id: chr "522458773317046272"
#>  $ user_id  : NULL
#>  - attr(*, "class")= chr "sleeper_conn"

I’ve done this with the sleeper_connect() function, although you can also do this from the ff_connect() call - they are equivalent. Most if not all of the remaining functions after this point are prefixed with “ff_”.

Cool! Let’s have a quick look at what this league is like.

jml_summary <- ff_league(jml)

str(jml_summary)
#> tibble [1 x 15] (S3: tbl_df/tbl/data.frame)
#>  $ league_id      : chr "522458773317046272"
#>  $ league_name    : chr "The JanMichaelLarkin Dynasty League"
#>  $ league_type    : chr "dynasty"
#>  $ franchise_count: num 12
#>  $ qb_type        : chr "1QB"
#>  $ idp            : logi FALSE
#>  $ scoring_flags  : chr "0.5_ppr"
#>  $ best_ball      : logi FALSE
#>  $ salary_cap     : logi FALSE
#>  $ player_copies  : num 1
#>  $ years_active   : chr "2019-2020"
#>  $ qb_count       : chr "1"
#>  $ roster_size    : int 25
#>  $ league_depth   : num 300
#>  $ prev_league_ids: chr "386236959468675072"

Okay, so it’s the JanMichaelLarkin Dynasty League, it’s a 1QB league with 12 teams, half ppr scoring, and rosters about 300 players.

Let’s grab the rosters now.

jml_rosters <- ff_rosters(jml)

head(jml_rosters)
#> # A tibble: 6 x 7
#>   franchise_id franchise_name player_id player_name     pos   team    age
#>   <chr>        <chr>          <chr>     <chr>           <chr> <chr> <dbl>
#> 1 1            Fake News      1110      T.Y. Hilton     WR    IND    31.5
#> 2 1            Fake News      1339      Zach Ertz       TE    PHI    30.5
#> 3 1            Fake News      1426      DeAndre Hopkins WR    ARI    28.9
#> 4 1            Fake News      1825      Jarvis Landry   WR    CLE    28.4
#> 5 1            Fake News      2025      Albert Wilson   WR    MIA    28.8
#> 6 1            Fake News      2197      Brandin Cooks   WR    HOU    27.6

Values

Cool! Let’s pull in some additional context by adding DynastyProcess player values.

player_values <- dp_values("values-players.csv")

# The values are stored by fantasypros ID since that's where the data comes from. 
# To join it to our rosters, we'll need playerID mappings.

player_ids <- dp_playerids() %>% 
  select(sleeper_id,fantasypros_id)

player_values <- player_values %>% 
  left_join(player_ids, by = c("fp_id" = "fantasypros_id")) %>% 
  select(sleeper_id,ecr_1qb,ecr_pos,value_1qb)

# Drilling down to just 1QB values and IDs, we'll be joining it onto rosters and don't need the extra stuff

jml_values <- jml_rosters %>% 
  left_join(player_values, by = c("player_id"="sleeper_id")) %>% 
  arrange(franchise_id,desc(value_1qb))

head(jml_values)
#> # A tibble: 6 x 10
#>   franchise_id franchise_name player_id player_name    pos   team    age ecr_1qb
#>   <chr>        <chr>          <chr>     <chr>          <chr> <chr> <dbl>   <dbl>
#> 1 1            Fake News      4866      Saquon Barkley RB    NYG    24.2     3.2
#> 2 1            Fake News      1426      DeAndre Hopki~ WR    ARI    28.9    17.2
#> 3 1            Fake News      4199      Aaron Jones    RB    GB     26.4    21.5
#> 4 1            Fake News      4037      Chris Godwin   WR    TB     25.2    31.7
#> 5 1            Fake News      4017      Deshaun Watson QB    HOU    25.7    52.2
#> 6 1            Fake News      4098      Kareem Hunt    RB    CLE    25.8    57  
#> # ... with 2 more variables: ecr_pos <dbl>, value_1qb <int>

Let’s do some team summaries now!

value_summary <- jml_values %>% 
  group_by(franchise_id,franchise_name,pos) %>% 
  summarise(total_value = sum(value_1qb,na.rm = TRUE)) %>%
  ungroup() %>% 
  group_by(franchise_id,franchise_name) %>% 
  mutate(team_value = sum(total_value)) %>% 
  ungroup() %>% 
  pivot_wider(names_from = pos, values_from = total_value) %>% 
  arrange(desc(team_value))

value_summary
#> # A tibble: 12 x 8
#>    franchise_id franchise_name    team_value    QB    RB    TE    WR    FB
#>    <chr>        <chr>                  <int> <int> <int> <int> <int> <int>
#>  1 3            solarpool              47413  7134 23965   722 15592    NA
#>  2 11           Permian Panthers       44216  3260 13604  7280 20072    NA
#>  3 4            The FANTom Menace      44198  2865  9596  2377 29360    NA
#>  4 1            Fake News              43470  3457 20135  3454 16424    NA
#>  5 8            Hocka Flocka           39756  1450 21482  3366 13458    NA
#>  6 12           jaydk                  36644  1885 18415  3523 12821    NA
#>  7 5            Barbarians             33962  3207 19480  5678  5597    NA
#>  8 6            sox05syd               31505  3458  4901  8830 14316    NA
#>  9 9            ZPMiller97             27327  2414 12715  2141 10057    NA
#> 10 7            Flipadelphia05         21438  2316  7972   177 10973    NA
#> 11 2            KingGabe               21067   101  6726    17 14223    NA
#> 12 10           JMLarkin               16741   449   105   962 15225     0

So with that, we’ve got a team summary of values! I like applying some context, so let’s turn these into percentages - this helps normalise it to your league environment.

value_summary_pct <- value_summary %>% 
  mutate_at(c("team_value","QB","RB","WR","TE"),~.x/sum(.x)) %>% 
  mutate_at(c("team_value","QB","RB","WR","TE"),round, 3)

value_summary_pct
#> # A tibble: 12 x 8
#>    franchise_id franchise_name    team_value    QB    RB    TE    WR    FB
#>    <chr>        <chr>                  <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#>  1 3            solarpool              0.116 0.223 0.151 0.019 0.088    NA
#>  2 11           Permian Panthers       0.108 0.102 0.086 0.189 0.113    NA
#>  3 4            The FANTom Menace      0.108 0.09  0.06  0.062 0.165    NA
#>  4 1            Fake News              0.107 0.108 0.127 0.09  0.092    NA
#>  5 8            Hocka Flocka           0.098 0.045 0.135 0.087 0.076    NA
#>  6 12           jaydk                  0.09  0.059 0.116 0.091 0.072    NA
#>  7 5            Barbarians             0.083 0.1   0.122 0.147 0.031    NA
#>  8 6            sox05syd               0.077 0.108 0.031 0.229 0.08     NA
#>  9 9            ZPMiller97             0.067 0.075 0.08  0.056 0.056    NA
#> 10 7            Flipadelphia05         0.053 0.072 0.05  0.005 0.062    NA
#> 11 2            KingGabe               0.052 0.003 0.042 0     0.08     NA
#> 12 10           JMLarkin               0.041 0.014 0.001 0.025 0.085     0

Armed with a value summary like this, we can see team strengths and weaknesses pretty quickly, and figure out who might be interested in your positional surpluses and who might have a surplus at a position you want to look at.

Age

Another question you might ask: what is the average age of any given team?

I like looking at average age by position, but weighted by dynasty value. This helps give a better idea of age for each team - including who might be looking to offload an older veteran!

age_summary <- jml_values %>% 
  group_by(franchise_id,pos) %>% 
  mutate(position_value = sum(value_1qb,na.rm=TRUE)) %>% 
  ungroup() %>% 
  mutate(weighted_age = age*value_1qb/position_value,
         weighted_age = round(weighted_age, 1)) %>% 
  group_by(franchise_id,franchise_name,pos) %>% 
  summarise(count = n(),
            age = sum(weighted_age,na.rm = TRUE)) %>% 
  pivot_wider(names_from = pos,
              values_from = c(age,count))

age_summary
#> # A tibble: 12 x 12
#> # Groups:   franchise_id, franchise_name [12]
#>    franchise_id franchise_name    age_QB age_RB age_TE age_WR age_FB count_QB
#>    <chr>        <chr>              <dbl>  <dbl>  <dbl>  <dbl>  <dbl>    <int>
#>  1 1            Fake News           26.5   25.2   26.1   27.6     NA        3
#>  2 10           JMLarkin            28.4   27.3   25.9   25.3      0        3
#>  3 11           Permian Panthers    24.1   23     31.4   25.8     NA        3
#>  4 12           jaydk               31.6   25.3   25.8   27.9     NA        4
#>  5 2            KingGabe            26.9   22.4   26.6   22.1     NA        5
#>  6 3            solarpool           25.4   25.5   26.4   27.7     NA        5
#>  7 4            The FANTom Menace   28.4   24.6   24.3   26.6     NA        4
#>  8 5            Barbarians          25.1   24.6   28.6   26.8     NA        3
#>  9 6            sox05syd            23.8   23.9   27.2   25.4     NA        3
#> 10 7            Flipadelphia05      33     24.9   27.7   26.5     NA        2
#> 11 8            Hocka Flocka        31.4   24.1   24.9   23.4     NA        3
#> 12 9            ZPMiller97          24.5   23.8   26.6   25.2     NA        3
#> # ... with 4 more variables: count_RB <int>, count_TE <int>, count_WR <int>,
#> #   count_FB <int>

Next steps

In this vignette, I’ve used ~three functions: ff_connect, ff_league, and ff_rosters. Now that you’ve gotten this far, why not check out some of the other possibilities?