In this vignette, I’ll walk through how to get started with a basic dynasty value analysis on Sleeper.
We’ll start by loading the packages:
In Sleeper, unlike in other platforms, it’s very unlikely that you’ll remember the league ID - both because most people use the mobile app, and because it happens to be an 18 digit number! It’s a little more natural to start analyses from the username, so let’s start there!
solarpool_leagues <- sleeper_userleagues("solarpool",2020)
head(solarpool_leagues)
#> # A tibble: 3 x 4
#> league_name league_id franchise_name franchise_id
#> <chr> <chr> <chr> <chr>
#> 1 z_dynastyprocess-test 633501761776197~ solarpool 202892038360801~
#> 2 The JanMichaelLarkin Dynasty~ 522458773317046~ solarpool 202892038360801~
#> 3 DLP Dynasty League 521379020332068~ DLP::thoriyan 202892038360801~
Let’s pull the JML league ID from here for analysis, and set up a Sleeper connection object.
jml_id <- solarpool_leagues %>%
filter(league_name == "The JanMichaelLarkin Dynasty League") %>%
pull(league_id)
jml_id # For quick analyses, I'm not above copy-pasting the league ID instead!
#> [1] "522458773317046272"
jml <- sleeper_connect(season = 2020, league_id = jml_id)
jml
#> <Sleeper connection 2020_522458773317046272>
#> List of 5
#> $ platform : chr "Sleeper"
#> $ season : num 2020
#> $ user_name: NULL
#> $ league_id: chr "522458773317046272"
#> $ user_id : NULL
#> - attr(*, "class")= chr "sleeper_conn"
I’ve done this with the sleeper_connect()
function, although you can also do this from the ff_connect()
call - they are equivalent. Most if not all of the remaining functions after this point are prefixed with “ff_”.
Cool! Let’s have a quick look at what this league is like.
jml_summary <- ff_league(jml)
str(jml_summary)
#> tibble [1 x 15] (S3: tbl_df/tbl/data.frame)
#> $ league_id : chr "522458773317046272"
#> $ league_name : chr "The JanMichaelLarkin Dynasty League"
#> $ league_type : chr "dynasty"
#> $ franchise_count: num 12
#> $ qb_type : chr "1QB"
#> $ idp : logi FALSE
#> $ scoring_flags : chr "0.5_ppr"
#> $ best_ball : logi FALSE
#> $ salary_cap : logi FALSE
#> $ player_copies : num 1
#> $ years_active : chr "2019-2020"
#> $ qb_count : chr "1"
#> $ roster_size : int 25
#> $ league_depth : num 300
#> $ prev_league_ids: chr "386236959468675072"
Okay, so it’s the JanMichaelLarkin Dynasty League, it’s a 1QB league with 12 teams, half ppr scoring, and rosters about 300 players.
Let’s grab the rosters now.
jml_rosters <- ff_rosters(jml)
head(jml_rosters)
#> # A tibble: 6 x 7
#> franchise_id franchise_name player_id player_name pos team age
#> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 1 Fake News 2025 Albert Wilson WR MIA 28.3
#> 2 1 Fake News 4089 Gerald Everett TE LAR 26.4
#> 3 1 Fake News 6068 Devine Ozigbo RB JAX 24.1
#> 4 1 Fake News 4036 Corey Davis WR TEN 25.8
#> 5 1 Fake News 1339 Zach Ertz TE PHI 30
#> 6 1 Fake News 5068 Kerryon Johnson RB DET 23.4
Cool! Let’s pull in some additional context by adding DynastyProcess player values.
player_values <- dp_values("values-players.csv")
# The values are stored by fantasypros ID since that's where the data comes from.
# To join it to our rosters, we'll need playerID mappings.
player_ids <- dp_playerids() %>%
select(sleeper_id,fantasypros_id)
player_values <- player_values %>%
left_join(player_ids, by = c("fp_id" = "fantasypros_id")) %>%
select(sleeper_id,ecr_1qb,ecr_pos,value_1qb)
# Drilling down to just 1QB values and IDs, we'll be joining it onto rosters and don't need the extra stuff
jml_values <- jml_rosters %>%
left_join(player_values, by = c("player_id"="sleeper_id")) %>%
arrange(franchise_id,desc(value_1qb))
head(jml_values)
#> # A tibble: 6 x 10
#> franchise_id franchise_name player_id player_name pos team age ecr_1qb
#> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 1 Fake News 1426 DeAndre Ho~ WR ARI 28.4 6.7
#> 2 1 Fake News 4866 Saquon Bar~ RB NYG 23.8 7.7
#> 3 1 Fake News 4037 Chris Godw~ WR TB 24.7 15.7
#> 4 1 Fake News 4199 Aaron Jones RB GB 26 28.3
#> 5 1 Fake News 4098 Kareem Hunt RB CLE 25.3 47.7
#> 6 1 Fake News 4137 James Conn~ RB PIT 25.5 71.3
#> # ... with 2 more variables: ecr_pos <dbl>, value_1qb <int>
Let’s do some team summaries now!
value_summary <- jml_values %>%
group_by(franchise_id,franchise_name,pos) %>%
summarise(total_value = sum(value_1qb,na.rm = TRUE)) %>%
ungroup() %>%
group_by(franchise_id,franchise_name) %>%
mutate(team_value = sum(total_value)) %>%
ungroup() %>%
pivot_wider(names_from = pos, values_from = total_value) %>%
arrange(desc(team_value))
#> `summarise()` regrouping output by 'franchise_id', 'franchise_name' (override with `.groups` argument)
value_summary
#> # A tibble: 12 x 8
#> franchise_id franchise_name team_value QB RB TE WR FB
#> <chr> <chr> <int> <int> <int> <int> <int> <int>
#> 1 4 The FANTom Menace 51911 3133 15663 2637 30478 NA
#> 2 1 Fake News 47811 654 20073 4097 22987 NA
#> 3 3 solarpool 46000 5907 21904 1321 16868 NA
#> 4 11 Permian Panthers 43204 4187 11979 5266 21772 NA
#> 5 12 jaydk 39289 1972 15583 4343 17391 NA
#> 6 8 Hocka Flocka 35007 1235 19661 2304 11807 NA
#> 7 6 sox05syd 33925 3288 4000 7099 19538 NA
#> 8 9 ZPMiller97 30612 4122 11320 2585 12585 NA
#> 9 5 Barbarians 29758 4391 16191 2713 6463 NA
#> 10 7 Flipadelphia05 23353 4078 7371 414 11490 NA
#> 11 10 JMLarkin 21571 926 396 1389 18860 0
#> 12 2 KingGabe 18830 543 4577 148 13562 NA
So with that, we’ve got a team summary of values! I like applying some context, so let’s turn these into percentages - this helps normalise it to your league environment.
value_summary_pct <- value_summary %>%
mutate_at(c("team_value","QB","RB","WR","TE"),~.x/sum(.x)) %>%
mutate_at(c("team_value","QB","RB","WR","TE"),round, 3)
value_summary_pct
#> # A tibble: 12 x 8
#> franchise_id franchise_name team_value QB RB TE WR FB
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 4 The FANTom Menace 0.123 0.091 0.105 0.077 0.15 NA
#> 2 1 Fake News 0.113 0.019 0.135 0.119 0.113 NA
#> 3 3 solarpool 0.109 0.172 0.147 0.038 0.083 NA
#> 4 11 Permian Panthers 0.103 0.122 0.081 0.153 0.107 NA
#> 5 12 jaydk 0.093 0.057 0.105 0.127 0.085 NA
#> 6 8 Hocka Flocka 0.083 0.036 0.132 0.067 0.058 NA
#> 7 6 sox05syd 0.081 0.095 0.027 0.207 0.096 NA
#> 8 9 ZPMiller97 0.073 0.12 0.076 0.075 0.062 NA
#> 9 5 Barbarians 0.071 0.128 0.109 0.079 0.032 NA
#> 10 7 Flipadelphia05 0.055 0.118 0.05 0.012 0.056 NA
#> 11 10 JMLarkin 0.051 0.027 0.003 0.04 0.093 0
#> 12 2 KingGabe 0.045 0.016 0.031 0.004 0.067 NA
Armed with a value summary like this, we can see team strengths and weaknesses pretty quickly, and figure out who might be interested in your positional surpluses and who might have a surplus at a position you want to look at.
Another question you might ask: what is the average age of any given team?
I like looking at average age by position, but weighted by dynasty value. This helps give a better idea of age for each team - including who might be looking to offload an older veteran!
age_summary <- jml_values %>%
group_by(franchise_id,pos) %>%
mutate(position_value = sum(value_1qb,na.rm=TRUE)) %>%
ungroup() %>%
mutate(weighted_age = age*value_1qb/position_value,
weighted_age = round(weighted_age, 1)) %>%
group_by(franchise_id,franchise_name,pos) %>%
summarise(count = n(),
age = sum(weighted_age,na.rm = TRUE)) %>%
pivot_wider(names_from = pos,
values_from = c(age,count))
#> `summarise()` regrouping output by 'franchise_id', 'franchise_name' (override with `.groups` argument)
age_summary
#> # A tibble: 12 x 12
#> # Groups: franchise_id, franchise_name [12]
#> franchise_id franchise_name age_QB age_RB age_TE age_WR age_FB count_QB
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 1 Fake News 33.1 24.8 26 27 NA 3
#> 2 10 JMLarkin 29.1 25.8 26.6 25.2 0 3
#> 3 11 Permian Panth~ 23.8 22.9 31 25.7 NA 3
#> 4 12 jaydk 29.7 25.1 25.7 27.5 NA 4
#> 5 2 KingGabe 24.4 22 31.3 21.7 NA 5
#> 6 3 solarpool 25.4 25.2 26.2 27.8 NA 5
#> 7 4 The FANTom Me~ 28.6 24 24 26.3 NA 4
#> 8 5 Barbarians 24.8 24.3 27.8 26.2 NA 2
#> 9 6 sox05syd 24.4 23.4 26.8 24.5 NA 3
#> 10 7 Flipadelphia05 32.6 25.4 26.2 26.1 NA 2
#> 11 8 Hocka Flocka 29.9 24.3 24.1 23.6 NA 3
#> 12 9 ZPMiller97 24.2 24.1 25.9 24.9 NA 3
#> # ... with 4 more variables: count_RB <int>, count_TE <int>, count_WR <int>,
#> # count_FB <int>
In this vignette, I’ve used ~three functions: ff_connect, ff_league, and ff_rosters. Now that you’ve gotten this far, why not check out some of the other possibilities?