The fastclime Package for Linear Programming and
Constrained [;-Minimization Approach to Sparse Precision
Matrix Estimation in R

Haotian Pang * Han Liu | Robert Vanderbei *
April 28, 2014

Abstract

We describe an R package called fastclime, which provides a generic linear programming
solver and a parameterized linear programming solver. It also contains a solver for an impor-
tant sparse precision matrix estimator named CLIME. Our package efficiently implements a
method called the parametric simplex method. Compared with the existing package clime,
fastclime has many extra advantages: (1) it gives a full piece-wise linear regularization
solution path of the CLIME tuning parameter for each column; (2) it only requires a few
iterations to recover each sparse precision matrix column; (3) the entire solver is written in
C and is easy to modify.

1 The Parametric Simplex Method

In this section, we will follow the normal linear programming convention and use x as the normal
linear programming variable which has dimension n. Here we briefly describe the primal simplex
method and introduces the parametric simplex methods.

We give the standard linear programming in inequality form:
maxc’z subject to: Az <b, x>0 x€R" (1)

where A € R™*" p € R™, ¢ € R™ are given.
For the primal simplex method, we require that b > 0. This property is called primal feasibility.
We change the standard inequality form into equality form by adding slack variables w:

T
w

max[c ()] LJZ] subject to: [A I][}:b z,w>0 xzeR” weR™ (2)

For notation convenience, we rewrite the variable z as:
T T
z=[z1 w2 o Ty owr o W] =[T1o@ 0 Tp Tip1 o T

The new variables, z,41, ..., Tnim, are called slack variables. We separate the m + n variables
into two parts: basic variables and nonbasic variables. Basics variables are used to represent the
nonbasic variables. Initially, the slack variables are basic variables and the original variables are
nonbasic variables. We separate the matrix [A I] into the basic part and the nonbasic part as
well (with permutation). Initially the matrix A corresponds to nonbasic variables and the identity
matrix part corresponds to basic variables. The vector [c O] is separated in the same fashion:

4w -] -

*email: hpang@princeton.edu, Department of Electrical Engineering, Princeton University

femail: hanliu@princeton.edu, Department of Operational Research and Financial Engineering, Princeton U-
niversity

femail: rvdb@princeton.edu, Department of Operational Research and Financial Engineering, Princeton Uni-
versity

Now the constraints of (2) will become: Nay + Bxp = b. We denote the objective ¢’z as ¢, then
we have:
xp =B 'b— B 'Nzy

=z — B 'Nay

¢=c'z 3)
:chg + c%xN
=cE (B~ — B 'Nzy) + chan
=cEB7 ' — ((B7'N)Tep —en)lay
=¢* — (23) N
(4)
with ¢* = ¢EB71b, 2% = B7'b and 2} = (B7'N)Tcp — cn.

We call equations (3) and (4) the primal dictionary associated with the current basis B. Primal
feasibility requires that xp > 0, which is initially guaranteed by b > 0 . We read off the specific
values of g and ¢ by setting xn to be zero. For next iteration, we swap one variable from the
basics part and one variable from the nonbasic part, and then we write down the dictionary and
read off the values such that the objective value is always increasing.

The dual of the problem (1) is:
minbTy subject to: ATy >¢, y>0 yeR™ (5)
As with the primal problem, We form by introducing slack variables here as well:
minb’y subject to: ATy—z=¢, y,2>0 yeR™ zcR" (6)
The dual variables are given by:

z = [21 29 Zn yl ym — [zl 29 Zn Z’nJrl Zn+m

Similar to (3) and (4), the corresponding dual dictionary is given by:

2y = (B 'N)Yeg —eny +(B7'N) 2 = 25 + (B™'N) 2 (7)

&= —cpB 0+ (B7) zp = (" — (¢5)" 28 (8)
where £ denotes the objective function in the dual form.

For each dictionary, we set zy and zp to 0 (complementarity) and read off the solutions to zp
and zy according to (3) and (7). Next, we update the dictionary by removing one basic index
and replacing it with a nonbasic index, then we get an updated dictionary. The simplex method
produces a sequence of steps to adjacent bases such that the value of the objective function is
always increasing at each step. Primal feasibility requires that xp > 0, so while we update the
dictionary, primal feasibility must always be satisfied. This process will stop when zx > 0 (dual
feasibility), and this is the optimality condition since it satisfies primal feasibility, dual feasibility
and complementarity.

Now we introduce the parametric simplex method [Vanderbei, 2008]. Generally speaking, we
cannot make the initial primal feasible assumption (b > 0). The method we use here is to add
some nonnegative perturbation times a positive parameter A to both objective function (¢) and

the right hind side of the primal problem (b). Now (1) becomes:
max(c+ Me)Tz subject to: Az <b+ X, >0 zecR" (9)
The dictionary of equations (3), (4), (7) and (8) will become:

rp = (LU*B +)\EB) - B_IN:L‘N (10)

C=C = (2 +X2n) T ay (11)
2y = (2 + AZn) + (B7IN)T 25 (12)
—{=—(" — (2 +A\Tp) 28 (13)
with Zg = B~ 'b and zy = (B~'N)T¢p — ¢y

we choose b and ¢, so that when)\ is large, the dictionary will be both primal and dual feasible
(x5 + AT > 0 and z} + AZy > 0). At this point, we start to decrease A. The smallest value of
A is given by

A" =min{\: zy + X2y > 0 and 2 + A\Tp > 0} (14)

We interchange one basic variable and one nonbasic variable and update the dictionary in a way
so that the value of A will be decreased. Eventually the value of A will be decreased to zero which
corresponds to the original problem. For each update, we need to make sure that the primal and
dual feasibility is satisfied. The detail of one iteration of the parametric simplex method can be
found in page 119-121 of [Vanderbei, 2008]. This algorithm must stop in finite time because: (1)
the value of \ is decreasing for each iteration; (2) the optimal value corresponding to X is 0 (3)
there are finitely many bases and it indicates that there are only finitely many steps (unless it
cycles). The linear programming solver based on the algorithm described above is contained in
our package.

In section 2, we will introduce CLIME and apply the parametric simplex method to CLIME. In
section 3, we will introduce the design of our software and provide some examples. In section 4,
we will show numerical benchmarks and comparisons with other implementations.

2 CLIME

In this section, CLIME will be discussed and the normal statistical notation will be used. Esti-
mating the covariance matrix and its inverse is an important and widely discussed problem in s-
tatistics. Let X = (X1, ..., X4)T be a d-variate random vector with Gaussian distribution N (u,).
Let x1,...,%, € R? be n observations of a d-dimensional random vector X = (X1,..., Xq)”. We
denote the covariance matrix ¥ = EX X7 . It can be easily estimated by its sample covariance:

Sp= =3 (an - B)(an —)7 (15)

k=1

S|

n
where Z = 1 3 1z, is the sample mean.
k=1

The precision matrix, sometimes called the concentration matrix, €2, is defined as Q = X7, Un-
der Gaussian model, 2, = 0 indicates that X; and X; are independent given all other variables
Xi(k #1i,7). A closely related problem is the selection of graphical model. Let a graph G = (V, E)
denote the conditional independence relation between the variables X. More specifically, the ver-
tex set V' corresponds to the set of variables X1, X, ..., X,. An edge between node ¢ and node
J belongs to the edge set E if and only if the two variables X; and X is not independent given
Xik(k # i,j). Therefore, for Gaussian distribution, recovering the structure of the conditional
independence graph is equivalent to estimating the support of the corresponding precision matrix.

Unlike for the covariance matrix, there is no direct method to estimate the precision matrix. Our
goal is to estimate the sparse precision matrix when the dimension d is large. One famous method
to estimate the precision matrix is called [; regularized log-determinant program [Banerjee et al.,
2008]:

Q= argmin trace(X,X) —log(det(X)) + A|| X |1 subject to: X >0 (16)

This estimator can be solved efficiently by methods such as GLASSO (Graphical Lasso)[Friedman
et al., 2007] [Friedman et al., 2010].

Another simple and important linear programming estimator proposed recently is called CLIME
(Constrained /; Minimization Estimator). Cai et al. define the CLIME estimator 2 as the solution
to the following problem:

min ||Qf]; subject to: [Z,Q — Ig|mar < A, Q€ RX4 (17)

where)\ is defined as a tuning parameter, Y, is the sample covariance matrix and I; is the
d-dimensional identity matrix. This minimization problem can be further decomposed into d
smaller problems by simply recovering the precision matrix column by column:

min ||B]; subject to: [£,8 —€ile <A B €R? (18)

where ||8]1 = Z‘;Zl |3;] and e; € RY is the i-th unit vector.

Of course, the estimator we obtain by solving these series of linear programming problems are
not symmetric, but we can simply take the smaller value of {;; and 2;; as the value chosen
by the estimator. The result can be shown to be positive definite with high probability. The
error between the estimator @ and Q satisfies || — Q|ls = O,(sy/log(d)/n) and |Q — Q| =
O, (+y/log(d)/n), where s denotes the sparsity of the precision matrix. Moreover, it has been
shown numerically that CLIME method uniformly outperforms GLASSO [Cai et al.]. This is the
reason why CLIME is very important and useful, although GLASSO and many other maximum
likelihood methods are faster compared with linear programming appraoch.

Now we are ready to apply the parametric simplex method to solve CLIME. By setting 3 =
BT —pB~ and ||B]1 =BT + B~ and let 3T >0 B~ > 0, and one of BT, B~ be 0, equation (18)
of CLIME can be written in the following form:

min BT + 3~ subject to: (_Eg _EE") <gj) < <§ i_ Z%) (19)

Equation (19) is clearly an initial setup of a parametric simplex problem. Comparing it with (9),
we have the following identifications:

Yn o —2n (e B . = _ 7
A_<—En En> b—(_€i> c= : c=0 b=

-1 1

By constructing this setup and plugging the problem into our parametric simple linear program-
ming solver, we are able to recover the full piecewise-linear regularization path in a relatively
short time.

3 Design, Implementation and Examples

The package fastclime consists of two major parts: a pair of linear programming solvers and
a series of functions used to estimate precision matrix: data generator, graph estimation, graph
visualization.

For the data generate part, the function fastclime.generator () is able to generate multivariate
Gaussian data with different graph structures.

fastclime is the main function used to estimate the graph. It takes three parameters. The first
parameter can be either a data matrix or a sample covariance matrix. The second parameter
is the smallest value of A the user would like the solver to explorer. The third parameter is
the designed iteration numbers required for each column (the length of the solution path). The
function estimates the precision matrix column by column, and stops when either the smallest
value of A has been reached at each column or the maximum designed iteration number has been
reached. The estimator is based on a parametric simplex linear programming solver written in
C. In order to maintain the speed of the program, the default path length is set to be 50. The
user must be very careful when asking for a large solution path when the dimension d is large.
This estimator is designed to take advantage of the parametric simplex method to recover sparse

precision matrix only. When the precision matrix is not sparse, it will take a long time to recover
and the result it not that meaningful.

The output object of the main function has several components. The list of precision matrices
is stored in icovlist. lambdamtr includes the full path information for every column, with zero
filled in when the function finds the required minimum value of A in that column. maznlambda
is the length of the solution path. If the functions finds the required minimum value of A in less
than nlambda iterations for all columns, then the actual maximum length for all columns will be
returned; otherwise it equals the input nlambda.

fastclime.lambda is the selector function in this package. It selects the precision matrix and
solution path for a given parameter A\. The first two inputs take the output from fastclime
directly: icovlist and lambdamiz. The third parameter is user specified parameter lambda. The
function is able to estimate the precision matrices corresponding to all A values ranging from 1
to lambda.min, as long as a large nlambda is used fastclime.

The plotting functions fastclime.plot() provides a method to plot the undirected graph at
each path. Please note only the adjacency matrix is allowed for this function.

We illustrate the user interface by two examples. The first one is based on the data generated by
fastclime.generator(),

library(fastclime) # Load the package

L = fastclime.generator (n=200,d=50,graph="hub") # Generate data with hub structures
out = fastclime(L$data,0.1) # Estimate the solution path

plot (out)

Plot the sparsity level information from the graph path
outl = fatclime.lambda(out$lambdamtx, out$icovlist, 0.2)
Finds the estimated path corrsponding to lambda=0.2

= V % V V Vv VvV

Sparsity vs. Regularization ROC Curve
o‘ -0 O—O0O——0—0—0-00-0
& -
Q .
© ©
_ o O |
[} ©
> < 14
o o © |
i)
El =
= |
® i
& S 4 g
= F o
_ o |
o
S Rl
o | | | | s
0.4 06 08 1.0 0.000 0.010 0.020 0.030
(a) The solution path (b) The ROC curve

Figure 1: The solution path and the ROC curve of the first example

In this example, we first generate 200 samples from a 50-dimensional Gaussian distribution with
hub structure. All information, such as the true covariance matrix, the sample covariance matrix,
the true precision matrix and the adjacency matrix are stored in object L. We try to estimate
the inverse covariance matrix by fastclime, and we assume the sparsity level is about 0.1, which
is the default value. The estimator we obtain is stored in an object called out. We observe the
result has a path length of 14. The ROC curve and the solution path is shown in Figure 1(a)
and Figure 1(b), respectively. As shown in Figure 1(a), this method gives a almost perfect ROC
curve. The true sparsity level is 0.06. After three iterations, it recovers all the tree correlation
between the variables. The user has to be aware that as the path length increases, it is likely to
obtain additional undirected edges in the graph, as shown in Figure 2(c).

The second example is based on some stock market data which is contained in the package. The
data contains stock price from S&P 500 during the period between Jan 1st, 2003 and Jan 1st,
2008. Tt gives 1258 samples (n) from 452 stocks (d). We give a approximate sparsity ratio to be

(a) Truth (b) Graph obtained in 3 iterations (c) Graph obtained in 4 iterations

Figure 2: Graphs estimated by fastclime

0.05. The program automatically calculate the solution path. We reach the sparsity level 0.05
after 30 iterations. The solution path for the first column is shown in Figure 3, and a few example
of estimated graphs with corresponding sparsity level labeled are shown in Figure 4.

> data(stockdata) #Load the stock data
> Y = log(stockdata$data[2:1258,]/stockdata$datal[1:1257,]) #Preprocessing

> out = fastclime(Y,0.06) #Estimate the graph
> plot(out)

> outl = fastclime.lambda(out$lambdamtx, out$icovlist, 0.08)

> fastclime.plot(outi$path)

Sparsity vs. Regularization

(o]

(D__

(@)
O

v
O -
-1 o
>
= —
n

(9\]
S o -
N o

o

Q_

o | | | | |

0.05 0.10 0.20 0.50 1.00

Regularization Parameter

Figure 3: The solution path of the stock data

The linear programming solver function fastlp() is used to solve a general linear programming
problem in standard inequality form (1). If the original problem is not in this form, the user has to
convert it into this form. For example, if the original problem has an equation, then this equation
can be separated into two inequalities. If the original variables are not nonnegative, then the trick
mentioned in last section to derive (19) can be used to make sure the variables be nonnegative.

(a) sparsity=0.0031 (b) sparsity=0.0045 (c) sparsity=0.0058

Figure 4: Graphs estimated by fastclime based on the stock data

fastlp() has four parameters. The first three are the objective vector (length n), the constraint
matrix (dimension mxn) and the right hand side vector (length m). The last parameter lambda is
used to specify the stopping criteria of the linear programming solver. Whenever the calculated
parameter in the solver is smaller than this value, the program will stop at that point. The
default value of the lambda is zero, which corresponds to the optimal value of the LP problem.
The function will also indicate if the input problem is unbounded or infeasible. Another linear
programming solver function paralp() is used to solve a parameterized LP problem in form (9).
Notice the perturbation vectors must be nonnegative. Here is some examples: we generate a
random feasible LP problem and solves it, then we give a simple LP examples in form (9) and
solves it.

n=100

A=matrix(mvrnorm(n~2,0, 1),nrow=n)
x=runif(n, min = 0, max = 5)
y=runif(n, min = 0, max = 5)
w=runif(n, min = 0, max = 5)
z=runif(n, min = 0, max = 5)
b=A%*%x+w

c=t (A) Vxhy-z

outl<-fastlp(c,A,b)

c<-c(1,2,1,1)

b<-c(8,12,18)
A<-matrix(c(2,2,3,1,2,1,5,0,2,1,4,0) ,nrow=4)
b_bar<-c(1,1,1)

c_bar<-c(1,1)
opt2<-paralp(c,A,b,c_bar,b_bar)

VVVVVVVVVYVYVVYVVYV

4 Performance Benchmark

Since CLIME has many advantages over maximum likelihood estimator (MLE), we focus on the
comparison between packages based on CLIME method. We evaluate the timing performance of
our package with comparison to the packages flare and clime while estimating the precision
matrix. flare [Li et al., 2012] uses Alternating Direction Method of Multiplier (ADMM) as
the method to evaluate CLIME and clime solves a series of LP problems for different values
of A. We simulate the data from several multivariate normal distributions. We fix the sample
size n to be 200 and vary the data dimension d from 50 to 800. We generate our data by
fastclime.generator, without any particular data structure.

The error tolerance (primal and dual gap) used for clime and fastclime is 1 x 107> and the
error tolerance (differences between iterations) used for flare is also 1 x 1075, Our package
calculates its own A sequences while solving the LP only once, the A sequence is stored in the
output. These A sequences used for the other two methods are all the default sequences from
the packages. The X sequence used by clime is of length 100 from 0.8 to 100 and the sequence

used by flare is of length 10 from 0.5\ . t0 Amax. The default value of A\ .« is the minimum
regularization parameter, which yields an all-zero off-diagonal estimates.

As can be seen from Table 1, fastclime performance significantly faster than clime when d is
50 or 100. When d is large, we are not able to obtain results directly from clime in one hour. We
also notice that, in most cases, fastclime performances better than flare, and it has a smaller
deviation compared with flare. The units are in seconds and all experiments are carried on a
PC with Intel Core 15-3320 2.6GHz processor and the R used is 2.15.0.

Table 1: Average Timing Performance of Three Solvers

solve d=50 d=100 d=200 d=400 p=800

clime 103.52(9.11) | 937.37(6.77) N/A N/A N/A

flare 0.632(0.335) | 1.886(0.755) | 10.770(0.184) | 74.106(33.940) | 763.632(135.724)
fastclime | 0.248(0.0148) | 0.928(0.0268) | 9.928(3.702) | 53.038(1.488) | 386.880(58.210)

5 Conclusions

We developed a new package named fastclime for generic and parameterized linear programming
problems as well as conditional independence graph estimation and precision matrix recovery. The
package is based on CLIME and the parametric simplex method. Compared with the existing
package clime, it has many additional features: it is much faster and it can recover the full
piece-wise linear regularization solution path. We hope the CRAN community could benefit from
our contributions. We plan to maintain and support this package in the future.

References

O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse maximum
likelihood estimation. Journal of Machine Learning Research, 9:485-516, 2008.

T. Cai, W. Liu, and X. Luo. A constrained /; minimization approach to sparse precision matrix
estimation. Technical report.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical
lasso. Biostatistics, 9(3):432-441, 2007.

J. Friedman, T. Hastie, and R. Tibshirani. Applications of the lasso and grouped lasso to the
estimation of sparse graphical models. Technical report, Stanford University, 2010.

X. Li, T. Zhao, X. Yuan, and H. Liu. An r package flare for high dimensional linear regression
and precision matrix estimator. 2012.

R. Vanderbei. Linear Programming, Fundations and Ezxtensions. Springer, 2008.

