
> knitr::knit_hooks$set(crop = knitr::hook_pdfcrop)

> #knitr::knit_theme$set("default")

>

> knitr::opts_chunk$set(

+ echo = TRUE,

+ warning = FALSE,

+ message = FALSE,

+ fig.width = 2.1,

+ fig.height = 2.1,

+ crop = TRUE,

+ fig.align = "center",

+ dev = "pdf",

+ dev.args = list(family = "sans", pointsize = 8),

+ cache = TRUE,

+ fig.path = "figure/graphics-",

+ cache.path = "cache/graphics-"

+ )

> library(lattice)

> lattice.options(default.theme = list(fontsize = list(text = 8, points = 4)))
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eulerr under the hood

Johan larsson

November 15, 2017

1 Introduction

eulerr relies on an extensive machinery to turn user input into a
pretty Euler diagram. Little of this requires any tinkering from
the user. To make that happen, however, eulerr needs to make
several well-formed decisions about the design of the diagram on
behalf of the user, which is not a trivial task.
This document outlines the implementation of eulerr from

input to output. It is designed to an evolving documentation on
the innards of the program.

2 Input

The workhorse of eulerr is euler(). To start with, we need input
in the form of

• a named numeric vector, such as c(A = 10, B = 5, "A&B"

= 3), where ampersands define disjoint set combinations
or unions, depending on the argument input,

• a data.frame or matrix of logicals or binary indices where
each row denotes the set relationships of

– either a single observation

> matrix(sample(c(TRUE, FALSE), 12, replace = TRUE),

+ ncol = 3,

+ dimnames = list(NULL, c("A", "B", "C")))

A B C

[1,] TRUE TRUE TRUE

[2,] TRUE FALSE TRUE

[3,] TRUE FALSE TRUE

[4,] FALSE TRUE TRUE

– or of a unique set combination if a numeric vector is
supplied to the argument weights,

> matrix(c(TRUE, FALSE, FALSE,

+ TRUE, TRUE, FALSE,

+ FALSE, FALSE, TRUE),

+ ncol = 3,

+ dimnames = list(NULL, c("A", "B", "C")))

A B C

[1,] TRUE TRUE FALSE

[2,] FALSE TRUE FALSE

[3,] FALSE FALSE TRUE

• a table (max 3 dimensions),
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3 Pre-processing

> as.table(apply(Titanic, 2:4, sum))

, , Survived = No

Age

Sex Child Adult

Male 35 1329

Female 17 109

, , Survived = Yes

Age

Sex Child Adult

Male 29 338

Female 28 316

• or a list of sample spaces, such as

> list(A = c("x", "xy", "xyz"),

+ B = c("xy"),

+ C = c("x", "xyz"))

$A

[1] "x" "xy" "xyz"

$B

[1] "xy"

$C

[1] "x" "xyz"

If the data.frame or matrix form is used, the user additionally
has the option to split the data set by a factor and compute
separate euler diagrams for each split. This is accomplished
by supplying a factor variable to the by arguments (see the
documentation in ?base::by).

3 Pre-processing

eulerr organizes the input of the user into a matrix of binary
indexes, which in R is represented as a matrix of logicals. For a
three set configuration, this looks like this,

> library(eulerr)

> eulerr:::bit_indexr(3)

[,1] [,2] [,3]

[1,] TRUE FALSE FALSE

[2,] FALSE TRUE FALSE

[3,] FALSE FALSE TRUE

[4,] TRUE TRUE FALSE

[5,] TRUE FALSE TRUE

[6,] FALSE TRUE TRUE

[7,] TRUE TRUE TRUE

and is accompanied by a vector of the disjoint areas of the set
combinations.
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4 Initial configuration

To provide a starting configuration, we work exclusively with
circles and, given these areas, we figure out the required pair-
wise distance between the sets to achieve a circle–circle overlap
that matches the set intersection between the sets. We do this
numerically, using the formula for a circle–circle overlap,

A = r 2
1
arccos

(
d2 + r 2

1
− r 2

2

2dr1

)
+ r 2

2
arccos

(
d2 + r 2

2
− r 2

1

2dr2

)
−

1

2

√
(−d + r1 + r2)(d + r1 − r2)(d − r1 + r2)(d + r1 + r2), (1)

where r1 and r2 are the radii of the first and second circles
respectively and d the distance between the circles.
r1 and r2 are known but because d is not, we approximate it

using one-dimensional numerical optimization. Our loss function
is the squared difference between A and the desired overlap, which
we then optimize using R’s optimize(), which is a “combination
of golden section search and successive parabolic interpolation”.

> r1 <- 0.7 #radius of set 1

> r2 <- 0.9 #radius of set 2

> overlap <- 1 #area of overlap

> stats::optimize(eulerr:::discdisc, #computes the squared loss

+ interval = c(abs(r1 - r2), sum(r1, r2)),

+ r1 = r1,

+ r2 = r2,

+ overlap = overlap)

$minimum

[1] 0.634

$objective

[1] 2.985e-10

>

> # minimum is our required distance

Now that we have the distances, we can proceed to the next step:
computing an initial configuration.

4 Initial configuration

Our initial layout can be setup in a number of ways; eulerr uses
one of the methods from Fredrickson’s venn.js, which features a
constrained version of multi-dimensional scaling (MDS) based on
that of Wilkinson’s R package venneuler Wilkinson [1]. venneuler
tries to place disjoint and subset exactly neck-in-neck and at the
exact midpoint of the set respectively. However, since we are
indifferent about where in the space outside (or respectively
inside) the sets are placed, that behavior becomes problematic
since it might interfere with locations of other sets that need to
occupy some of that space.
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5 Final configuration

The MDS algorithm from venn.js circumvents this by assigning
a loss and gradient of 0 when, for instance, the set relationsships
and the candidate ellipses are disjoint. Then, to optimize the
pairwise relationsships between sets, eulerr uses the following
loss, gradient, and Hessian functions:

L(h,k) =
∑

0≤i<j≤N




0 Fi ∩ Fj = ∅ and Oi j = ∅
0 (Fi ⊆ Fj or Fi ⊇ Fj ) and Oi j = ∅
( (
hi − hj

)2
+

(
ki − kj

)2 − d2i j

)2
otherwise

. (2)

The analytical gradient (3) is retrieved as usual by taking the
derivative of the loss function:

®∇f (hi ) =
N∑

j=1




®0 Fi ∩ Fj = ∅ and Oi j = ∅
®0 (Fi ⊆ Fj or Fi ⊇ Fj ) and Oi j = ∅
4
(
hi − hj

) ( (
hi − hj

)2
+

(
ki − kj

)2 − d2i j

)
otherwise,

(3)

where ®∇f (ki ) is found as in (3) with hi swapped for ki (and vice
versa), F are the various sets in the input, Ω are the pairwise
overlaps between circles. Because it speeds up convergence, we
also compute the Hessian matrix (4). (In our implementation,
we only actually use the lower triangle.)

H =

∑

0≤i<j≤N



4

(
(hi−hj )2+(ki−kj )2−d2

i j

)
+8(hi−hj )2 · · · 8(hi−hj )(ki−kj )

.

.

.

.

.

.

.

.

.

8(ki−kj )(hi−hj ) · · · 4

(
(hi−hj )2+(ki−kj )2−d2

i j

)
+8(ki−kj )2



. (4)

Note that the constraints given in (2) and (3) still apply to each
element of (4) and have been omitted for practical reasons only.

Fredrickson uses the Polak–Ribiére Conjugate Gradient Method
to optimize the initial layout. In our experience, this method
occasionally encounters local minima, which is why we have
opted to use nlminb() from the R core package stats, which
is a translation from FORTRAN code developed by Gray [2]
and ported to R by Douglas Bates and Deepayan Sarkar, and,
although it is a piece of complicated code, performs well for the
difficult problem of aligning Euler diagrams.
This initial configuration will work perfectly for any 1–2 set

combinations and as well as possible with 3 sets if we use circles
but for all other combinations there is usually a need to fine tune
the configuration.

5 Final configuration

In order to finalize the configuration we need to be able to
compute the areas of the overlaps of the sets, which as it turns out,
is not trivial. In fact, most of methods rely on approximations
of the areas by, for instance, quad-tree binning (venneuler) or
polygon intersections (VennMaster [3]). These methods yield
reasonable estimates but, given that the computation may have
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5 Final configuration

to run for a vast number of iterations, are usually prohibitive in
terms of performance.
venn.js and eulerAPE both, however, use exact algorithms.

Based on the fact that any intersection of ellipses can be repre-
sented as a convex polygon with elliptical segments on the fringes,
it is possible to arrive at exact area calculations.

5.1 Intersections

Finding the areas of the overlaps exactly requires that we first
know the points at which the different ellipses intersect. eulerr’s
approach to this is based on a method outlined by [4]. eulerr owes
significant debt to the R package RConics [5], which has been
tremendously helpful in developing and, especially, debugging
the algorithm. Some parts of the code are in fact straight-up
translations to C++ from the code in RConics.
The method is based in projective geometry (rather than eu-

clidean). To find the intersection points, the algorithm first

• converts the two ellipses from canonical form to matrix
notation. The canonical form of a rotated ellipse is given
by

((x − h) cos(ϕ) + (y − k) sin(ϕ))2
a2

+

((x − h) sin(A) − (y − k) cos(ϕ))2
b2

= 1,

where phi is the counter-clockwise angle from the positive x
axis to the semi-major axis a. b is the semi-minor axis whilst
(h, k) is the center of the ellipse. This is then converted to
the matrix form

E =



A B/2 D/2
B/2 C E/2
D/2 E/2 F


,

which may be used to represent any conic. We then

• split one of the ellipses (conics) into a pencil of two lines,
and subsequently

• intersect the remaining conic with these two lines, which
will yield between 0 and 4 intersection points.

5.2 Areas

The next step is to calculate the area of overlap between all
the possible combinations of ellipses. A solution for this, albeit
only for circles, was first published by Fredrickson in a blog
post. It relies on finding all the intersection points between the
currently examined sets that are also within these sets. It is
then trivial to find the area of the convex polygon that these
vertices make up. Finding the rest of the area, which is made up
of the ellipse segments between subsequent points, requires a bit
of trigonometry.
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6 Layout

Here, we have used an algorithm from ? ], which computes
circle integral between the points on the ellipse minus the area
of the triangle made up of the center of the ellipse:

A(θ0,θ1) = F (θ1) − F (θ1) −
1

2
|x1y0 − x0y1 |,

where F (θ ) = a

b

[
θ − arctan

( (b − a) sin 2θ
b + a + (b − a) cos 2θ

)]

As our loss function, we use the sum of squared differences
between the disjoint set intersections and the areas we have
computed and again use the nlm() optimizer to layout the set.
In rare instances, the algorithm breaks down because of nu-

merical precision errors that might, for instance, lead to some
intersection points being left out. In these cases, we rely instead
on a approximation by sampling points inside the ellipses and
comptuting the area of the required overlap as the proportion of
points inside that overlap to those in the ellipse multiplied with
the ellipse’s area.
This optimization step is the bottleneck of the overall com-

putations in terms of performance, being that we’re optimizing
over five parameters for every ellipse (or 3 in the case of circles)—
nevertheless, we’re profitting from the implementation in the
C++ programming language through Rcpp [6] and its plugin for
the linear algebra library Armadillo [7]. When the number of sets
is low, eulerr outperforms venneuler, whereas the relationship
reverses as the number of sets increase (around seven), when
the sheer number of overlaps that eulerr has to examine bogs it
down.

In a future version, it is possible that a alternative, approxima-
tive method will be introduced to deal with relationships with
large numbers of sets.

6 Layout

Since the optimization steps are unconstrained, we run the risk of
ending up with dispersed layouts. To fix this, we use a SKYLINE-
BL rectangle packing algorithm [8] to pack the disjoint clusters
of ellipses (in case there are any) into a heuristically chosen bin.

At the time of writing this algorithm is crudely implemented –
for instance, it does not attempt to rotate the rectangles (bound-
aries for the ellipses) or attempt to use. Since we’re dealing with
a rather simple version of the rectangle packing problem, however,
it seems to do the trick.

7 Output

Before we get to plotting the solution, it is useful to know how
well the fit from eulerr matches the input. Sometimes euler
diagrams are just not feasible, particular for combinations with
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7 Output

Figure 1. A plot with circles.

Figure 2. A plot with ellipses.

many sets, in which case we should stop here and look for another
design to visualize the set relationships.

It is not, however, obvious what it means for a euler diagram to
“fit well”. venneuler uses a metric called stress, which is defined
as ∑n

i=1(yi − ŷi )2∑n
i=1 y

2

i

where ŷi is an ordinary least squares estimate from the regression
of the fitted areas on the original areas that is being explored
during optimization.
Meanwhile, eulerAPE [9] uses diagError :

max
i=1,2, ...,n

����
yi∑
yi

− ŷi∑
ŷi

����

Both metrics are given the user after the diagram has been fit,
together with a table of residuals.

> combo <- c("A" = 1, "B" = 1, "C" = 1,

+ "A&B" = 0.5, "A&C" = 0.5, "C&B" = 0.5)

> fit1 <- euler(combo)

> fit1

original fitted residuals regionError

A 1.0 1.038 -0.038 0.021

B 1.0 1.038 -0.038 0.021

C 1.0 1.038 -0.038 0.021

A&B 0.5 0.302 0.198 0.040

A&C 0.5 0.302 0.198 0.040

B&C 0.5 0.302 0.198 0.040

A&B&C 0.0 0.247 -0.247 0.058

diagError: 0.058

stress: 0.049

It is clear that this is not a good fit, which we can find out
just by looking at the plot (Figure 1). This is a good example of
when ellipses come in handy.

> fit2 <- euler(combo, shape = "ellipse")

> fit2

original fitted residuals regionError

A 1.0 1.0 0 0

B 1.0 1.0 0 0

C 1.0 1.0 0 0

A&B 0.5 0.5 0 0

A&C 0.5 0.5 0 0

B&C 0.5 0.5 0 0

A&B&C 0.0 0.0 0 0

diagError: 0

stress: 0

Much better (Figure 2).
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8 Plotting

Figure 3. A simple plot with a
legend

Figure 4. A plot with counts.

Figure 5. Spreading points on a
disc with Vogel’s method.

8 Plotting

Let’s face it: euler diagrams are naught without visualization.
Here, eulerr interfaces the elegant Lattice graphics system [10]
to grant the user extensive control over the output, and allow for
facetted plots in case such a design was used in fitting the Euler
configuration.

8.1 Labelling

Most users will want to label their Euler diagrams. One option
is to simply add a legend

> plot(euler(c(A = 2, B = 3, "A&B" = 1)), auto.key = TRUE)

but many will want to label their diagrams directly, perhaps
also adding counts.

> plot(euler(c(A = 2, B = 3, "A&B" = 1)), counts = TRUE)

In this case, laying out the diagram becomes considerably
more involved. Finding a reasonable spot for the text inside the
diagram only lends itself to an easy solution if the shape of the
intersection has a center-of-gravity inside ellipse, in which case an
average of some of the points might suffice. This is often not the
case, however, and we need a better solution. Specifically, what
we need is a method to find the point inside the circle overlap
for the counts and circle complement to the intersection for our
labels.
So far, we have not been able to derive at an analyitcal so-

lution for finding a good point, or for that matter a reliable
way of finding any point that is in the required intersection or
complement. As is often the case, the next-best thing turns out
to be a numerical one. First, we locate a point that is inside
the required region by spreading points across one of the discs
involed in the set combination. To spread points uniformly, we
use Vogel’s method [11, 12]

(

pk = (ρk ,θk ) =
(

r

√
k

n
, π (3 −

√
5)(k − 1)

))n

k=1

,

which is actually based on the golden angle.

> n <- 500

> seqn <- seq(0, n, 1)

> theta <- seqn*pi*(3 - sqrt(5))

> rad <- sqrt(seqn/n)

> x <- rad*cos(theta)

> y <- rad*sin(theta)

After this, we scale, translate, and rotate the points so that
they fit the desired ellipse.

After we’ve spread our points throughout the ellipse and found
one that matches our desired combination of ellipses/sets, we
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then proceed to optimize its position numerically. For this, we use
version of the Nelder–Mead Method [13] which we’ve translated
from Matlab code by Kelley [14] and customized for eulerr (in
particular to make sure that the simplex does not escape the
intersection boundaries since we for this problem want the local
minimum).

8.2 Coloring

Per default, the ellipses are filled with colors. The default option
is to use an adaptive scheme in which colors are chosen to provide
a balance between dinstinctiveness, beauty, and consideration
for the color deficient. The color palette has been generated
from qualpalr (developed by the author), which automatically
generates qualitative color palettes based on a model of color
perception.
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