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Abstract

The R package equate (Albano 2014) contains functions for observed-score linking and
equating under single-group, equivalent-groups, and nonequivalent-groups test designs.
This paper introduces these designs and provides an overview of observed-score equating
with details about each of the supported methods. Examples demonstrate the basic
functionality of the equate package.
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1. Introduction

Equating is a statistical procedure commonly used in testing programs where administrations
across more than one occasion and more than one examinee group can lead to overexposure
of items, threatening the security of the test. In practice, item exposure can be limited by
using alternate test forms; however, multiple forms lead to multiple score scales that measure
the construct of interest at differing levels of difficulty. The goal of equating is to adjust for
these differences in difficulty across alternate forms of a test, so as to produce comparable
score scales.

Equating defines a functional statistical relationship between multiple test score distributions
and thereby between multiple score scales. When the test forms have been created according to
the same specifications and are similar in statistical characteristics, this functional relationship
is referred to as an equating function, and it serves to translate scores from one scale directly
to their equivalent values on another. The term linking refers to test forms which have not
been created according to the same specifications, for example, forms which differ in length
or content; in this case, the linked scales are considered similar but not interchangeable; they
are related to one another via a linking function (for details, see Holland and Dorans 2006).

A handful of statistical packages are available for linking and equating test forms. Kolen
and Brennan (2004) demonstrate a suite of free, standalone programs for observed-score
and item response theory (IRT) linking and equating. Other packages, like equate, have
been developed within the R environment (R Core Team 2013). For example, the R package
kequate (Andersson, Bränberg, and Wiber 2013) includes observed-score methods, but within
a kernel equating framework. The R package plink (Weeks 2010) implements IRT linking
under a variety of dichotomous, polytomous, unidimensional, and multidimensional models.

The equate package is designed for observed-score linking and equating. It differs from other
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packages primarily in its overall structure and usability, its plotting and bootstrapping capa-
bilities, and its inclusion of more recently developed equating and linking types such as the
general-linear, synthetic, and circle-arc functions, as demonstrated below. Linking and equat-
ing are performed using a simple interface, and plotting and summary methods are provided
to facilitate the comparison of results and the examination of equating error. Sample data
and detailed help files are also included. These features make the package useful in teaching,
research, and operational testing contexts.

This paper presents some basic linking and equating concepts and procedures. Equating
designs are first discussed in Section 2. In Section 3, linear and nonlinear observed-score
linking and equating functions are reviewed. In Section 4, methods are presented for linking
and equating when examinee groups are not equivalent. Finally, in Section 5, the equate
package is introduced and its basic functionality is demonstrated using three data sets.

2. Equating designs

Observed-score linking and equating procedures require data from multiple test administra-
tions. An equating design specifies whether or not the test forms and the individuals sampled
to take them differ across administrations. For simplicity, in this paper and in the equate
package, equating designs are categorized as either involving a single group, equivalent groups,
or nonequivalent groups of examinees, and test forms are then constructed based on the type
of group(s) sampled.

In the single-group design, one group, sampled from the target population T , takes two
different test forms X and Y , optionally with counterbalancing. Any differences in the score
distributions on X and Y are attributed entirely to the test forms themselves, as group ability
is assumed to be constant; thus, if the distributions are not the same, it is because the test
forms differ in difficulty. Related to the single-group design is the equivalent-groups design,
where one random sample from T takes X and another takes Y . Because the samples are
taken randomly, group ability is again assumed to be constant, and any differences in the
score distributions are again identified as form difficulty differences.

Without equivalent examinee groups, two related problems arise: 1) the target population
must be defined indirectly using samples from two different examinee populations, P and Q;
and 2) the ability of these groups must then be accounted for, as ability differences will be
a confounding factor in the estimation of form difficulty differences. In the nonequivalent-
groups design these issues are both addressed through the use of what is referred to as an
anchor test, V , a common measure of ability available for both groups. All non-equivalence
in ability is assumed to be controlled or removed via this common measure.

Equating procedures were initially developed using the single-group and equivalent-groups
designs. In this simpler context, the traditional equating types include mean, linear, and
equipercentile equating; these and other equating types are reviewed in Section 3. More
complex procedures have been developed for use with the nonequivalent-groups design; these
equating methods are presented in Section 4.

3. Equating types

Equating procedures used with the single-group and equivalent-groups designs are referred to
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here and in the equate package as equating types. The type of equating refers to the equation
for a line that expresses scores on one scale, or axis, in terms of the other. The available types
are categorized as straight-linear (i.e., linear), including identity, mean, and linear equating,
and curvilinear (i.e., nonlinear), including equipercentile and circle-arc equating. The straight-
line types differ from one another in intercept and slope, and the curvilinear lines differ in
the number of coordinates on the line that are estimated, whether all of them or only one.
Combinations of equating lines, referred to here as composite functions, are also discussed.

The goal of equating is to summarize the difficulty difference between X to Y . As shown
below, each equating type makes certain assumptions regarding this difference and how it
does or does not change across the X and Y score scales. These assumptions are always
expressed in the form of a line within the coordinate system for the X and Y scales.

3.1. Identity functions

Linear functions are appropriate when test form difficulties change linearly across the score
scale, by a constant b and rate of change a. Scores on X are related to Y as

y = ax+ b. (1)

In the simplest application of Equation (1), the scales of X and Y define the line. Coordinates
for scores of x and y are found based on their relative positions within each scale:

x− x1
x2 − x1

=
y − y1
y2 − y1

. (2)

Here, (x1, y1) and (x2, y2) are coordinates for any two points on the line defined by the
scales of X and Y , for example, the minimum and maximum possible scale values. Solving
Equation (2) for y results in the identity linking function:

idY (x) = y =
∆Y

∆X
x+ y1 −

∆Y

∆X
x1, (3)

where ∆Y = y2 − y1 and ∆X = x2 − x1,

a =
∆Y

∆X
, (4)

and

b = y1 −
∆Y

∆X
x1. (5)

The intercept b can also be defined using the slope a and any pair of X and Y coordinates
(xj , yk):

b = yk − axj , (6)

where j = 1, 2, . . . , J indexes the points on scale X and k = 1, 2, . . . ,K indexes the points on
scale Y . The identity linking function is then expressed as

idY (x) =
∆Y

∆X
x+ yk −

∆Y

∆X
xj . (7)

When the scales of X and Y are the same, a = 1 and b = 0, and Equation (7) reduces to the
identity equating function:

ideY (x) = x. (8)
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3.2. Mean functions

In mean linking and equating, form difficulty differences are estimated by the mean difference
µY − µX . Equation (7) is used to define a line that passes through the means of X and Y ,
rather than the point (xj , yk). The intercept from Equation (6) is expressed as

b = µY − aµX . (9)

The mean linking function is then

meanY (x) = ax+ µY − aµX , (10)

where a is found using Equation (4). When the scales of X and Y are the same, the slope a
is 1, which leads to the mean equating function:

meaneY (x) = x+ µY − µX . (11)

In mean equating, coordinates for the line are based on deviation scores:

x− µX = y − µY . (12)

In mean linking, coordinates are based on deviation scores relative to the scales of X and Y :

x− µX
∆X

=
y − µY

∆Y
. (13)

3.3. Linear functions

The linear linking and equating functions also assume that the difficulty difference between
X and Y changes by a constant amount a across the score scale. However, in linear equating
the slope is estimated using the standard deviations of X and Y as

a =
σY
σX

. (14)

The linear equating function is defined as

lineY (x) =
σX
σY

x+ µY −
σX
σY

µX , (15)

which is also the linear linking function linY (x). In both linear functions, coordinates for the
line are based on standardized deviation scores:

x− µX
σX

=
y − µY
σY

. (16)

3.4. General linear functions

The identity, mean, and linear linking and equating functions presented above call all be
obtained as variations of a general linear function glinY (x). The general linear function is
defined based on Equation 1 as

glinY (x) =
αY

αX
x+ βY −

αY

αX
βX , (17)
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where
a =

αY

αX
(18)

and
b = βY −

αY

αX
βX . (19)

Here, α is a general scaling parameter that can be estimated using σ, ∆, another fixed
value, or weighted combinations of these values. β is a general centrality parameter that
can be estimated using µ, xj or yk, other values, or weighted combinations of these values.
Applications of the general linear function are discussed below.

3.5. Equipercentile functions

Equipercentile linking and equating define a nonlinear relationship between score scales by
setting equal the cumulative distribution functions for X and Y : F (x) = G(y). Solving for y
produces the equipercentile linking function:

equipY (x) = G−1[F (x)], (20)

which is also the equipercentile equating function equipeY (x). When the score scales are dis-
crete, which is often the case, the cumulative distribution function can be approximated using
percentile ranks. This is a simple approach to continuizing the discrete score distributions
(for details, see Kolen and Brennan 2004, ch. 2). Kernel equating, using Gaussian kernels,
offers a more flexible approach to continuization (von Davier, Holland, and Thayer 2004; An-
dersson, Bränberg, and Wiber 2012), but is not currently supported in the equate package.
The equipercentile equivalent of a form-X score on the Y scale is calculated by finding the
percentile rank in X of particular score, and then finding the form-Y score associated with
that form-Y percentile rank.

Equipercentile equating is appropriate when X and Y differ nonlinearly in difficulty, that is,
when difficulty differences fluctuate across the score scale, potentially at each score point.
Each coordinate on the equipercentile curve is estimated using information from the distri-
butions of X and Y . Thus, compared to identity, mean, and linear equating, equipercentile
equating is more susceptible to sampling error because it involves the estimation of as many
parameters as there are unique score points on X.

Smoothing methods are typically used to reduce irregularities due to sampling error in ei-
ther the score distributions or the equipercentile equating function itself. Two commonly
used smoothing methods include polynomial loglinear presmoothing (Holland and Thayer
2000) and cubic-spline postsmoothing (Kolen 1984). The equate package currently supports
loglinear presmoothing via the glm function. Details are provided below.

3.6. Circle-arc functions

Circle-arc linking and equating also define a nonlinear relationship between score scales; how-
ever, they utilize only three score points in X and Y to do so: the low and high points,
as defined above for the identity function, and a midpoint (xj , yk). On their own, the low
and high points define the identity linking function idY (x), a straight line. When (xj , yk)
does not fall on the identity linking line, it can be connected to (x1, y1) and (x2, y2) by the
circumference of a circle with center (xc, yc) and radius r.
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There are multiple ways of solving for (xc, yc) and r based on the three known points (x1, y1),
(xj , yk), and (x2, y2). For example, the center coordinates can be found by solving the follow-
ing system of equations:

(x1 − xc)2 + (y1 − yc)2 = r2 (21)

(xj − xc)2 + (yk − yc)2 = r2 (22)

(x2 − xc)2 + (y2 − yc)2 = r2. (23)

Subtracting Equation (23) from (21) and (22) and rearranging terms leads to the following
linear system:

2(x1 − x2)xc + 2(y1 − y2)yc = x21 − x22 + y21 − y22 (24)

2(xj − x2)xc + 2(yk − y2)yc = x2j − x22 + y2k − y22. (25)

The center coordinates can then be obtained by plugging in the known values for (x1, y1),
(xj , yk), and (x2, y2) and again combining equations. The center and any other coordinate
pair, e.g., (x1, y1), are then used to find the radius:

r =
√

(xc − x1)2 + (yc − y1)2. (26)

Finally, solving Equation (26) for y results in the circle-arc linking function:

circY (x) = yc ±
√
r2 − (x− xc)2, (27)

where the second quantity, under the square root, is added to yc when yk > idY (xj) and
subtracted when yk < idY (xj). The circle-arc equating function circeY (x) is obtained by
using ideY (xj) in place of idY (xj) above.

Livingston and Kim (2010) refer to the circle connecting (x1, y1), (xj , yk), and (x2, y2) as
symmetric circle-arc equating. They also present a simplified approach, where the circle-arc
function is decomposed into the linear component defined by (x1, y1) and (x2, y2), which is
the identity function, and the circle defined by the points (x1, y1−idY (x1)), (xj , yk−idY (xj)),
and (x2, y2− idY (x2)). These low and high points reduce to (x1, 0) and (x2, 0), and the center
coordinates can then be found as

x∗c =
(x22 − x21)
2(x2 − x1)

, (28)

and

y∗c =
(x21)(x2 − xj)− (x2j + y∗2k )(x2 − x1) + (x22)(xj − x1)

2[y∗k(x1 − x2)]
, (29)

where y∗k = yk− idY (xj). Equation (26) is used to find the radius. Then, the simplified circle-
arc function is the combination of the resulting circle-arc circ∗Y (x) and the identity function:

scircY (x) = circ∗Y (x) + idY (x). (30)

3.7. Composite functions

The circle-arc linking and equating functions involve a curvilinear combination of the identity
and mean functions, where the circle-arc overlaps with the identity function at the low and
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high points, and with the mean function at the midpoint (µX , µY ). A circle then defines the
coordinates that connect these three points. This is a unique example of what is referred to
here as a composite function.

The composite linking function is the weighted combination of any linear and/or nonlinear
linking or equating functions:

compY (x) =
∑
i

wilinkiY (x), (31)

where wi is a weight specifying the influence of function linkiY (x) in determining the com-
posite.

Equation 31 is referred to as a linking function, rather than an equating function, because
it will typically not meet the symmetry requirement of equating. For symmetry to hold, the
inverse of the function that links X to Y must be the same as the function that links Y to X,
that is, comp−1

Y (x) = compX(y), which is generally not true when using Equation 31. Holland
and Strawderman (2011) show how symmetry can be maintained for any combination of two
or more linear functions. The weighting system must be adjusted by the slopes for the linear
functions being combined, where the adjusted weight Wi is found as

Wi =
wi(1 + api )

−1/p∑
i

wi(1 + api )
−1/p

. (32)

Here, ai is the slope for a given linear function linki, and p specifies the type of Lp-circle with
which symmetry is defined. For details, see Holland and Strawderman (2011).

4. Equating methods

The linking and equating functions presented above are defined in terms of a single target
population, and they are assumed to generalize to this population. In the nonequivalent-
groups design, scores come from two distinct populations, referred to here as populations P
and Q. As a result, the linking and equating functions are redefined in terms of a weighted
combination of P and Q, where T = wPP +wQQ, and wP and wQ are proportions that sum
to 1. This mixture of P and Q is referred to as the synthetic population (Braun and Holland
1982), S.

The linear function from Equation (15) is rewritten in terms of the synthetic population as
follows:

lineYS
(x) =

σYS

σXS

x− σYS

σXS

µXS
+ µYS

. (33)

Since population S did not take forms X or Y , all of the means and standard deviations in
Equation (33) are estimated indirectly using: for the means,

µXS
= µXP

− wQγP (µVP
− µVQ

), (34)

µYS
= µYQ

+ wPγQ(µVP
− µVQ

); (35)

and for the variances,

σ2XS
= σ2XP

− wQγ
2
P [σ2VP

− σ2VQ
] + wPwQγ

2
P [µVP

− µVQ
]2, (36)

σ2YS
= σ2YQ

+ wPγ
2
Q[σ2VP

− σ2VQ
] + wPwQγ

2
Q[µVP

− µVQ
]2. (37)
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nominal tucker levine braun frequency chained

mean
√ √ √ √ √

linear
√ √ √ √

general linear
√ √ √ √

equipercentile
√ √

circle-arc
√ √ √ √ √

Table 1: Applicable equating types and methods.

In these equations the γ terms represent the relationship between total scores on X and
Y and the respective anchor scores on V . γP and γQ are used along with the weights to
adjust the observed µ and σ2 for X and Y in order to obtain corresponding estimates for the
synthetic population. For example, when wP = 0 and wQ = 1, µYS

= µYQ
, and conversely

µXQ
will be adjusted the maximum amount when obtaining µXS

. The same would occur with
the estimation of synthetic variances. Furthermore, the adjustments would be completely
removed if populations P and Q did not differ in ability, where µVP

= µVQ
and σ2VP

= σ2VQ
.

A variety of techniques have been developed for estimating the linear γ terms required by
Equations (34) through (37), and the terms required for equipercentile equating, as described
below. These techniques all make certain assumptions about the relationships between total
scores and anchor scores for populations P and Q. The techniques are referred to here
as equating methods. The equate package supports the Tucker, nominal weights, Levine
observed-score, Levine true score, Braun/Holland, frequency estimation, and chained equating
methods (although chained equating does not rely on γ, it does make assumptions about the
relationship between total and anchor scores). Table 1 shows the supported methods that
apply to each equating type.

4.1. Tucker

In Tucker equating the relationship between total and anchor test scores is defined in terms of
regression slopes, where γP is the slope resulting from the regression of X on V for population
P , and γQ the slope from a regression of Y on V for population Q:

γP =
σXP ,VP

σ2VP

and γQ =
σYQ,VQ

σ2VQ

. (38)

The Tucker method assumes that across populations: 1) the coefficients resulting from a
regression of X on V are the same, and 2) the conditional variance of X given V is the same.
These assumptions apply to the regression of Y on V and the covariance of Y given V as well.

4.2. Nominal weights

Nominal weights equating is a simplified version of the Tucker method where the total and
anchor tests are assumed to have similar statistical properties and to correlate perfectly within
populations P and Q. In this case the γ terms can be approximated by the ratios

γP =
NX

NV
and γQ =

NY

NV
, (39)



Anthony D. Albano 9

where N is the number of items on the test. See Babcock, Albano, and Raymond (2012) for
a description and examples.

4.3. Levine

Assumptions for the Levine observed-score method are stated in terms of true scores (though
only observed scores are used), where, across both populations: 1) the correlation between
true scores on X and V is 1, as is the correlation between true scores on Y and V ; 2) the
coefficients resulting from a linear regression of true scores for X on V are the same, as with
true scores for Y on V ; and 3) measurement error variance is the same (across populations)
for X, Y , and V . These assumptions make possible the estimation of γ as

γP =
σ2XP

σXP ,VP

and γQ =
σ2YQ

σYQ,VQ

, (40)

which are the inverses of the respective regression slopes for V on X and V on Y . The Levine
true-score method is based on the same assumptions as the observed-score method; however,
it uses a slightly different linear equating function in place of Equation (33):

lineY (x) =
γQ
γP
X(x− µXP

) + µYQ
+ γQ(µVP

− µVQ
). (41)

Hanson (1991) and Kolen and Brennan (2004) provide justifications for using this approach.

4.4. Frequency estimation

The frequency estimation method is used in equipercentile equating under the nonequivalent-
groups design. It is similar to the methods described above in that it involves a synthetic
population. However, in this case full score distributions for the synthetic population taking
forms X and Y are required:

equipeYS
(x) = G−1

S [FS(x)]. (42)

When the assumptions are made that 1) the conditional distribution of total scores on X for
a given score point in V is the same across populations, and 2) the conditional distribution
of total scores on Y for a given score point in V is the same across populations, the synthetic
distributions can be obtained:

fS(x) = wP fP (x) + wQ

∑
fP (x|v)hQ(v), (43)

gS(y) = wQgQ(y) + wP

∑
gQ(y|v)hP (v). (44)

Here, f , g, and h denote the distribution functions for forms X, Y , and V respectively. Per-
centile ranks can be taken for the cumulative versions of f and g to obtain Equation (42). As
before, wP and wQ specify the amount of adjustment to be made to each observed distribution
in the estimation of the synthetic distribution.

4.5. Braun/Holland

As a kind of extension of the frequency estimation method, the Braun/Holland method defines
a linear function relating X and Y that is based on the estimates µXS

, µYS
, σXS

, and σYS
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for the synthetic distributions fS(x) and gS(y) obtained via frequency estimation. Thus the
full synthetic distributions are estimated, as with frequency estimation, but only in order to
obtain their means and standard deviations.

4.6. Chained

Finally, chained equating (Livingston, Dorans, and Wright 1990) can be applied to both
linear and equipercentile equating under the nonequivalent-groups with anchor test design.
The chained method differs from all other methods discussed here in that it does not explicitly
reference a synthetic population. Instead, it introduces an additional equating function in the
process of estimating score equivalents (see Appendix 6 for details). For both linear and
equipercentile equating the steps are as follows:

1. Define the function relating X to V for population P, linkVP
(x),

2. Define the function relating V to Y for population Q, linkYQ
(v),

3. Equate X to the scale of Y using both functions, where

chainY (x) = linkYQ
[linkVP

(x)].

Chained methods are based on the assumptions that 1) the equating of X to V is the same
for P and Q, and 2) the equating of V to Y is the same for P and Q.

4.7. Methods for circle-arc

As discussed above, the circle-arc equating function combines a linear with a curvilinear
component based on three points in the X and Y score distributions. The first and third
of these points are determined by the score scale, whereas the midpoint must be estimated.
Thus, equating methods used with circle-arc equating in the nonequivalent-groups design
apply only to estimation of this midpoint. Livingston and Kim (2009) demonstrated chained
linear equating of means, under a nonequivalent-groups design. The midpoint could also be
estimated using other linear methods, such as Tucker or Levine.

Note that circle-arc equating is defined here as an equating type, and equating methods are
used to estimate the midpoint. When groups are considered equivalent (i.e., an anchor test
is not used) equating at the midpoint is simply mean equating, as mentioned above (replace
x with µX in Equation (15) to see why this is the case). With scores on an anchor test, both
Tucker and Levine equating at the midpoint also reduce to mean equating. However, chained
linear equating at the midpoint differs from chained mean (see Appendix 6).

5. Using the equate package

5.1. Sample data

The equate package includes three sample data sets. The first, ACTmath, comes from two
administrations of the ACT mathematics test, and is used throughout Kolen and Brennan
(2004). The test scores are based on an equivalent-groups design and are contained in a
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three-column data frame where column one is the 40-point score scale and columns two and
three are the number of examinees for X and Y obtaining each score point.

The second data set, KBneat, is also used in Kolen and Brennan (2004). It contains scores
for two forms of a 36-item test administered under a nonequivalent-groups design. A 12-item
anchor test is internal to the total test, that is, anchor scores contribute to an examinee’s
total score. Thus, the number of non-anchor items, those unique to each form, is 24, and the
highest possible score is 36. Unlike the first data set, KBneat contains a separate total and
anchor score for each examinee. It is a list of length two where the list elements x and y each
contain a two-column data frame of scores on the total test and scores on the anchor test v.

The third data set, PISA, contains scored cognitive item response data from the 2009 ad-
ministration of the Programme for International Assessment (PISA). Four data frames are
included in PISA: PISA$students contains scores on the cognitive assessment items in math,
reading, and science for all 5233 students in the USA cohort; PISA$booklets contains in-
formation about the structure of the test design, where multiple item sets, or clusters, were
administered across 13 test booklets; PISA$items contains the cluster, subject, maximum
possible score, item format, and number of response options for each item; and PISA$totals

contains a list of cluster total scores for each booklet, calculated using PISA$students and
PISA$booklets. For additional details, see the PISA help file which includes references to
technical documentation.

5.2. Preparing score distributions

The equate package utilizes score distributions primarily as frequency tables with class "freqtab".
For example, to equate the ACTmath forms, they must first be converted to frequency tables
as follows.

R>library("equate")

R>act.x <- as.freqtab(cbind(ACTmath[, 1], ACTmath[, 2]))

R>act.y <- as.freqtab(cbind(ACTmath[, 1], ACTmath[, 3]))

R>act.x[1:4,]

total observed

1 0 0

2 1 1

3 2 1

4 3 3

Here, the function as.freqtab is used because the vectors for the score scale and counts
are already tabulated, thus they are simply combined and the class of each object is set.
Frequency tables are summarized with the summary function.

R>rbind(x = summary(act.x), y = summary(act.y))

mean sd skew kurt min max n

x 19.85239 8.212585 0.3752283 2.301911 1 40 4329

y 18.97977 8.940397 0.3526516 2.145847 1 40 4152
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The function freqtab creates a frequency table from observed scores, using a vector of scores
and the corresponding score scale. With an anchor test this becomes a bivariate frequency
table, and the objects sent to freqtab are the vectors of total scores and anchor scores, and
the total and anchor score scales.

R>neat.x <- freqtab(KBneat$x[, 1], KBneat$x[, 2],

+ xscale = 0:36, vscale = 0:12)

R>neat.y <- freqtab(KBneat$y[, 1], KBneat$y[, 2],

+ xscale = 0:36, vscale = 0:12)

R>neat.x[50:55, ]

total anchor observed

50 3 10 0

51 3 11 0

52 3 12 0

53 4 0 0

54 4 1 4

55 4 2 3

These bivariate tables contain all possible score combinations in columns 1 and 2, along with
the number of examinees obtaining each combination in column 3. For example, rows 50
through 55 are displayed for form X, where counts for 6 X and V score combinations are
shown. Based on the scale lengths, tables for neat.x and neat.y contain 37×13 = 481 rows,
many of which have counts of zero.

The freqtab function can also be used to tabulate scored item responses, where the arguments
xitems and vitems contain the columns over which total scores will be calculated. For
example, the following syntax creates a frequency table using four reading clusters from PISA
booklet 6, with clusters R3 and R6 containing the unique items and clusters R5 and R7
containing the anchor items.

R>attach(PISA)

R>r3items <- paste(items$itemid[items$clusterid == "r3a"])

R>r6items <- paste(items$itemid[items$clusterid == "r6"])

R>r5items <- paste(items$itemid[items$clusterid == "r5"])

R>r7items <- paste(items$itemid[items$clusterid == "r7"])

R>pisa <- freqtab(students[students$book == 6, ],

+ xitems = c(r3items, r6items),

+ vitems = c(r5items, r7items),

+ xscale = 0:31, vscale = 0:29)

R>round(data.frame(summary(pisa),

+ row.names = c("r3r6", "r5r7")), 2)

mean sd skew kurt min max n

r3r6 17.45 7.20 -0.18 2.02 1 31 396

r5r7 18.19 6.05 -0.65 2.72 1 29 396

A basic plot method is provided for tables of class "freqtab". Univariate frequencies are
plotted as vertical lines for x, similar to a bar chart, and as superimposed curves for y. When
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Figure 1: Univariate plot of ACTmath total scores for form X.

y is a matrix, each column of frequencies is added to the plot as a separate line. This feature
is useful when examining smoothed frequencies, as discussed below. When x is a bivariate
frequency table, a scatter plot with marginal frequency distributions is produced. See Figure 1
for an example of a univariate plot, and Figure 2 for an example of a bivariate plot.

R>plot(x = act.x, lwd = 2, xlab = "Score", ylab = "Count")

R>plot(neat.x)

Because they are based on samples, the distributions in Figures 1 and 2 are imperfect rep-
resentations of the population distributions; irregularities in their shapes could merely result
from sampling error. Three methods are available for presmoothing score distributions and
reducing these irregularities. The first, frequency averaging (Moses and Holland 2008) re-
places scores falling below jmin with averages based on adjacent scores. This is implemented
with smoothmethod = "average" in the presmoothing function. The second, will add a
small relative frequency (again, jmin) to each score point while adjusting the probabilities
to sum to one (as described by Kolen and Brennan 2004, p. 48). This is implemented using
smoothmethod = "bump" in the presmoothing function.
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Figure 2: Bivariate plot of KBneat total and anchor distributions.



Anthony D. Albano 15

The third smoothing method, polynomial loglinear smoothing, described in Appendix 6, is
a flexible procedure for reducing irregularities in a frequency distribution. In the equate
package, loglinear models are fit using the presmoothing function with smoothmethod =

"loglinear", which calls on the glm function. Model terms are specified with either a ma-
trix of score functions (scorefun) where each column is a predictor variable in the model, or
simply by including the degrees of the highest desired polynomial terms (degree for univariate
moments, xdegree for bivariate moments). In the example below, the bivariate distribution
of X and V is smoothed with degree = 3 and xdegree = 1 . The smoothed distributions
in Figure 3 can be compared to the unsmoothed ones in Figure 2. Figure 4 superimposes
the smoothed frequencies on the unsmoothed marginal distributions for a more detailed com-
parison of the different smoothing models. Descriptive statistics show that the smoothed
distributions match the unsmoothed in the first three moments.

R>neat.xs <- presmoothing(neat.x, smooth = "log", degree = 3,

+ xdegree = 1, asfreqtab = TRUE)

R>rbind(x = summary(neat.x), xs = summary(neat.xs))

mean sd skew kurt min max n

x.total 15.820544 6.529799 0.5797331 2.720015 2 36 1655

x.anchor 5.106344 2.376742 0.4115535 2.766619 0 12 1655

xs.total 15.820544 6.529799 0.5797331 3.221789 0 36 1655

xs.anchor 5.106344 2.376742 0.4115535 2.968515 0 12 1655

R>neat.xsmat <- presmoothing(neat.x, "log",

+ degree = 3, xdegree = 1, stepup = TRUE)

R>plot(neat.xs)

R>plot(neat.x, neat.xsmat[, c(2:3, 5:7)], ycol = 1, ylty = 1:5)

The loglinear method can also be used to compare results from a sequence of nested mod-
els. The argument stepup = TRUE returns fitted frequencies for models based on subsets of
columns in scorefun, starting with the first column alone, then adding the second, third,
etc. When scorefun is omitted, it is created to have polynomial terms 1 through degree

and xdegree; terms are added sequentially starting with the simplest model (degree = 1,
xdegree = 0), progressing to the full univariate models (degree = degree for the univariate
total first and then for the univariate anchor test), and finally including bivariate polynomials
(from xdegree = 1 to xdegree = xdegree). For example, the object neat.xsmat shown
above is a matrix with seven columns, where each column contains the fitted frequencies for
a nested model. The legend for Figure 4 shows that smoothed lines are plotted for the second
and third moments of the total score scale (“x2” and “x3”) and then the anchor scale (“v2”
and “v3”), and finally for the first bivariate moment (“xv1”); the legend text corresponds to
the new term that is included in the given model (models 1 and 4 have been omitted). Using
the argument compare = TRUE, an ANOVA table of deviance statistics is returned for these
nested models. Model fit is compare based on AIC, BIC, and likelihood ratio χ2 tests. In
the output below, AIC and BIC are smallest for the most complex model, labeled “Model
7”, which also results in the largest decrease in deviance.

R>presmoothing(neat.x, "log", degree = 3,

+ xdegree = 1, compare = TRUE)
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Figure 3: Bivariate plot of smoothed KBneat total and anchor distributions.
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Analysis of Deviance Table

Model 1: f ~ x1

Model 2: f ~ x1 + x2

Model 3: f ~ x1 + x2 + x3

Model 4: f ~ x1 + x2 + x3 + v1

Model 5: f ~ x1 + x2 + x3 + v1 + v2

Model 6: f ~ x1 + x2 + x3 + v1 + v2 + v3

Model 7: f ~ x1 + x2 + x3 + v1 + v2 + v3 + xv1

Resid. Df Resid. Dev AIC BIC Df Deviance Pr(>Chi)

1 479 4669.0 5301.2 5309.5

2 478 3666.3 4300.4 4313.0 1 1002.73 < 2.2e-16 ***

3 477 3559.9 4196.0 4212.7 1 106.41 < 2.2e-16 ***

4 476 3464.9 4103.1 4124.0 1 94.96 < 2.2e-16 ***

5 475 2593.3 3233.4 3258.5 1 871.64 < 2.2e-16 ***

6 474 2551.9 3194.1 3223.3 1 41.38 1.256e-10 ***

7 473 333.8 977.9 1011.4 1 2218.12 < 2.2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

5.3. The equate function

Most of the functionality of the equate package can be accessed via the function equate,
which integrates all of the equating types and methods described above. The equivalent-
groups design provides a simple example: besides the X and Y frequency tables, only the
equating type is required.

R>equate(act.x, act.y, type = "mean")

Mean Equating: act.x to act.y

Design: equivalent groups

Summary Statistics:

mean sd skew kurt min max n

x 19.85 8.21 0.38 2.30 1.00 40.00 4329

y 18.98 8.94 0.35 2.15 1.00 40.00 4152

yx 18.98 8.21 0.38 2.30 0.13 39.13 4329

Coefficients:

intercept slope cx cy sx sy

-0.8726 1.0000 20.0000 20.0000 40.0000 40.0000

The nonequivalent-groups design is specified with an equating method, and smoothing with
a smoothmethod.

R>neat.ef <- equate(neat.x, neat.y, type = "equip",

+ method = "frequency estimation", smoothmethod = "log")
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Table 1 lists the equating methods that apply to each equating type in the nonequivalent-
groups design. Levine true-score equating (lts) is performed by including the additional
argument lts = TRUE.

An equating object such as neat.ef contains basic information about the type, method,
design, smoothing, and synthetic population weighting for the equating, in addition to the
frequency distributions given for x and y. The summary method creates separate tables for
all of the frequency distributions utilized in the equating, and calculates descriptive statistics
for each one.

R>summary(neat.ef)

Frequency Estimation Equipercentile Equating: neat.x to neat.y

Design: nonequivalent groups

Smoothing Method: loglinear presmoothing

Synthetic Weighting for x: 0.5025812

Summary Statistics:

mean sd skew kurt min max n

x.obs 15.821 6.530 0.580 2.720 2.000 36.000 1655.000

x.smooth 15.821 6.530 0.580 2.720 0.000 36.000 1655.000

x.synth 16.734 6.753 0.435 2.460 0.000 36.000 1646.544

y.obs 18.673 6.881 0.205 2.301 3.000 36.000 1638.000

y.smooth 18.673 6.881 0.205 2.301 0.000 36.000 1638.000

y.synth 17.727 6.812 0.343 2.413 0.000 36.000 1646.544

yx.obs 16.808 6.605 0.484 2.624 2.142 36.267 1655.000

xv.obs 5.106 2.377 0.412 2.767 0.000 12.000 1655.000

xv.smooth 5.106 2.377 0.412 2.767 0.000 12.000 1655.000

xv.synth 5.481 2.444 0.259 2.566 0.000 12.000 1646.544

yv.obs 5.863 2.452 0.107 2.509 0.000 12.000 1638.000

yv.smooth 5.863 2.452 0.107 2.509 0.000 12.000 1638.000

yv.synth 5.481 2.444 0.259 2.566 0.000 12.000 1646.544

The equate function can also be used to convert scores from one scale to another based on
the function defined in a previous equating. For example, scores on Y for a new sample of
examinees taking KBneat form X could be obtained.

R>cbind(newx = c(3, 29, 8, 7, 13),

+ yx = equate(c(3, 29, 8, 7, 13), y = neat.ef))

newx yx

[1,] 3 3.242796

[2,] 29 29.844991

[3,] 8 8.685155

[4,] 7 7.605106

[5,] 13 14.078070
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Here, the argument y passed to equate is the frequency estimation equipercentile equating
object from above, which is an object of class "equate". Since the equating function from
neat.ef relates scores on X to the scale of Y , anchor test scores are not needed for the
examinees in newx.

Finally, composite linkings are created using the composite function. For example, the
identity and Tucker linear functions equating neat.x to neat.y could be combined as a
weighted average function.

R>neat.i <- equate(neat.x, neat.y, type = "ident")

R>neat.lt <- equate(neat.x, neat.y, type = "linear",

+ method = "tucker")

R>neat.comp <- composite(list(neat.i, neat.lt), wc = .5,

+ symmetric = TRUE)

R>plot(neat.comp, addident = FALSE)

neat.comp represents what Kim, von Davier, and Haberman (2008) refer to as synthetic linear
linking. The argument symmetric = TRUE is used to adjust the weighting system so that the
resulting function is symmetric. Figure 5 shows the composite line in relation to the identity
and linear components.

5.4. Linking with different scale lengths and item types

Procedures for linking scales of different lengths and item types are demonstrated here using
PISA data. A frequency table containing four clusters, or item sets, from the PISA reading
test was created above as pisa. This frequency table combines total scores on two item sets
to create one form, R3R6, and total scores on two other item sets to create another form,
R5R7. Because the same group of examinees took all of the item sets, the forms are contained
within a single bivariate frequency table.

The two forms differ in length and item type. R3R6 contains 30 items, one of which has a
maximum possible score of 2, and the remainder of which are scored dichotomously. This
results in a score scale ranging from 0 to 31. However, 14 of the 30 items in R3R6 were
multiple-choice (MC), mostly with four response options. The remaining items were either
constructed-response or complex multiple-choice, where examinees were unlikely to guess the
correct response. Thus, the lowest score expected by chance for R3R6 is 14/4 = 3.5. R5R7
contains 29 items, all of which are scored dichotomously. Eight of these items are MC with
four response options and the remainder are CR or complex MC, resulting in a lowest expected
chance score of 8/4 = 2. The summary statistics above show that, despite having a slightly
smaller score scale, the mean for R5R7 is slightly higher than for R3R5.

Results for linking R3R6 to R5R7 are compared here for five linking types: identity, mean,
linear, circle-arc, and equipercentile with loglinear presmoothing (using the default param-
eters). By default, the identity linking component of each linear function is based on the
minimum and maximum possible points for each scale, that is, (0, 0) and (31, 29). The low
points were modified to be (3.5, 2) to reflect the lowest scores expected by chance.

R>pisa.i <- equate(pisa, type = "ident", lowp = c(3.5, 2))

R>pisa.m <- equate(pisa, type = "mean", lowp = c(3.5, 2))

R>pisa.l <- equate(pisa, type = "linear", lowp = c(3.5, 2))
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Figure 5: Identity, Tucker linear, and a composite of the two functions for equating KBneat.
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Figure 6: Five functions linking R3R6 to R5R7.

R>pisa.c <- equate(pisa, type = "circ", lowp = c(3.5, 2))

R>pisa.e <- equate(pisa, type = "equip", smooth = "log",

+ lowp = c(3.5, 2))

R>plot(pisa.i, pisa.m, pisa.l, pisa.c, pisa.e, addident = F,

+ xpoints = pisa, morepars = list(ylim = c(0, 31)))

The identity, mean, linear, circle-arc, and equipercentile linking functions are plotted in Fig-
ure 6. With a single-group design the linking lines can be plotted over the observed total
scores for each form. In this way, the results can be compared in terms of how well each
linking captures the difficulty difference from R3R6 to R5R7. Based on the scatterplot in
Figure 6, scores on R5R7 tend to be higher, but this difference is not linear across the score
scale. Instead, the difficulty difference appears curvilinear. Circle-arc linking appears to
underestimate this nonlinearity, whereas equipercentile linking appears to estimate it well.

5.5. Parametric bootstrapping

All but the identity linking and equating functions estimate a statistical relationship between
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score scales. Like any statistical estimate, equated scores are susceptible to bias and random
sampling error, for example, as defined in Appendix 6. Standard error (SE), bias, and root
mean square error (RMSE) can be estimated in the equate package using empirical and
parametric bootstrapping.

With the argument boot = TRUE, the equate function will return bootstrap standard errors
based on sample sizes of xn and yn taken across reps = 100 replications from x and y. Indi-
viduals are sampled with replacement, and the default sample sizes xn and yn will match those
observed in x and y. Equating is performed at each replication, and the estimated equating
functions are saved. Bias and RMSE can be obtained by including a vector of criterion
equating scores via crit. Finally, the matrix of estimated equatings at each replication can
be obtained with eqs = TRUE.

Parametric bootstrapping is performed within the equate function by providing the optional
frequency distributions xp and yp. These simply replace the sample distributions x and y

when the bootstrap resampling is performed. Additionally, the bootstrap function can be
used directly to perform multiple equatings at each bootstrap replication. SE, bias, and
RMSE can then be obtained for each equating function using the same bootstrap data.

Parametric bootstrapping using the bootstrap function is demonstrated here for eight equat-
ings of form X to Y in KBneat: Tucker and chained mean, Tucker and chained linear, fre-
quency estimation and chained equipercentile, and Tucker and chained-linear circle-arc. Iden-
tity equating is also included. Smoothed population distributions are first created. Based on
model fit comparisons, loglinear models were chosen to preserve 4 univariate and 2 bivariate
moments in the smoothed distributions of X and Y . Plots are shown in Figures 7 and 8.

R>neat.xp <- presmoothing(neat.x, "log", xdegree = 2,

+ asfreqtab = TRUE)

R>neat.xpmat <- presmoothing(neat.x, "log", xdegree = 2,

+ stepup = TRUE)

R>neat.yp <- presmoothing(neat.y, "log", xdegree = 2,

+ asfreqtab = TRUE)

R>neat.ypmat <- presmoothing(neat.y, "log", xdegree = 2,

+ stepup = TRUE)

R>plot(neat.x, neat.xpmat[, c(3, 4, 7:10)])

R>plot(neat.y, neat.ypmat[, c(3, 4, 7:10)])

Next, the number of replications is set to 100, bootstrap sample sizes are set to 100 for X
and Y , and a criterion equating function is defined as the chained equipercentile equating in
the population.

R>set.seed(131031)

R>reps <- 100

R>xn <- 100

R>yn <- 100

R>crit <- equate(neat.xp, neat.yp, "e", "c")$conc$yx

Finally, to run multiple equatings in a single bootstrapping study, the arguments for each
equating must be combined into a single object. Here, each element in neat.args is a named
list of arguments for each equating. This object is then used in the bootstrap function, which
carries out the bootstrapping.
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Figure 7: Smoothed population distributions for X used in parametric bootstrapping.
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Figure 8: Smoothed population distributions for Y used in parametric bootstrapping.
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R>neat.args <- list(i = list(type = "i"),

+ mt = list(type = "mean", method = "t"),

+ mc = list(type = "mean", method = "c"),

+ lt = list(type = "lin", method = "t"),

+ lc = list(type = "lin", method = "c"),

+ ef = list(type = "equip", method = "f", smooth = "log"),

+ ec = list(type = "equip", method = "c", smooth = "log"),

+ ct = list(type = "circ", method = "t"),

+ cc = list(type = "circ", method = "c", chainmidp = "lin"))

R>bootout <- bootstrap(x = neat.xp, y = neat.yp, xn = xn, yn = yn,

+ reps = reps, crit = crit, args = neat.args)

A plot method is available for visualizing output from the bootstrap function, as demon-
strated below. Figures 9 through 12 contain the mean equated scores across replications for
each method, the SE, bias, and RMSE. In Figure 9, the mean equated scores appear to be
similar across much of the scale. Chained mean equating (the light orange line) consistently
produces the highest mean equated scores. Mean equated scores for the remaining meth-
ods fall below those of chained mean and above those of identity equating (the black line).
In Figure 10, standard errors tend to be highest for the equipercentile methods, especially
chained equipercentile (the dark blue line), followed by the linear methods (green lines). SE
are lowest for the circle-arc methods (purple and pink), especially in the tails of the score scale
where the identity function has more of an influence. In Figure 11, bias is highest for chained
mean equating, and is negative for the identity function; otherwise, bias for the remaining
methods falls roughly between -0.5 and 0.5. Finally, in Figure 12, RMSE tends to be highest
for chained mean and the linear and equipercentile methods. RMSE for Tucker mean and
the circle-arc methods tended to fall at or below 0.5.

R>plot(bootout, addident = F, col = c(1, rainbow(8)))

R>plot(bootout, out = "se", addident = F,

+ col = c(1, rainbow(8)), legendplace = "top")

R>plot(bootout, out = "bias", addident = F,

+ col = c(1, rainbow(8)), legendplace = "top",

+ morepars = list(ylim = c(-.9, 3)))

R>plot(bootout, out = "rmse", addident = F,

+ col = c(1, rainbow(8)), legendplace = "top",

+ morepars = list(ylim = c(0, 3)))

A summary method is also available for output from the bootstrap function. Mean SE,
bias, and RMSE, and weighted and absolute means, when applicable, are returned for each
equating. Weighted means are calculated by multiplying the error estimate at each score point
with the corresponding relative frequency in X, and absolute means are based on absolute
error values. The output below summarizes what is shown in Figures 9 through 12: mean
SE is lowest for identity and the circle-arc methods; mean bias is low for a few methods but,
in terms of absolute bias, is lowest for chained equipercentile; and mean RMSE is lowest
on average for Tucker circle-arc. Overall, Tucker circle-arc outperforms the other methods in
terms of error reduction, with mean RMSE of 0.41. Mean RMSE for the remaining methods
are between 0.46 (chained circle-arc) and 1.51 (chained mean).
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Figure 9: Parametric bootstrapped mean equated scores for eight methods.
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Figure 10: Parametric bootstrapped SE for eight methods.
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Figure 12: Parametric bootstrapped RMSE for eight methods.
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R>round(summary(bootout), 2)

se w.se bias a.bias w.bias wa.bias rmse

i 0.00 0.00 -0.67 0.67 -0.02 0.02 0.67

mt 0.51 0.01 0.35 0.35 0.01 0.01 0.64

mc 0.65 0.02 1.37 1.37 0.04 0.04 1.51

lt 0.86 0.02 0.39 0.39 0.01 0.01 0.96

lc 0.93 0.02 0.12 0.17 0.00 0.00 0.95

ef 0.95 0.02 0.17 0.24 0.01 0.01 0.99

ec 1.07 0.02 0.03 0.12 0.00 0.00 1.08

ct 0.34 0.01 0.00 0.18 0.00 0.00 0.41

cc 0.37 0.01 -0.18 0.18 0.00 0.00 0.46

6. Summary

This paper presents some basic concepts and procedures for observed-score linking and equat-
ing of measurement scales. Linear and nonlinear functions are discussed, and various methods
for applying them to nonequivalent groups are reviewed. Finally, the equate package is intro-
duced, and its basic functionality is demonstrated using three data sets.

The equate package is designed to be a resource for teaching, learning, and applying observed-
score linking and equating procedures. A simple interface, via the equate function, can be
used to control most of the necessary functionality, including data preparation, presmoothing,
linking and equating, and managing output. Summary and plot methods facilitate the com-
parison of results. Additional features, not presented in this paper, are also available; details
can be found by consulting the help files for the package. Finally, future versions of the equate
package will be extended to support additional procedures, for example, postsmoothing, non-
linear continuization, and new composite linking functions.

Additional formulas

Chained linear equating

Chained linear equating involves two separate linear functions. In the equations below the
anchor test V is distinguished by population (P taking form X and Q taking form Y ), though
the items on V do not change. The first linear function in slope-intercept form converts X to
the scale of VP :

lVP
(x) =

σVP

σX
x− σVP

σX
µX + µVP

. (45)

The second function converts VQ to the scale of Y :

lY (vQ) =
σY
σVQ

vQ −
σY
σVQ

µVQ
+ µY . (46)

These functions are combined, where the first, lVP
(x), takes the place of vQ in the second to

obtain:

lchainY (x) =
σY
σVQ

[
σVP

σX
x− σVP

σX
µX + µVP

]
− σY
σVQ

µVQ
+ µY , (47)
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or, in slope-intercept form, after some rearranging:

lchainY (x) =
σY
σVQ

σVP

σX
x+

σY
σVQ

[
µVP
− σVP

σX
µX − µVQ

]
+ µY . (48)

Finally, for chained mean equating this reduces to:

mchainY (x) = x+ µVP
− µX − µVQ

+ µY . (49)

When used to obtain the midpoint coordinates in circle-arc equating, the chained method
reduces even further, since x is µX . Here, the linear and mean functions simplify to

lchainY (µX) =
σY
σVQ

µVP
− σY
σVQ

µVQ
+ µY , (50)

and

mchainY (µX) = µVP
− µVQ

+ µY . (51)

Loglinear presmoothing

Polynomial loglinear modeling is a flexible procedure for smoothing distributions of various
shapes to varying degrees. The structure of a distribution can either be maintained or ignored
depending on the complexity of the model, where the degree of the polynomial term included
determines the moment of the raw score distribution to be preserved. For example, a model
with terms to the first, second, and third powers would create a smoothed distribution which
matches the raw in mean, variance, and skewness. As shown below, the log of the expected
relative frequency p for score point x is modeled as a function of a normalizing constant (the
intercept β0) and the observed-score value to the first, second, and third powers:

log(p) = β0 + β1x
1 + β2x

2 + β3x
3. (52)

Indicator variables may also be included to preserve specific moments for subsets of score
points. In the next model, the mean and variance of a sub-distribution are preserved, in
addition to the first three moments of the full distribution. When S = 1, score point x is
included in this sub-distribution, and when S = 0, it is ignored:

log(p) = β0 + β1x
1 + β2x

2 + β3x
3 + β0SS + β1Sx

1S + β2Sx
2S. (53)

An acceptable degree of smoothing is typically achieved by comparing multiple models with
different numbers of polynomial terms based on their fit to the data (Kolen and Brennan 2004).
The loglinear function in equate is a wrapper for the glm function in the stats package. It
can be used to fit and compare nested models up to specified maximum polynomial terms.
For additional details, see the presmoothing help file.

Error in equating

In simulation and resampling studies, equatings are typically compared based on both random
and systematic error (or differences), where the first is estimated by the standard error of
equating SE and the second by the bias. Error is defined in terms of the population equating
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function eY (x) and estimate êY r(x) for samples r = 1, 2, . . . , R. Systematic error is estimated
as

bias = ˆ̄eY (x)− eY (x), (54)

where

ˆ̄eY (x) =
1

R

R∑
r=1

êY r(x) (55)

is the average estimated equated score over R samples. The random error is estimated as

SE =

√√√√ 1

R

R∑
r=1

[êY r(x)− ˆ̄eY (x)]2. (56)

Combining both systematic error and random error, the root mean squared error is estimated
as

RMSE =
√
bias2 + SE2. (57)
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