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Abstract1

• Network analysis is a useful approach for investigating complex and relational datasets in2

many fields including ecology, molecular, and evolutionary biology.3

• Here, we introduce enaR, an R package for Ecosystem Network Analysis (ENA). ENA is an4

analytical tool set rooted in ecosystem ecology with over 30 years of development that exam-5

ines the structure and dynamics of matter and energy movement between discrete ecological6

compartments (e.g., a food web).7

• In addition to describing the primary functionality of the package, we highlight several features8

including a library of 100 empirical ecosystem models, the ability to analyze and compare9

multiple models simultaneously, and connections to other ecological network analysis tools in10

R.11

KEYWORDS: network analysis, ecosystem, open-source software, network environ analysis,12

ascendency, input–output analysis, food web, urban metabolism, Ecopath, NETWRK, WAND13
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1 Introduction14

Network ecology – the study of ecological systems using network models and analyses to characterize15

their structure, function, and evolution – is a large and rapidly growing area of ecology (Proulx16

et al., 2005). For example, Ings et al. (2009) discovered that a notable fraction of 2008 publications17

in 11 select journals were related to food webs (≈2.4%), mutualistic networks (≈0.9%), and host-18

parasitoid networks (≈0.06%). Likewise, Borrett et al. (2014) found that the percent of ecology and19

evolutionary biology papers indexed by Web of Science that could be classified as network ecology20

increased from 1.3% in 1991 to more than 5% in 2012. This rise of network ecology contributes to,21

mirrors, and builds on the more general growth of network sciences (Barabási, 2012; Borgatti &22

Foster, 2003; Freeman, 2004; Newman, 2003; Wasserman & Faust, 1994).23

Ecosystem Network Analysis (ENA) is a branch of network ecology that has been used to address24

a range of key ecosystem questions (Borrett et al., 2012; Fath & Patten, 1999; Ulanowicz, 1986). For25

example, in the food web of Big Cypress National Preserve (Florida, USA) Bondavalli & Ulanowicz26

(1999) found evidence of an indirect mutualism between the American alligator and some of its27

prey items. Applications of ENA have also lead to new insights into the classic trophic questions of28

“What limits food-chain length?” (Ulanowicz et al., 2014) and “Are food webs modular?” (Allesina29

et al., 2005; Borrett et al., 2007; Krause, 2004). Hines et al. (2012) used ENA to quantify the relative30

importance of coupling between biogeochemical processes (e.g., nitrification) in the Cape Fear River31

estuary sedimentary nitrogen cycle. Further, scientists have used ENA to investigate differences in32

urban sustainability (Bodini & Bondavalli, 2002; Bodini et al., 2012; Chen & Chen, 2012; Zhang33

et al., 2010). Collectively, this work consistently shows the power of a transactional network to34

generate unexpected ecological relationships that then influence the system function and evolution35

(Jørgensen et al., 2007; Patten, 1991; Ulanowicz, 1997).36

enaR is an open-source software to facilitate ENA. The currently available ENA software pack-37
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ages (Allesina & Bondavalli, 2004; Christensen & Walters, 2004; Fath & Borrett, 2006; Kazanci,38

2007; Ulanowicz & Kay, 1991) each have critical limitations, which led us to three primary design39

objectives for enaR. The first objective was to collect the major ENA functions into a single software40

package. While multiple investigators have contributed to algorithmic development (e.g., Allesina41

& Bondavalli, 2003; Fath & Patten, 1999; Finn, 1976; Ulanowicz, 1986; Ulanowicz & Kay, 1991), the42

broad set of tools is not available in a single existing software. The second objective was to increase43

the availability and extensibility of the software. We chose to use R in part because of its increasing44

popularity as an analytical tool in the biological sciences (e.g., Dixon, 2003; Metcalf et al., 2012;45

Revell, 2012). Further, users can freely download a stable version of the package from the CRAN46

website (http://cran.r-project.org/web/packages/enaR), and the code for every function in47

R is available from within R (e.g., edit(function name)). In addition, enaR development is being48

managed via GitHub (https://github.com/TheSeeLab/enaR) to encourage collaborative devel-49

opment. The third design objective was to enable enaR users access to network analysis tools from50

other disciplines. To enable this, enaR was designed to work directly with two existing R network51

analysis packages: network (Butts, 2008a) and sna (Butts, 2008b). In summary, the aim of the52

enaR package is to make ENA tools more available and easier to use, adapt, and extend.53

In this paper, we present an overview of enaR and highlight some of its functionality. A full54

description of the ENA algorithms and their use and interpretation is beyond the scope of this short55

paper, but we refer interested readers to a selection of reviews as an entry point to ENA (Fath &56

Borrett, 2006; Fath & Patten, 1999; Jørgensen et al., 2007; Schramski et al., 2011; Ulanowicz, 1997).57

For a more comprehensive description on how to use the enaR package, please refer to the package58

vignette: http://cran.r-project.org/web/packages/enaR/vignettes/enaR-vignette.pdf.59
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2 Overview of enaR60

ENA is an agglomeration of algorithms developed to analyze network models of energy or matter61

movement in ecosystems (e.g., Fath & Patten, 1999; Hannon, 1973; Ulanowicz, 1986), but it can62

generally be applied to any Input-Output system that follows a thermodynamically conserved63

unit among the compartments. Thus, it is a family of related algorithms to analyze the ecosystem64

from several perspectives including its structure, flow, storage, and utility. Together, these analyses65

function as a “macroscope” to investigate (1) whole system organization, (2) the direct and indirect66

effects among system components, and (3) the processes that create and sustain ecological systems.67

In this section we provide an overview of the algorithms and tools included in the enaR software.68

After describing the required model information, we highlight the primary ENA algorithms included69

in enaR. We then walk through an example application of the enaR Flow analysis.70

2.1 Data Requirements and Input71

ENA is a data-intensive methodology. The system is modeled as a set of compartments or network72

nodes that represent species, species-complexes (i.e., trophic guilds or functional groups), or non-73

living components of the system in which energy or matter is stored. These nodes are connected74

by a set of direct energy or matter transactions among the nodes, termed directed edges or links.75

These models also have energy–matter inputs into the system and output losses from the system.76

In summary, the full set of data required includes: (1) internal flows, (2) boundary inputs, (3)77

boundary exports, (4) boundary respiration, (5) boundary outputs, which may be the sum of78

exports and respiration, (6) biomass or storage values, and (7) designation of living status of each79

node. While all seven elements are required for a full analysis, the specific data requirements varies80

among the ENA algorithms.81

The primary ENA algorithms in enaR assume the model data is presented as an R network data82
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object defined in the network package. Given the data elements, users can use the pack function83

to combine the data elements into the R network data object. While a standard data format for an84

ENA model does not yet exist, there are two commonly used formats. First, there is the Scientific85

Committee for Ocean Research (SCOR) format that is the required input to NETWRK (Ulanowicz86

& Kay, 1991), and the second format is the Excel sheet formatted data that is the input to WAND87

(Allesina & Bondavalli, 2004). The enaR package includes a read.scor and a read.wand function88

to read in these common data formats (Table 1).89

2.2 Visualization90

Visualization of network models can be an essential analytical tool (Lima, 2011; Moody et al.,91

2005). Because enaR is built specifically to use the network package and data type, it is possible to92

quickly create network plots of the model internal structure. Fig. 1a shows an example visualization93

of Dame & Patten’s (1981) Oyster Reef ecosystem model. The network package includes three94

network layout algorithms: circle, Fruchterman-Reingold, and Kamada-Kawai. The Fruchterman-95

Reingold algorithm used here is the default. The R script to generate this visualization is included96

in the online supplementary information (Item S1).97

2.3 Algorithm Overview98

enaR includes many of the most commonly used ENA algorithms (Table 2), along with a number99

of work flow tools and specialty analyses (Tables 1 and 3). The nine primary ENA functions begin100

with the prefix ‘ena’ followed by the specific analysis name (see Table 2). There are a total of 34101

functions in the enaR package. Comparison of the enaR package to previous implementations of102

ENA algorithms (i.e., NETWRK, NEA.m, EcoNet) shows high agreement in function output and103

significant expansion of the available ENA algorithms (Table S1 online).104
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Scharler & Fath (2009) identify two schools of ENA. The first school is based on the work of105

Robert Ulanowicz and colleagues at the University of Maryland (Ulanowicz, 1986, 1997, 2009).106

Primarily focused on trophic ecology, this approach uses information theory and the ascendency107

concept to characterize ecosystem growth and development (Ulanowicz, 1986, 1997). This work108

is often referred to as “Ecological Network Analysis” as it predates many other types of network109

ecology. The second school is based on the work of Bernard Patten at the University of Georgia110

(Fath & Patten, 1999; Matis & Patten, 1981; Patten, 1982; Patten et al., 1976). Steeped in dynamic111

equations, simulations, and systems analysis, this approach developed around the environ concept112

that formalizes the concept of environment (Patten, 1978), and has often been referred to as “Net-113

work Environ Analysis.” enaR currently captures all of the Patten School algorithms previously114

implemented in NEA.m (Fath & Borrett, 2006). Presently, the Ulanowicz School algorithms are115

more limited, including the ascendency calculations (Ulanowicz, 1997) and mixed trophic impacts116

analyses (Ulanowicz & Puccia, 1990); however, we expect the package capabilities to continue to117

grow, especially with the assistance of new users. This combination of the Patten and Ulanowicz118

schools of analyses is rare in existing software.119

2.4 Example Application120

Given a network model, applying ENA algorithms with enaR is straightforward. We demonstrate121

how to use the package with an example Flow analysis on Dame & Patten’s (1981) model of energy122

flow in an Oyster Reef ecosystem. Figure 2 shows the example script. The analysis involves: (1)123

loading the model data, (2) checking and balancing the model if necessary, and (3) inputting the124

balanced model into the analysis function. The final step is interpreting the analytical output. This125

is a typical workflow for ENA.126

After loading the enaR package, the next step is to enter the model data. Here, we extract the127
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model information from the paper and create a vector of node names, the flow matrix (F), inputs128

(z), outputs (y), and the logical vector indicating whether or not the nodes are living (Fig. 2). We129

then use the pack function to create the required network data object. The next step is to apply130

the ssCheck function ensure that the model is at steady-state, which is one of the assumptions of131

the flow analysis (Fath & Borrett, 2006; Finn, 1976). If the model had not been at steady-state,132

we could have then applied one of four automated balancing algorithms (AVG, Input-Output,133

Output-Input, AVG2; Allesina & Bondavalli, 2003) to force the model into a steady-state. We then134

apply the enaFlow function to the model to perform the desired ENA flow analysis. As shown135

with the attributes function, this analysis returns 4 matrices (G, GP, N, NP) and two vectors136

(throughflow, T , and a vector of 20 whole-network statistics, ns).137

Interpreting the ENA results is the final challenge. Here, we provide a few illustrative interpre-138

tations of the Flow analysis. Starting with the whole-network flow statistics, we see that the total139

system throughflow (TST) of the oyster reef model is 83.6 Kcal m−2 d−1. TST is a measure of140

the total activity of the system, which is often referred to as the size or power of the system. The141

Finn Cycling Index (FCI) indicates that 11% of this activity was generated by recycling. Further,142

the average path length (APL = 2.02) shows that an average input passes over two paths before143

exiting the system, and the ratio of indirect to direct flows (ID.F = 1.58) indicates that the indirect144

flow exceeds the direct flow in this system. Together, these whole network indicators show the145

importance of indirect interactions in the system. A next analytical step might be to apply the146

Utility or Mixed Trophic Impacts analyses to determine the net relationships among the ecosystem147

components when we consider the direct and indirect interactions, but this is beyond our analysis148

here. More detailed guidance for how to interpret ENA results can be found in previously published149

literature (Fath & Borrett, 2006; Jørgensen et al., 2007; Schramski et al., 2011).150
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3 Value Added Features151

There are several features of the enaR package beyond the core analyses that add substantive value152

for users. In this section we highlight several of these features including a library of 100 ecosystem153

network models, methods for conducting batch analysis (i.e., simultaneous analysis of multiple154

models), and connections to other analytical software.155

3.1 Model Library156

To facilitate new systems ecology and network science, we included a library of 100 previously157

published ecosystem network models with the enaR package. These models each trace a thermo-158

dynamically conserved unit (e.g., C, N, P) through a particular ecosystem. The models in this set159

are empirically-based in that the authors attempted to model a specific system and parameterized160

the model to some degree with empirical estimates. While the library includes models used pre-161

viously to test several systems ecology hypotheses (Borrett, 2013; Borrett & Salas, 2010; Borrett162

et al., 2010; Salas & Borrett, 2011), and the set has a 47% overlap with the set of models previously163

collected by Dr. Ulanowicz (http://www.cbl.umces.edu/~ulan/ntwk/network.html), the full set164

has not previously been collected and distributed together.165

We tentatively split these models into two classes. The most abundant class is the trophic166

network models. These models tend to have a food web at their core, but also include non-trophic167

fluxes generated by processes like death and excretion. The annual carbon flux model for the168

mesohaline region of the Chesapeake Bay is a typical example (Baird & Ulanowicz, 1989). The169

second class of models focuses on biogeochemical cycling. In contrast to the trophic networks, the170

biogeochemical cycling models tend to have more highly aggregated nodes (more species grouped171

into a compartment), include more abiotic nodes that could represent chemical species (e.g., am-172

monia in a nitrogen cycle), have a lower dissipation rate, and therefore they tend to have more173
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recycling (Borrett et al., 2010; Christian et al., 1996). Christian & Thomas’s (2003) models of174

nitrogen cycling in the Neuse River Estuary are good examples of the class. The package vignette175

has a full listing of the models included along with references to their original publications (Lau176

et al., 2013).177

3.2 Batch Analysis178

Advances in ecosystem ecology have been made by comparing network metrics across multiple179

ecosystem models. For example, Christensen (1995) applied ENA to identify and compare the180

maturity of 41 ecosystem models, and van Oevelen et al. (2011) compared the organic matter181

processing of food webs in three sections of the Nazaré submarine canyon. The enaR tool simplifies182

the work flow for these types of comparison. Given a list of models like the model library, it is183

possible to quickly analyze multiple models using R’s lapply function (see help(“lapply”)). This184

facilitates the kind of comparative network analysis often of interest to ecologists (Christian et al.,185

2005; Monaco & Ulanowicz, 1997; Whipple et al., 2007).186

Batch analysis can be used in several additional ways. One application is for meta-analyses,187

such as tests of the generality of hypothesized ecosystem properties like network non-locality (Salas188

& Borrett, 2011), or to investigate how physical features might influence ENA results (Niquil et al.,189

2012). Fig. 1b illustrates the rank-ordered network homogenization statistic for the 56 trophic-190

based ecosystem models in the library. The homogenization statistic is greater than one in all of191

these models indicating that the network of indirect interactions tend to more uniformly distribute192

the resources than is obvious from the direct interactions, which extends previous results of Borrett193

& Salas (2010) to include several new models. A second kind of application is the exploration of194

new ENA inter-relationships. With the collection of algorithms and the library of models, we can195

now investigate possible relationships among ENA indicators from different schools (Fig. 1c). The196
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R script to generate Fig. 1 is available as an online enhancement (Item S1). A third application197

of batch analysis is to investigate the previously unknown empirical ranges of ENA whole-network198

statistics, which may be useful for interpreting results from specific applications. Fig. 3 shows the199

observed distribution of values for selected network statistics from the 100 models in the library200

easily analyzed using lapply and the associated enaR functions.201

3.3 New Connections202

A third advantage of the enaR package design is that it enables network ecologists easier access to203

other network tools and analyses that might be useful. The enaR package uses the R network data204

structure defined in the network package (Butts, 2008a). This means that network ecologists using205

enaR can also use the network manipulation functions and visualization features of the network206

package. Further, the R Social Network Analysis (SNA) package, sna, (Butts, 2008b) also uses this207

network data object. This means that network ecologists can apply many of the SNA algorithms208

directly to their ecological network models. Fig. 1d illustrates applying the betweenness centrality209

function to the Chesapeake Bay trophic model (Baird & Ulanowicz, 1989) and visualizing the results210

using a target centrality plot (Brandes et al., 2003). This analysis highlights the central role of211

Sedimentary Particulate Carbon and bacteria in the Sediment Particulate Organic Carbon (POC)212

in the carbon flux of the estuary.213

In addition, enaR can be a starting point for ecosystem network ecologists to use other R214

network tools. For example, the iGraph package provides functions to apply classic graph theory215

(Csardi & Nepusz, 2006). The limSolve package provides capabilities to infer network model fluxes216

from empirical data by linear inverse modeling (Soetaert et al., 2009), which can also be used for217

uncertainty analyses of ENA (Kones et al., 2009). There are a wealth of additional R package that218

network ecologists may find useful including bipartite (Dormann et al., 2008), vegan (Dixon,219
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2003), Cheddar (Hudson et al., 2013), and packages in the statnet family (Handcock et al., 2008).220

4 Conclusion and Future Development221

The enaR package encodes exiting ENA algorithms, and is designed to address limitations of current222

ENA software and facilitate wider use and development. It does this by (1) providing greater223

accessibility to the code (e.g., free and open source software available on multiple OS), (2) collecting224

a broad set of available ENA algorithms and workflow management functions, and (3) creating the225

potential for collaborative development (via GitHub and CRAN). Further, the software is extensible226

for individual needs and it lets users integrate ENA into a broader workflow in R in a way that is227

more challenging when using web based tools like EcoNet (Kazanci, 2007; Schramski et al., 2011).228

Finally, it lets users have access to other network and statistical analysis tools (e.g., social network229

analysis) that are already part of R. These benefits come at the cost of having a steeper learning230

curve (e.g., users must know R), which may make enaR more suited to advanced practitioners.231

In the near future, we anticipate two initial lines of continued development for the enaR package.232

The first is to increase the connections between the enaR package and other modeling and analytical233

tools. For example, we are currently working with colleagues to enable users of Ecopath with Ecosim234

(Christensen & Walters, 2004) to apply the enaR tools in a seamless way. We are also developing235

functions to connect between enaR and the R limSolve package (Soetaert et al., 2009) for creating236

models using Linear Inverse Modeling and to enable uncertainty analysis (Kones et al., 2009). The237

second line of development is to extend the package’s capabilities. While it currently contains238

most of the many commonly used ENA algorithms used by ecologists, it is far from complete. For239

example, Ulanowicz’s (1983) decomposition of cycles is not yet included nor is his construction240

for the Lindeman trophic spine (Ulanowicz & Kemp, 1979). Network model construction tools,241

such as least-inference methods for building models from empirical data (Ulanowicz & Scharler,242
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2008) and Fath’s (2004) algorithm for constructing plausible ecosystems models are also possible243

enhancements.244

In conclusion, enaR is an R package intended to facilitate the use and the collaborative develop-245

ment of Ecosystem Network Analysis, a branch of network ecology. This domain is rapidly growing246

in part because the tools and techniques let ecologists address a wide range of relational questions247

at the core of ecology. We look forward to seeing new ecological discoveries made through the use248

of enaR.249
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6 Tables

Table 1: Selected data input, management, and export functions in enaR.

Function Description Example Reference

pack This function lets users combine model elements into
a network data object.

None

unpack Extracts the individual model elements (e.g., flows,
inputs, outputs) from the network data object.

None

read.scor Creates a network data object from a SCOR formatted
data file.

Ulanowicz & Kay (1991)

read.wand Creates a network data object from a WAND format-
ted data file.

Allesina & Bondavalli (2004)

ssCheck Checks to see if the model is at steady-state. None
balance Applies one of four balancing algorithms to a model

not at steady-state.
Allesina & Bondavalli (2003)

force.balance Runs balancing algorithm as many times as necessary
to balance the model.

None

write.nea Writes the model data to the file format used as input
for NEA.m.

Fath & Borrett (2006)
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Table 2: Ecosystem Network Analysis functions in enaR.

Function Description Example Reference

enaStructure ENA Structural analysis returns the adjacency ma-
trix and multiple common descriptive statistics (e.g.,
number of nodes, connectance, pathway proliferation
rate).

Borrett et al. (2007)

enaFlow Calculates node throughflow and input and output ori-
ented direct and integral flow intensity matrices. It
also returns multiple whole network descriptive statis-
tics including Total System Throughflow, Finn Cy-
cling Index, and Average Path Length.

Finn (1976)

enaAscendency Performs ascendency analysis on the model flows and
returns whole-network statistics including the average
mutual information, Ascendency, Capacity, and Over-
head.

Ulanowicz (1997)

enaStorage ENA Storage analysis considers how the model fluxes
generate the node storage (e.g., biomass) in the sys-
tem. This function returns the input and output ori-
ented direct and integral storage matrices.

Matis & Patten (1981)

enaUtility ENA Utility analysis investigates the direct relation-
ships among the network nodes as well as the integral
relationships when all of the indirect interactions are
also considered.

Patten (1991)

enaMTI Mixed Trophic Impacts assesses the net relationships
among species in a food web.

Ulanowicz & Puccia (1990)

enaControl Control analysis determines the relative control one
node exerts on another through the transaction net-
work.

Dame & Patten (1981)

enaEnviron Returns the n unit and n realized input and output
environs of the model.

Patten (1978)
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Table 3: Selected enaRauxiliary functions and analyses.

Function Description Example Reference

Specialty Analyses
enaAll Runs all of the primary ENA algorithms. None
get.ns Returns the whole-network statistics from enaStruc-

ture, enaFlow, enaAscendency, enaStorage, and enaU-
tility.

None

eigenCentrality Calculates the average eigenvalue centrality for any
input matrix.

Fann & Borrett (2012)

environCentrality Returns the input, output, and average environ cen-
tralities for a matrix.

Fann & Borrett (2012)

TET Returns the total environ throughflows. Whipple et al. (2007)
TES Returns the total environ storages. Matis & Patten (1981)

Auxiliary Functions
get.orient Determine the orientation of the results (row-to-

column vs. School).
None

set.orient Set the orientation of the results (row-to-column vs.
School).

None

mExp This function lets users calculate matrix exponents. None
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7 Figures
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Figure 1: Example of analysis and visualizations created with enaR (a) network digraph of the in-
ternal flows of an oyster reef ecosystem model (Dame & Patten, 1981), (b) network homogenization
statistic for 56 trophic ecosystem models (rank-ordered), (c) scatter plot showing the relationship
between the ascendency-to-capacity ratio and the indirect flow index for the 56 trophic ecosys-
tem models included in the package, and (d) target plot of the betweenness centrality from social
network analysis calculated for the 36 nodes of the Chesapeake Bay ecosystem model (Baird &
Ulanowicz, 1989).
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library(enaR) # load enaR package

> # -- ENTER MODEL DATA -- from Dame and Patten (1981)

> # node names

> names <- c("Filter Feeders","Microbiota","Meiofauna",

+ "Deposit Feeders","Predators","Deposited Detritus")

> # Internal Flows of model, as matrix (oriented row to column)

> F <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0,

+ 0, 0, 8.1721, 0, 1.2060, 0, 0, 0, 7.2745,

+ 0, 1.2060, 0.6609, 0, 0, 0.6431, 0.5135, 0, 0,

+ 0.1721, 0, 0, 15.7910, 0, 4.2403, 1.9076, 0.3262, 0),

+ ncol=6)

> rownames(F) <- names # add node names to rows

> colnames(F) <- names # add node names to cols

> # boundary flows

> inputs <- c(41.47,0, 0, 0, 0, 0)

> outputs <- c(25.1650, 5.76, 3.5794, 0.4303, 0.3594, 6.1759)

> # Living

> Living <- c(TRUE,TRUE,TRUE,TRUE,TRUE,FALSE)

> # pack the model data into the R network data object

> m <- pack(flow=F,input=inputs, respiration=outputs, outputs=outputs, living=Living)

>

> ssCheck(m) # check to see if the model is at steady-state

[1] TRUE

> # perform flow analysis

> F <- enaFlow(m) # perform ENA flow analysis

> attributes(F) # show analysis objects created

$names

[1] "T" "G" "GP" "N" "NP" "ns"

> F$ns # show flow analysis network statistics

Boundary TST TSTp APL FCI BFI DFI IFI

[1,] 41.47 83.5833 NA 2.015512 0.1101686 0.4961517 0.1950689 0.3087794

ID.F ID.F.I ID.F.O HMG.I HMG.O AMP.I AMP.O mode0.F mode1.F

[1,] 1.582925 1.716607 1.534181 2.051826 1.891638 3 1 41.47 32.90504

mode2.F mode3.F mode4.F

[1,] 9.208256 32.90504 41.47

> F$T

Filter Feeders Microbiota Meiofauna Deposit Feeders

41.4700 8.1721 8.4805 2.5100

Predators Deposited Detritus

0.6856 22.2651

Figure 2: Example code for applying enaR Flow analysis to Dame & Patten’s (1981) oyster reef
model.
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n 4 125 15 26.66 1.02

Statistic Min Max Median Mean CVDistribution

C 0.05 0.45 0.22 0.25 0.51

LD 1 16.91 3.14 4.58 0.89

lam1A 0 14.17 3.27 4.27 0.76

FCI 0 0.98 0.26 0.38 0.86

APL 1.37 186.25 3.67 20 1.91

IFI 0.04 0.99 0.53 0.56 0.52

HMG.O 1.04 13.07 1.78 2.3 0.83

AMP.O 0 323 6.5 19.77 1.91

AMI 1 2.25 1.57 1.58 0.21

ASC.CAP 0.25 0.75 0.39 0.42 0.28

synergism.F 2.41 60.51 3.95 5.69 1.1

mutualism.F 0.6 4 1.16 1.43 0.5

Figure 3: Distributions of selected ENA network statistics from the u 100 empirically-based ecosys-
tem models included in enaR. The results are summarized using a histogram showing the dis-
tribution of the values of each network statistic between the observed minimum and maximum
values. The median, mean, and coefficient of variation (ratio of standard deviation and mean)
values are also reported. The network statistics are the number of nodes (n), the connectance
(C = L/n2), link density (LD = L/n), pathway proliferation rate (lam1A), Finn cycling index
(FCI), average path length (APL), indirect flow intensity (IFI), output oriented network homog-
enization ratio (HMG.O), output-oriented network amplification ratio (AMP.O), average mutual
information (AMI), the ascendency-to-capacity ratio (ASC.CAP), flow-based network synergism
(synergism.F) and mutualism (mutualism.F).
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