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1 Introduction

This package is a collection of functions to implement Ecological Network Analysis (ENA), which
is a family of algorithms for investigating the structure and function of ecosystems modeled as
networks of thermodynamically conserved energy–matter exchanges. The package brings together
multiple ENA algorithms from several approaches into one common software framework that is
readily available and extensible. The package builds on the network data structure for R developed
by Butts (2008a). In addition to being able to perform several types of ENA with a single package,
users can also make use of network analysis tools built into the network package, the sna (social
network analysis) package (Butts, 2008b), and other components of what is now called statnet
(Handcock et al., 2008).

This vignette illustrates how to use the enaR package to perform ENA. It is not meant to be a
detailed guide to ENA, but we provide some references to the primary literature for those wishing
to learn more about the techniques.

2 Background

Before describing how to use this package, we provide a brief background of ENA. Users may find
this helpful as several software design decisions were predicated on the history and current state of
the field.

The ENA methodology is an application and extension of economic Input–Output Analysis
(Leontief, 1936, 1966) that was first introduced into ecology by Hannon (1973). Two major schools
have developed in ENA. The first is based on Dr. Robert E. Ulanowicz’s work with a strong focus
on trophic dynamics and a use of information theory (Ulanowicz, 1986, 1997, 2004). The second
school has an environment focus and is built on the environ concept introduced by Dr. Bernard
C. Patten (Fath and Patten, 1999; Patten, 1978; Patten et al., 1976). Patten’s approach has been
collectively referred to separately as Network Environ Analysis. At the core the two approaches are
very similar; however, they make some different starting assumptions and follow independent yet
braided development tracks. One example difference that has historically inhibited collaboration
and applications is that the two schools orient their analytical matrices in different ways. The
Ulanowicz school orients their matrices as flows from rows-to-columns, which is the most common
orientation in the broader field of network science (e.g., Brandes and Erlebach, 2005). In contrast,
the Patten School has historically oriented their matricies from column-to-row. Recent research
has started to bring the work of the two schools back together (e.g., Scharler and Fath, 2009); we
hope this software contributes to this. Borrett et al. (2012) provides an entry level overview of the
field.

Disparate software packages have been created to support ENA. Ulanowicz first developed and
distributed the DOS based NETWRK4 code, which is still available. Recently some of these algo-
rithms were reimplemented in an Microsoft Excel based WAND package (Allesina and Bondavalli,
2004). Some of these methods have also been encoded in the popular Ecopath with Ecosim soft-
ware that assists with model construction (Christensen and Walters, 2004). Fath and Borrett (2006)
published NEA.m, a MATLAB©function that collected the Patten School’s algorithms together
into one set of code. One objective for this R package is to begin to bring together these different
algorithms into a single accessible and extensible package. The primary ENA algorithms included
in this package are summarized in Table 1 and a plot of the network of functions for the package
can be found in Figure 1.
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Table 1: Primary Ecological Network Analysis algorithms in enaR.

Analysis Function Name School

Structure enaStructure foundational, Patten
Flow enaFlow foundational, Patten
Ascendency enaAscendency Ulanowicz
Storage enaStorage Patten
Utility enaUtility Patten
Mixed Trophic Impacts enaMTI Ulanowicz
Control enaControl Patten
Environ enaEnviron Patten

3 Data Input: General

In this section we describe the data necessary for the Ecological Network Analysis and show how
to build the central network data object in R that contains the model data for subsequent analysis.
To start, we assume you have installed the enaR package, and then loaded the library as follows:

> library(enaR)

3.1 Model Data

ENA is applied to a network model of energy–matter exchanges among system components. The
system is modeled as a set of n compartments or nodes that represent species, species-complexes
(i.e., trophic guilds or functional groups), or non-living components of the system in which energy–
matter is stored. Nodes are connected by L observed fluxes, termed directed edges or links. This
analysis requires an estimate of the energy–matter flowing from node i to j over a given period,
Fn×n = [fij ], i, j = 1, 2, . . . , n. These fluxes can be generated by any process such as feeding
(like a food web), excretion, and death. As ecosystems are thermodynamically open, there must
also be energy–matter inputs into the system z1×n = [zi], and output losses from the system
y1×n = [yi]. While the Patten School treats all outputs the same, the Ulanowicz School typically
partitions outputs into respiration r1×n = [ri] and export e1×n = [ei] to account for differences in
energetic quality. Note that yi = ri + ei, ∀i. Some analyses also require the amount of energy–
matter stored in each node (e.g., biomass), X1×n = [xi]. The final required information is a
categorization of each node as living or not, which is essential for algorithms from the Ulanowicz
School. For our implementation, we have created a logical vector Living1×n that indicates whether
the ith node is living (TRUE) or not (FALSE). Together, the model data M can be summarized
as M = {F, z, e, r,X,Living}.

Notice the row-to-column orientation of F. This is consistent with the Ulanowicz School of
network analysis, as well as the orientation commonly used in Social Network Analysis and used
in the statnet packages. However, this is the opposite orientation typically used in the Patten
School of analysis that conceptually builds from a system of differential equations and thus uses the
column-to-row orientation common in this area of mathematics. Even though the difference is only
a matrix transpose, this single difference may be the source of much confusion in the literature and
frustration on the part of users. We have selected to use row-to-column orientation for our primary
data structure, as it is the dominant form across network analytics as evidenced by it use in the
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Figure 1: A plot of the enaR function relationships. Edges point from a function that provides
information to the function that receives that information.

statnet packages. The package algorithms also return the results in the row-to-column orientation
by default; however, we have built in functionality with the functions get.orient and set.orient

that allows users to return output in the Patten School row-to-column orientation (see Section 6.10
for details).

3.2 Network Data Class

The enaR package stores the model data in the network class defined in the network package (see
Butts, 2008a, for details). Again, the primary network object components are:

• F = flow matrix oriented row-to-column

• z = inputs

• r = respiration

• e = exports

• y = respiration+exports

• X = biomass or storage values

• Living = logical vector indicating if the node is living (TRUE) or non-living (FALSE)

3.3 Building a Network Object

Users can assemble the necessary data elements described in Section 3.1 and then use the pack

function to create the network data object. Here is an example of doing this with hypothetical
data.
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> # generate the flow matrix

> flow.mat <- array(abs(rnorm(100,4,2))*sample(c(0,1),100,replace=TRUE),

+ dim=c(4,4))

> # name the nodes

> rownames(flow.mat) <- colnames(flow.mat) <- paste('node',(1:nrow(flow.mat)),sep='')
> # generate the inputs

> inputs <- runif(nrow(flow.mat),0,4)

> # generate the exports

> exports <- inputs

> # pack

> fake.model <- pack(flow=flow.mat,

+ input=inputs,

+ export=exports,

+ living=TRUE)

[1] "respiration" "storage"

> # model

> fake.model

Network attributes:

vertices = 4

directed = TRUE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

flow:

node1 node2 node3 node4

Min. :0.000 Min. :0.000 Min. :3.832 Min. :0.000

1st Qu.:0.000 1st Qu.:0.000 1st Qu.:5.064 1st Qu.:0.000

Median :0.000 Median :0.000 Median :5.517 Median :1.082

Mean :1.299 Mean :1.055 Mean :5.853 Mean :1.148

3rd Qu.:1.299 3rd Qu.:1.055 3rd Qu.:6.307 3rd Qu.:2.230

Max. :5.197 Max. :4.220 Max. :8.547 Max. :2.430

balanced = FALSE

total edges= 5

missing edges= 0

non-missing edges= 5

Vertex attribute names:

export input living output respiration storage vertex.names

Edge attribute names:

flow

Unfortunately, the attributes() function does not clearly identify the network data objects we
are using.
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> attributes(fake.model)

$names

[1] "mel" "gal" "val" "iel" "oel"

$class

[1] "network"

However, individual components can be extracted from the data object using the form specified
in the network package. For example, we can pull out node of vertex attributes as follows:

> fake.model%v%'output'

[1] NA NA NA NA

> fake.model%v%'input'

[1] 0.3957250 2.3494405 1.9223159 0.4488081

> fake.model%v%'living'

[1] TRUE TRUE TRUE TRUE

For convenience, we have defined the flow matrix as a network based characteristic and it can
be extracted as:

> fake.model%n%'flow'

node1 node2 node3 node4

node1 5.196959 4.220434 8.547066 2.164081

node2 0.000000 0.000000 3.831608 0.000000

node3 0.000000 0.000000 5.559729 0.000000

node4 0.000000 0.000000 5.474163 2.429738

There are times that it is useful to extract all of the ecosystem model data elements from the
network data object. This can be accomplished using the unpack function. The unpack output is
as follows:

> unpack(fake.model)

$F

node1 node2 node3 node4

node1 5.196959 4.220434 8.547066 2.164081

node2 0.000000 0.000000 3.831608 0.000000

node3 0.000000 0.000000 5.559729 0.000000

node4 0.000000 0.000000 5.474163 2.429738

$z

[1] 0.3957250 2.3494405 1.9223159 0.4488081
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$r

[1] 0 0 0 0

$e

[1] 0.3957250 2.3494405 1.9223159 0.4488081

$y

[1] NA NA NA NA

$X

[1] NA NA NA NA

$Living

[1] TRUE TRUE TRUE TRUE

Note that we did not specify the storage values. In these instances pack produces NA values.
Although the package is designed to help users navigate missing data issues be sure to check that
you are providing the appropriate input for a given function. For more information, see the help
file for the function in question.

3.4 Balancing for Steady-State

Many of the ENA functions assume that the network model is at steady-state (node inputs equal
node outputs). Thus, this package has functions for (1) checking to see if the assumption is met
and (2) automatically balancing the model so that input equal outputs.

To determine if the model is balanced and then balance it if necessary:

> ## --- Check to see if the model is balanced ---#

> ssCheck(fake.model)

[1] FALSE

> ## --- To BALANCE a model if needed --- #

> fake.model <- balance(fake.model,method="AVG2")

[1] AVG2

> ## --- To FORCE BALANCE a model if needed --- #

> fake.model <- force.balance(fake.model)

The automated balancing routines are based on those presented in Allesina and Bondavalli
(2003). These authors compare alternative balancing algorithms and further discuss the implica-
tions of using automated procedures. Caution is warranted when using these techniques, as they
indiscriminately alter the model flow rates.

4 Data Input: Reading Common Data File Formats

Several software packages exist in the literature for running ENA. For convenience, we have written
functions to read in a few of the more common data formats used by these software.
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SCOR

The read.scor function reads in data stored in the SCOR format specified by Ulanowicz and Kay
(1991) that is the input to the NETWRK4 programs. This function can be run as follows.

> scor.model <- readLines('http://people.uncw.edu/borretts/data/oyster.dat')
> m <- read.scor(scor.model,from.file=FALSE)

This constructs the network data object from the SCOR file that stores the ecosystem model
data for an oyster reef model (Dame and Patten, 1981). The individual model elements are

> unpack(m)

$F

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0 0.0000 0.0000 0.0000

Microbiota 0 0.0000 1.2060 1.2060

Meiofauna 0 0.0000 0.0000 0.6609

Deposit Feeders 0 0.0000 0.0000 0.0000

Predators 0 0.0000 0.0000 0.0000

Deposited Detritus 0 8.1721 7.2745 0.6431

Predators Deposited Detritus

Filter Feeders 0.5135 15.7910

Microbiota 0.0000 0.0000

Meiofauna 0.0000 4.2403

Deposit Feeders 0.1721 1.9076

Predators 0.0000 0.3262

Deposited Detritus 0.0000 0.0000

$z

[1] 41.47 0.00 0.00 0.00 0.00 0.00

$r

[1] 25.1650 5.7600 3.5794 0.4303 0.3594 6.1759

$e

[1] 0 0 0 0 0 0

$y

[1] 25.1650 5.7600 3.5794 0.4303 0.3594 6.1759

$X

[1] 2000.0000 2.4121 24.1210 16.2740 69.2370 1000.0000

$Living

[1] TRUE TRUE TRUE TRUE TRUE FALSE

This same data is stored as a network data object that is distributed with this package, which
can be accessed as:
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> data(oyster)

> m <- oyster

WAND

In part to make ENA more accessible to biologists, Allesina and Bondavalli (2004) recoded some
of Ulanowicz’s NETWRK4 algorithms into a Microsoft Excel based tool called WAND. For this
tool, the model data is stored as a separate Excel file with two worksheets. The first contains
many of the node attributes and the second contains the flow matrix. The read.wand function will
create an R network data object from a WAND model file. An example WAND file can be found
at http://people.uncw.edu/borretts/data/MDmar02_WAND.xls.

> m <- read.wand('./MDmar02_WAND.xls')

This code creates a network data object for enaR from the WAND formatted Mdloti ecosystem
model data (Scharler, 2012). This data is courtesy of U.M. Scharler.

ENAM

Another commonly used data format stores the necessary model data in a csv or Excel formatted
file. We include an example Excel file of the Mdloti estuary stored in this form (“MDMAR02.xlsx”,
courtesy of U. M. Scharler). This format has not been described technically in the literature nor
has it been named. We refer to it as ENAM as it is the ENA model data stored primarily as a
square matrix with several preliminary rows that include meta-data, the number of nodes, and
number of living nodes (similar to SCOR). The data format is generally similar in concept, if not
exact form, to the data system matrix used as the input to the NEA.m function (Fath and Borrett,
2006). However, the ENAM format includes information on whether nodes are living and partitions
output into respiration and exports.

Using an example data file, http://people.uncw.edu/borretts/data/MDMAR02.xlsx, this
data format can be read into the enaR package as:

> m <- read.enam('./MDMAR02.xlsx')

The current read.enam function assumes the data are stored on the first worksheet of an Excel
file. In the future, we expect to expand this function’s capabilities to read the data from a CSV
file.

NEA

For their Matlab function to perform network environ analysis (Patten School), Fath and Borrett
(2006) packaged the model flows, inputs, outputs, and storage values into what they called a system
matrix

S =

[
F ~z ~X
~y 0 0

]
(n+1)×(n+2)

. (1)

Flows in the system matrix are oriented from column to row.
The enaR function read.nea reads in data with this format stored as a comma separated value

file. The function write.nea() will write any network model to a CSV file with this format.
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While convenient, this data format does not enable inclusion of the full range of model infor-
mation included in the enaR network data object. This format does not partition outputs into
exports and respiration values, nor does it identify the node labels are their living status. This
missing information will prevent the use of some enaR functions.

Here is an example of using these functions:

> data(oyster)

> # write oyster reef model to a csv file

> write.nea(oyster, file.name="oyster.csv")

> # read in oyster reef model data from NEA.m formatted CSV file

> m <- read.nea("oyster.csv")

>

> # Again, this model object does NOT contain all

> # of the information in the "oyster" data object.

5 Network Visualization

The enaR package uses the network package plot tools. Here is one example of how to plot a
network model. The figure scaling may need to be adjusted depending on computer and devices.
Also note that the graph only shows internal system flows.

Figure 2 (left) is a very simple example of to plot a graph of the oyster reef model accomplished
with default settings.

> data(oyster) # load data

> m <- oyster

> set.seed(2) # set random seed to control plot

> plot(m) # plot network data object (uses plot.network)

We can use the excellent graphics capabilities of R to make fancier plot of the same data
(Fig. 2(right)).

> # set colors to use

> my.col=c("red","yellow",

+ rgb(204,204,153,maxColorValue=255),

+ "grey22")

> F=m%n%'flow' # extract flow information for later use.

> f=which(F!=0, arr.ind=T) # get indices of positive flows

> opar <- par(las=1,bg=my.col[4],xpd=TRUE,mai=c(1.02, 0.62, 0.82, 0.42))

> set.seed(2) # each time the plot is called, the

> # layout orientation changes. setting

> # the seed ensures a consistent

> # orientation each time the plot

> # function is called.

> plot(m,

+ vertex.cex=log(m%v%'storage'), # scale nodes with storage

+ label= m%v%'vertex.names', # add node labels

+ boxed.labels=FALSE,

+ label.cex=0.65,

10



Filter Feeders

Microbiota

Meiofauna

Deposit Feeders

Predators

Deposited Detritus

Figure 2: Simple (left) and fancy (right) plot of the Oyster network model (Dame and Patten 1981).

+ vertex.sides=45, # to make rounded

+ edge.lwd=log10(abs(F[f])), # scale arrows to flow magnitude

+ edge.col=my.col[3],

+ vertex.col=my.col[1],

+ label.col="white",

+ vertex.border = my.col[3],

+ vertex.lty = 1,

+ xlim=c(-4,1),ylim=c(-2,-2))

> rm(opar) # remove changes to the plotting parameters

6 Single Model Analysis

In practice, ENA is applied to a single model. Here, we walk through an example of applying
multiple ENA algorithms to the oyster reef model (Dame and Patten, 1981). The main ENA
algorithms encoded in enaR are summarized in Table 1.

Again, in this package results are reported in the row-to-column orientation by default – includ-
ing the algorithms from the Patten school. Please see Section 6.10 for how to change this default
if needed.

6.1 Structural Network Analysis

Structural network analysis is common to many types of network analysis. The structural analyses
applied here are based on those presented in NEA.m (Fath and Borrett, 2006) following the Patten
School. Output of the enaStructure function is summarized in Table 2
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Table 2: Resultant matrices and network statistics returned by the enaStructure function in enaR.

Label Description

Matrices
A n× n adjacency matrix

Network statistics
n number of nodes
L number of directed edges
C connectance (C = L/n2); the proportion of possible directed edges connected.
LD Link Density (L/n)
ppr estimated rate of pathway proliferation (Borrett and Patten, 2003)
lam1A dominant eigenvalue of A (lambda1(A)), which is the

asymptotic rate of pathway proliferation (Borrett et al., 2007)
mlam1A multiplicity of the dominant eigenvalue (number of times repeated)
rho damping ratio, an indicator of how quickly [aij ]

(m)/[aij ]
(m−1) goes to lam1(A) (Caswell, 2001, , p. 95)

R distance of lam1(A) from the bulk of the eigen spectrum (Farkas et al., 2001)
d difference between dominant eigenvalue and link density (expected value for random graph)
no.scc number of strongly connected components (SCC)
no.scc.big number of SCC with more than one node
pscc fraction of network nodes included in a big SCC

> St <- enaStructure(m)

> attributes(St)

$names

[1] "A" "ns"

> St$ns

n L C LD ppr lam1A mlam1A rho R

[1,] 6 12 0.3333333 2 2.147899 2.147899 1 2.147899 0.4655712

d no.scc no.scc.big pscc

[1,] 0.147899 2 1 0.8333333

The structural network statistics show that the oyster reef model has 6 nodes, a pathway
proliferation rate of 2.14, and that the model is comprised of two strongly connected components
but that only one has more than one node.

6.2 Flow Analysis

Flow analysis or throughflow analysis is one of the core ENA analyses for both the Ulanowicz and
Patten Schools (Fath and Borrett, 2006; Fath and Patten, 1999; Schramski et al., 2011). The enaR
implementation enaFlow mostly follows the NEA.m function, with small updates (e.g. calculating
the ratio of indirect-to-direct flows Borrett and Freeze, 2011; Borrett et al., 2011). Results returned
by enaFlow are summarized in Table 3.

Here, we extract the flow statistics and then isolate and remove the output-oriented direct flow
intensity matrix G matrix. Recall that ENA is partially derived from Input–Output analysis; the
input and output orientations provide different information about the system. We also show the
input-oriented integral flow matrix N′.
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Table 3: Matrices and network statistics returned by the enaFlow function in enaR.
enaR label Description

Matrices
T n× 1 vector of node throughflows (M L−2 or −3 T−1)
G output-oriented direct throughflow intensity matrix
GP input-oriented direct throughflow intensity matrix
N output-oriented integral throughflow intensity matrix
NP input-oriented integral throughflow intensity matrix

Network statistics
Input Total input boundary flow
TST Total System ThroughFLOW
TSTp Total System ThroughPUT
APL Average Path Length (Finn, 1976)
FCI Finn Cycling Index (Finn, 1980)
BFI Boundary Flow Intensity, Boundary/TST
DFI Direct Flow Intensity, Direct/TST
IFI Indirect Flow Intensity, Indirect/TST (Borrett et al., 2006)
ID.F Ratio of Indirect to Direct Flow Borrett and Freeze (2011); Borrett et al. (2011)
ID.F.I input oriented ratio of indirect to direct flow intensity (as in Fath and Borrett, 2006)
IF.F.O output oriented ratio of indirect to direct flow intensity (as in Fath and Borrett, 2006)
HMG.F.I input oriented network homogenization to direct flow intensity
HMG.F.O output oriented network homogenization to direct flow intensity
AMP.F.I input oriented network amplification
AMP.F.O output oriented network amplification
mode0.F Boundary Flow
mode1.F Internal First Passage Flow
mode2.F Cycled Flow
mode3.F Dissipative Equivalent to mode1.F
mode4.F Dissipative Equivalent to mode0.F

> F <- enaFlow(m)

> attributes(F)

$names

[1] "T" "G" "GP" "N" "NP" "ns"

> F$ns

Boundary TST TSTp APL FCI BFI DFI

[1,] 41.47 83.5833 125.0533 2.015512 0.1101686 0.4961517 0.1950689

IFI ID.F ID.F.I ID.F.O HMG.I HMG.O AMP.I AMP.O

[1,] 0.3087794 1.582925 1.716607 1.534181 2.051826 1.891638 3 1

mode0.F mode1.F mode2.F mode3.F mode4.F

[1,] 41.47 32.90504 9.208256 32.90504 41.47

> G <- F$G # output-oriented direct flow matrix

> rm(G)

> F$NP # input-oriented integral flow matrix

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 1 1.0000000 1.0000000 1.0000000
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Microbiota 0 1.1018630 0.2440716 0.6197856

Meiofauna 0 0.2971032 1.2971032 0.5604100

Deposit Feeders 0 0.1240688 0.1240688 1.1240688

Predators 0 0.0203426 0.0203426 0.0203426

Deposited Detritus 0 1.3885039 1.3885039 1.3885039

Predators Deposited Detritus

Filter Feeders 1.0000000 1.0000000

Microbiota 0.1555792 0.1018630

Meiofauna 0.1406747 0.2971032

Deposit Feeders 0.2821649 0.1240688

Predators 1.0051064 0.0203426

Deposited Detritus 0.3485436 1.3885039

Note: you can use the attach function to have access to the objects nested within an object.
Since some objects may conflict in name, it’s best to detach an object once it’s not in use.

> attach(F)

The following object is masked from package:base:

T

> G

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0 0.0000000 0.0000000 0.00000000

Microbiota 0 0.0000000 0.1475753 0.14757529

Meiofauna 0 0.0000000 0.0000000 0.07793173

Deposit Feeders 0 0.0000000 0.0000000 0.00000000

Predators 0 0.0000000 0.0000000 0.00000000

Deposited Detritus 0 0.3670363 0.3267221 0.02888377

Predators Deposited Detritus

Filter Feeders 0.01238245 0.3807813

Microbiota 0.00000000 0.0000000

Meiofauna 0.00000000 0.5000059

Deposit Feeders 0.06856574 0.7600000

Predators 0.00000000 0.4757876

Deposited Detritus 0.00000000 0.0000000

> detach(F)

Matrix powers – raising a matrix to a power is not a native operation in R. Thus, the enaR
package includes a function mExp to facilitate this matrix operation commonly used in ENA.

> mExp(F$G,2)

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0 0.1397606 0.12440966 0.01099840

Microbiota 0 0.0000000 0.00000000 0.01150080
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Table 4: Graph-level network statistics returned by the enaR enaAscendency function (see Ulanow-
icz, 1986, 1997, for interpretations).

Label Description

AMI average mutual information (bits)
ASC ascendency, AMI × TSTp
OH overhead
CAP capacity
ASC.CAP ascendency-to-capacity ratio (dimensionless)
OH.CAP overhead-to-capacity ratio (dimensionless)

Meiofauna 0 0.1835203 0.16336297 0.01444205

Deposit Feeders 0 0.2789476 0.24830879 0.02195166

Predators 0 0.1746313 0.15545033 0.01374254

Deposited Detritus 0 0.0000000 0.05416549 0.07962750

Predators Deposited Detritus

Filter Feeders 0.000000000 0.005891414

Microbiota 0.010118608 0.185945731

Meiofauna 0.005343446 0.059228112

Deposit Feeders 0.000000000 0.032622730

Predators 0.000000000 0.000000000

Deposited Detritus 0.001980437 0.185314635

6.3 Ascendency

A key contribution of the Ulanowicz School to ENA is Ascendency concept and the development of
several information based indices (Ulanowicz, 1986, 1997). This analysis is based on all of the flows
in the system and does not assume the modeled system is at steady-state. The enaAscendency

function returns several of these information based measures (Table 4). This is run as follows:

> enaAscendency(oyster)

AMI ASC OH CAP ASC.CAP OH.CAP

[1,] 1.330211 166.3473 211.0979 377.4452 0.4407191 0.5592809

6.4 Storage Analysis

Storage ENA was developed in the Patten School. It is similar to flow ENA, but divides the flows
by storage (e.g., biomass) instead of throughflow. See Fath and Patten (1999) and Schramski et al.
(2011) for an overview of this method. Output of this function is summarized in Table 5, and this
is an example of its implementation.

> S <- enaStorage(m)

> attributes(S)

$names

[1] "X" "C" "P" "S" "Q" "CP" "PP" "SP" "QP" "dt" "ns"
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Table 5: Matrices and graph-level network statistics returned by the enaR enaStorage function.

Label Description

Matrices
X n× 1 vector of storage values [M L−2]
C n× n donor-storage normalized output-oriented direct flow intensity matrix (T−1)
P n× n storage-normalized output-oriented direct flow matrix (dimensionless)
S n× n donor-storage normalized output-oriented integral flow intensity matrix (T−1)
Q n× n output-oriented integral flow intensity matrix (dimensionless)
CP n× n recipient-storage normalized input-oriented direct flow intensity matrix (T−1)
PP n× n storage-normalized input-oriented direct flow matrix (dimensionless)
SP n× n donor-storage normalized input-oriented integral flow intensity matrix (T−1)
QP n× n input-oriented integral flow intensity matrix (dimensionless)
dt discrete time step

Network statistics
TSS Total System Storage
CIS Storage Cycling Index
BSI Boundary Storage Intensity
DSI Direct Storage Intensity
ISI Indirect Storage Intensity
ID.S Ratio of Indirect-to-Direct storage (realized)
ID.S.I storage-based input-oriented indirect-to-direct ratio (as in Fath and Borrett, 2006)
ID.S.O storage-based input-oriented indirect-to-direct ratio (as in Fath and Borrett, 2006)
HMG.S.I input-oriented storage network homogenization
HMG.S.O output-oriented storage network homogenization
AMP.S.I input-oriented storage network amplification
AMP.S.O output-oriented storage network amplification
mode0.S Storage from Boundary Flow
mode1.S Storage from Internal First Passage Flow
mode2.S Storage from Cycled Flow
mode3.S Dissipative Equivalent to mode1.S
mode4.S Dissipative Equivalent to mode0.S

> S$ns

TSS CIS BSI DSI ISI ID.S

[1,] 3112.044 0.9940252 0.003331412 0.003320932 0.9933477 299.1171

ID.S.I ID.S.O HMG.S.O HMG.S.I NAS NASP mode0.S mode1.S

[1,] 454.227 294.1527 1.115985 1.38251 20 21 10.3675 8.226261

mode2.S mode3.S mode4.S

[1,] 3093.45 8.226261 10.3675

6.5 Utility Analysis

Utility analysis describes the relationship between node pairs in the ecosystem model when consid-
ering both direct and indirect interactions. It developed in the Patten School (Fath and Patten,
1999; Patten, 1991) and is similar to yet distinct from the Ulanowicz School mixed trophic im-
pacts analysis (Ulanowicz and Puccia, 1990). Utility analysis can be conducted from both the flow
and storage perspectives, so the “type” argument needs to be set to suit the users needs. This is
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Table 6: Matrices and graph-level network statistics returned by the enaR Utility function.

Label Description

Matrices

Dn×n throughflow-normalized direct utility intensity (dimensionless)
Un×n integral flow utility (dimensionless)
Yn×n integral flow utility scaled by original throughflow (M L−2 or −3 T−1)
DSn×n storage-normalized direct utility intensity (dimensionless)
USn×n integral storage utility (dimensionless)
YSn×n integral storage utility scaled by original throughflow (M L−2 or −3 T−1)

Network Statistics

lam1D dominant eigenvalue of D
synergism.F benefit-cost ratio or network synergism (flow)
mutualism.F positive to negative interaction ratio or network mutualism (flow)
lam1DS dominant eigenvalue of DS
synergism.S benefit-cost ratio or network synergism (storage)
mutualism.S positive to negative interaction ratio or network mutualism (storage)

again implemented as in NEA.m. Table 6 summarizes the function output for the flow and storage
versions. These analyses are executed as:

> UF <- enaUtility(m,eigen.check=TRUE,type="flow")

> US <- enaUtility(m,eigen.check=TRUE,type="storage")

> attributes(UF)

$names

[1] "D" "U" "Y" "ns"

Please note the function argument “eigen.check=TRUE”. For this analysis to work, the power
series of the direct utility matrices must converge, which is only true if the dominant eigenvalue
of the direct utility matrix is less than 1. The function default prevents the analysis from being
performed if this condition is not met. Users that wish to perform the analysis anyway can set
“eigen.check=FALSE”. Care should be used when doing this, as the meaning of the underlying
mathematics is uncertain.

6.6 Environ Analysis

Environ Analysis finds the n unit input and output environs for the model (Fath and Patten, 1999;
Patten, 1978). These unit environs are returned by the environ function as in NEA.m. They
indicate the flow activity in each subnetwork generated by pulling a unit out of a node (input
environs) or pushing a unit into a node (output environ). These unit environs can be converted
into “realized” environs by multiplying each by the relevant observed input or output (Borrett and
Freeze, 2011).

> E <- enaEnviron(m)

> attributes(E)

$names

[1] "input" "output"
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> E$output[1]

$`Filter Feeders`
Filter Feeders Microbiota Meiofauna

Filter Feeders -1 0.0000000 0.00000000

Microbiota 0 -0.1970605 0.02908126

Meiofauna 0 0.0000000 -0.20449723

Deposit Feeders 0 0.0000000 0.00000000

Predators 0 0.0000000 0.00000000

Deposited Detritus 0 0.1970605 0.17541596

z 1 0.0000000 0.00000000

Deposit Feeders Predators Deposited Detritus

Filter Feeders 0.00000000 0.012382445 0.380781288

Microbiota 0.02908126 0.000000000 0.000000000

Meiofauna 0.01593682 0.000000000 0.102249819

Deposit Feeders -0.06052568 0.004149988 0.045999518

Predators 0.00000000 -0.016532433 0.007865927

Deposited Detritus 0.01550760 0.000000000 -0.536896552

z 0.00000000 0.000000000 0.000000000

y

Filter Feeders 0.606836267

Microbiota 0.138897999

Meiofauna 0.086310586

Deposit Feeders 0.010376176

Predators 0.008666506

Deposited Detritus 0.148912467

z 0.000000000

The TET function returns vectors of the unit and realized input and output total environ through-
flow. The realized total environ throughflow is an environ based partition of the total system
throughflow (TST).

> tet <- TET(m)

> show(tet)

$realized.input

[1] 25.165000 22.647638 14.582798 2.028052 1.053786 18.107007

$realized.output

[1] 83.5833 0.0000 0.0000 0.0000 0.0000 0.0000

$unit.input

[1] 1.000000 3.931882 4.074090 4.713111 2.932069 2.931882

$unit.output

[1] 2.015512 1.836089 2.540670 3.124836 2.234317 2.594261

The TES functions returns the both the realized and unit total environ storage for the input and
output environs. Again, the realized TES is a partition of the total system storage (TSS).
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> tes <- TES(m)

> show(tes)

$realized.input

Filter Feeders Microbiota Meiofauna

2000.00000 2.41209 24.12171

Deposit Feeders Predators Deposited Detritus

16.27440 69.23803 1000.03118

$realized.output

[1] 3112.044 0.000 0.000 0.000 0.000 0.000

$unit.input

Filter Feeders Microbiota Meiofauna

289.3658066 0.6561948 7.3735209

Deposit Feeders Predators Deposited Detritus

11.5308112 109.7205293 265.1036470

$unit.output

Filter Feeders Microbiota Meiofauna

75.04326 16.06273 41.03146

Deposit Feeders Predators Deposited Detritus

65.81279 132.44451 66.11575

6.7 Control Analysis

Control analysis is implemented as in the original NEA.m function. Recent updates to control
analysis (e.g., Schramski et al., 2006, 2007) still need to be included.

> C <- enaControl(m)

> attributes(C)

$names

[1] "CN" "CQ"

6.8 Mixed Trophic Impacts

Mixed Trophic Impacts is a popular analysis from the Ulanowicz School of ENA (Ulanowicz and
Puccia, 1990). The enaMTI function generates comparable results to the calculations in Ulanowicz
and Puccia (1990). These are implemented as follows; Table 7 summarizes the function output.

> #conduct mixed trophic impacts

> mti <- enaMTI(oyster)

> attributes(mti)

$names

[1] "G" "FP" "Q" "M"

> #shows the total impact matrix

> mti$M
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Table 7: Matricies returned by the enaR enaMTI function, which are based on (Ulanowicz and
Puccia, 1990).

Label Description

Matrices

Gn×n positive effect of prey on its predator
Fn×n negative impact of the predator on its prey
Qn×n direct net impact of one node on another
Mn×n total impact of i on j (direct and indirect)

[1] NA

In this case, the power series of the direct trophic impacts matrix does not converge (dominant
eigenvalue is greater than one). Thus, the function returns the mti$M = NA. Like with Utility anal-
ysis, however, we can use the eigen.check argument to do the calculation despite the mathematical
problem.

> mti <- enaMTI(oyster,eigen.check=FALSE)

> attributes(mti)

$names

[1] "G" "FP" "Q" "M"

> mti$M # shows the total impact matrix

Filter Feeders Microbiota Meiofauna

Filter Feeders -0.0250635283 0.16956382 0.431493557

Microbiota -0.0015848556 -0.30675078 -0.182458391

Meiofauna -0.0001241781 -0.47413204 -0.070959618

Deposit Feeders -0.0069255188 -0.26769125 -0.007062628

Predators -0.0301817448 0.02000515 -0.004028911

Deposited Detritus -0.0034657973 0.21795628 0.612654910

Deposit Feeders Predators Deposited Detritus

Filter Feeders 0.26144106 0.795834137 0.516016759

Microbiota 0.20520368 0.050323410 -0.295378609

Meiofauna 0.01607831 0.003942987 -0.001592286

Deposit Feeders -0.10329881 0.219903765 0.177109591

Predators -0.07586335 -0.041648786 -0.019939324

Deposited Detritus 0.44874394 0.110048344 -0.251366300

6.9 Other Analyses

There are a number of additional tools in the package. Here we highlight a couple of them.
A quick way to get a list of all of the global network statistics reported in Structure, Flow,

Ascendency, Storage, and Utility analysis is to use the get.ns function.

> ns <- get.ns(m)

> str(ns) # examine the structure of ns
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'data.frame': 1 obs. of 62 variables:

$ n : num 6

$ L : num 12

$ C : num 0.333

$ LD : num 2

$ ppr : num 2.15

$ lam1A : num 2.15

$ mlam1A : num 1

$ rho : num 2.15

$ R : num 0.466

$ d : num 0.148

$ no.scc : num 2

$ no.scc.big : num 1

$ pscc : num 0.833

$ Boundary : num 41.5

$ TST : num 83.6

$ TSTp : num 125

$ APL : num 2.02

$ FCI : num 0.11

$ BFI : num 0.496

$ DFI : num 0.195

$ IFI : num 0.309

$ ID.F : num 1.58

$ ID.F.I : num 1.72

$ ID.F.O : num 1.53

$ HMG.I : num 2.05

$ HMG.O : num 1.89

$ AMP.I : num 3

$ AMP.O : num 1

$ mode0.F : num 41.5

$ mode1.F : num 32.9

$ mode2.F : num 9.21

$ mode3.F : num 32.9

$ mode4.F : num 41.5

$ AMI : num 1.33

$ ASC : num 166

$ OH : num 211

$ CAP : num 377

$ ASC.CAP : num 0.441

$ OH.CAP : num 0.559

$ TSS : num 3112

$ CIS : num 0.994

$ BSI : num 0.00333

$ DSI : num 0.00332

$ ISI : num 0.993

$ ID.S : num 299

$ ID.S.I : num 454

$ ID.S.O : num 294
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$ HMG.S.O : num 1.12

$ HMG.S.I : num 1.38

$ NAS : num 20

$ NASP : num 21

$ mode0.S : num 10.4

$ mode1.S : num 8.23

$ mode2.S : num 3093

$ mode3.S : num 8.23

$ mode4.S : num 10.4

$ lam1D : num 0.899

$ synergism.F: num 4.92

$ mutualism.F: num 2.27

$ lam1DS : num 0.302

$ synergism.S: num 13.1

$ mutualism.S: num 2.6

It is also possible to instantly return all of the main ENA output with enaAll:

> oyster.ena <- enaAll(oyster)

> names(oyster.ena)

[1] "ascendency" "control" "environ" "flow" "mti"

[6] "storage" "structure" "utility"

Centrality analysis is a large topic in network science. Fann and Borrett (2012) introduced an
environ based centrality and contrasted it with the more commonly used eigenvector centrality.
Both of these centralities can be calculated in enaR as follows:

> F <- enaFlow(oyster)

> ec <- environCentrality(F$N)

> show(ec)

$ECin

Filter Feeders Microbiota Meiofauna

0.1404961 0.1279889 0.1771034

Deposit Feeders Predators Deposited Detritus

0.2178241 0.1557484 0.1808391

$ECout

Filter Feeders Microbiota Meiofauna

0.06970737 0.19108709 0.20595483

Deposit Feeders Predators Deposited Detritus

0.12350944 0.07903903 0.33070223

$AEC

Filter Feeders Microbiota Meiofauna

0.1051017 0.1595380 0.1915291

Deposit Feeders Predators Deposited Detritus

0.1706668 0.1173937 0.2557707
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Figure 3: Bar plot of the Oyster Reef model Average Environ Centralities.

> eigenCentrality(F$G)

$EVCin

[1] 0.1207568 0.1093625 0.1876329 0.2518905 0.1470501 0.1833072

$EVCout

[1] 0.00000000 0.23325048 0.26566843 0.11130122 0.01286707 0.37691280

$AEVC

[1] 0.06037842 0.17130647 0.22665067 0.18159586 0.07995858 0.28011000

These centrality values have been normalized to sum to one.
Figure 4 shows one way to visualize the Average Environ Centralities.

> # set plotting parameters

> opar <- par(las=1,mar=c(7,5,1,1),xpd=TRUE,bg="white")

> # find centrality order

> o <- order(ec$AEC,decreasing=TRUE)

> bp <- barplot(ec$AEC[o], # create barplot

+ names.arg=NA,

+ ylab="Average Environ Centrality",

+ col="black",border=NA)

> text(bp,-0.008, # add labels

+ labels=names(ec$AEC)[o],

+ srt=35,adj=1,cex=1)

> rm(opar) # remove the plotting parameters

6.10 Output Orientation

To facilitate package use by the existing ENA community, some of which use the column-to-row
orientation (e.g. the Patten School), we have created orientation functions that enable the user to
set the expected output orientation for functions written in a particular “school” of analysis. Thus,
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functions from either school will receive network models with the standard row-to-column, but will
return output with flow matrices oriented in the column-to-row orientation when appropriate (i.e.
Patten school functions) and return them in that same orientation.

Here is an example of how to use the model orientation functions to re-orient the output from
enaFlow:

> ###Check the current orientation

> get.orient()

[1] "rc"

> ###enaFlow output in row-column

> flow.rc <- enaFlow(oyster)$G

> ###Set the global orientation to school

> set.orient('school')
> ###Check that it worked

> get.orient()

[1] "school"

> ###enaFlow output in column-row

> flow.cr <- enaFlow(oyster)$G

> ###Check. Outputs should be transposed from each other.

> all(flow.rc == flow.cr)

[1] FALSE

> all(flow.rc == t(flow.cr))

[1] TRUE

> ###Now change back to the default orientation ('rc')
> set.orient('rc')
>

7 Model Library

The enaR package includes a library of 100 empirically based ecosystem models. There are two
general classes of ecosystem models. First, there are 58 of the models are trophically-based models
with food webs at their core (Tables 8). Second, there are 42 models are focused on biogeochemical
cycling in ecosystems (Table 9). Christian et al. (1996), Baird et al. (2008), and Borrett et al.
(2010) have previously suggested this model class distinction. In summary, these models were
originally published for a number of different types of ecosystems, though predominantly aquatic,
by a number of author teams. Models in the library range in size from 4 nodes to 125 nodes with
connectance values ranging from 7% to 45%.

This collection of models overlaps with other data sets. For example, twenty-seven of the
models (47%) are included in the set of models compiled and distributed by Dr. Ulanowicz
(http://www.cbl.umces.edu/ ulan/ntwk/network.html). All 50 of the models analyzed by Bor-
rett and Salas (2010) and Salas and Borrett (2011) and the 45 models analyzed in Borrett (2013)
are included in this model library.
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The trophic models are grouped as the troModels object and the biogeochemically-based models
are available as the bgcModels object. Both data objects return a list of the model network objects.
To use these models simply use the R base data function. This will load the models into the working
memory as a named list of network objects:

> ### Import the model sets

> data(bgcModels)

> data(troModels)

> ### Check the first few model names

> head(names(bgcModels))

[1] "Hubbard Brook (Ca)(Waide)" "Hardwood Forest, NH (Ca)"

[3] "Duglas Fir Forest, WA (Ca)" "Duglas Fir Forest, WA (K)"

[5] "Puerto Rican Rain Forest (Ca)" "Puerto Rican Rain Forest (K)"

> head(names(troModels))

[1] "Marine Coprophagy (oyster)" "Lake Findley "

[3] "Mirror Lake" "Lake Wingra"

[5] "Marion Lake" "Cone Springs"

> ### Isolate a single model

> x <- troModels[[1]]

> x <- troModels$"Marine Coprophagy (oyster)"

> ### Check out the model

> summary(x)

Network attributes:

vertices = 4

directed = TRUE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

flow:

SHRIMP BENTHIC ORGANISMS SHRIMP FECES & BACTERIA

Min. :0 Min. : 0.00 Min. : 0.000

1st Qu.:0 1st Qu.: 0.00 1st Qu.: 0.000

Median :0 Median : 7.65 Median : 0.000

Mean :0 Mean :17.05 Mean : 5.475

3rd Qu.:0 3rd Qu.:24.70 3rd Qu.: 5.475

Max. :0 Max. :52.90 Max. :21.900

BENTHIC FECES & BACTERIA

Min. : 0.0

1st Qu.: 0.0

Median : 0.0

Mean :19.9

3rd Qu.:19.9

Max. :79.6
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balanced = TRUE

total edges = 4

missing edges = 0

non-missing edges = 4

density = 0.3333333

Vertex attributes:

export:

logical valued attribute

attribute summary:

Mode NA's
logical 4

input:

numeric valued attribute

attribute summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 0.00 62.05 94.90 157.00 255.50

living:

logical valued attribute

attribute summary:

Mode FALSE TRUE NA's
logical 2 2 0

output:

numeric valued attribute

attribute summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.60 21.67 64.45 94.90 137.70 244.10

respiration:

numeric valued attribute

attribute summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.60 21.67 64.45 94.90 137.70 244.10

storage:

numeric valued attribute

attribute summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

vertex.names:

character valued attribute

4 valid vertex names

Edge attributes:
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flow:

numeric valued attribute

attribute summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 0 0 0 0

Network adjacency matrix:

SHRIMP BENTHIC ORGANISMS

SHRIMP 0 0

BENTHIC ORGANISMS 0 0

SHRIMP FECES & BACTERIA 0 1

BENTHIC FECES & BACTERIA 0 1

SHRIMP FECES & BACTERIA

SHRIMP 1

BENTHIC ORGANISMS 0

SHRIMP FECES & BACTERIA 0

BENTHIC FECES & BACTERIA 0

BENTHIC FECES & BACTERIA

SHRIMP 0

BENTHIC ORGANISMS 1

SHRIMP FECES & BACTERIA 0

BENTHIC FECES & BACTERIA 0

8 Multi-Model Analyses (Batch Processing)

While many investigators analyze single models, much of ENA is used to compare ecosystem models
(e.g., Baird et al., 1991, 1995; Christian and Thomas, 2003; Whipple et al., 2007). Investigators have
also analyzed large set of models to determine the generality of hypothesized ecosystem properties
(e.g., Borrett and Salas, 2010; Christensen, 1995; Salas and Borrett, 2011). For both of these
applications, investigators need to analyze multiple models. One advantage of the enaR R package
is that it simplifies this batch processing. Here we illustrate how to batch analyze a selection of
models.

Our first step is to read in the model data for a set of trophic models:

> data(troModels)

Now that we have the raw data loaded, we can start to manipulate it. The first step is to
balance the models and then we can run the flow analysis. We are using the lapply function to
apply the analysis across the list of models stored in model.list.

> # balance models as necessary

> m.list <- lapply(troModels,balance)

[1] BALANCED

[1] BALANCED

[1] BALANCED
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[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] AVG2

[1] AVG2

[1] BALANCED

[1] AVG2

[1] AVG2

[1] BALANCED

[1] AVG2

[1] BALANCED

[1] AVG2

[1] AVG2

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] AVG2

[1] AVG2

[1] AVG2

[1] AVG2

[1] BALANCED

[1] AVG2

[1] AVG2

[1] BALANCED

[1] AVG2

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] AVG2

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] AVG2

[1] AVG2
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[1] AVG2

[1] AVG2

[1] AVG2

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

> # if balancing fails, you can use force.balance

> # to repeatedly apply the balancing procedure

> unlist(lapply(m.list,ssCheck))

Marine Coprophagy (oyster)

TRUE

Lake Findley

TRUE

Mirror Lake

TRUE

Lake Wingra

TRUE

Marion Lake

TRUE

Cone Springs

TRUE

Silver Springs

TRUE

English Channel

TRUE

Oyster Reef

TRUE

Baie de Somme

TRUE

Bothnian Bay

TRUE

Bothnian Sea

TRUE

Ythan Estuary

TRUE

Sundarban Mangrove (virgin)

TRUE

Sundarban Mangrove (reclaimed)

TRUE

Baltic Sea

TRUE

Ems Estuary

TRUE

Swartkops Estuary 15

TRUE
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Southern Benguela Upwelling

TRUE

Peruvian Upwelling

TRUE

Crystal River (control)

TRUE

Crystal River (thermal)

TRUE

Charca de Maspalomas Lagoon

TRUE

Northern Benguela Upwelling

TRUE

Swartkops Estuary

TRUE

Sunday Estuary

TRUE

Kromme Estuary

TRUE

Okefenokee Swamp

TRUE

Neuse Estuary (early summer 1997)

TRUE

Neuse Estuary (late summer 1997)

TRUE

Neuse Estuary (early summer 1998)

TRUE

Neuse Estuary (late summer 1998)

TRUE

Gulf of Maine

TRUE

Georges Bank

TRUE

Middle Atlantic Bight

TRUE

Narragansett Bay

TRUE

Southern New England Bight

TRUE

Chesapeake Bay

TRUE

Mondego Estuary (Zostera sp. Meadows)

TRUE

St. Marks Seagrass, site 1 (Jan.)

TRUE

St. Marks Seagrass, site 1 (Feb.)

TRUE

St. Marks Seagrass, site 2 (Jan.)

TRUE
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St. Marks Seagrass, site 2 (Feb.)

TRUE

St. Marks Seagrass, site 3 (Jan.)

TRUE

St. Marks Seagrass, site 4 (Feb.)

TRUE

Sylt-R{\\o}m{\\o} Bight

TRUE

Graminoids (wet)

TRUE

Graminoids (dry)

TRUE

Cypress (wet)

TRUE

Cypress (dry)

TRUE

Lake Oneida (pre-ZM)

TRUE

Lake Oneida (post-ZM)

TRUE

Bay of Quinte (pre-ZM)

TRUE

Bay of Quinte (post-ZM)

TRUE

Mangroves (wet)

TRUE

Mangroves (dry)

TRUE

Florida Bay (wet)

TRUE

Florida Bay (dry)

TRUE

> m.list <- lapply(m.list,force.balance)

> ##Check that all the models are balanced

> all(unlist(lapply(m.list,ssCheck)))

[1] TRUE

> # Example Flow Analysis

> F.list <- lapply(m.list, enaFlow)

> # the full results of the flow analysis is now stored in the elements

> # of the F.list. To get the results for just the first model...

> F.list[[1]]

$T

SHRIMP BENTHIC ORGANISMS

124.1 323.7

SHRIMP FECES & BACTERIA BENTHIC FECES & BACTERIA
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21.9 79.6

$G

SHRIMP BENTHIC ORGANISMS

SHRIMP 0 0.0000000

BENTHIC ORGANISMS 0 0.0000000

SHRIMP FECES & BACTERIA 0 0.6986301

BENTHIC FECES & BACTERIA 0 0.6645729

SHRIMP FECES & BACTERIA

SHRIMP 0.1764706

BENTHIC ORGANISMS 0.0000000

SHRIMP FECES & BACTERIA 0.0000000

BENTHIC FECES & BACTERIA 0.0000000

BENTHIC FECES & BACTERIA

SHRIMP 0.0000000

BENTHIC ORGANISMS 0.2459067

SHRIMP FECES & BACTERIA 0.0000000

BENTHIC FECES & BACTERIA 0.0000000

$GP

SHRIMP BENTHIC ORGANISMS

SHRIMP 0 0.00000000

BENTHIC ORGANISMS 0 0.00000000

SHRIMP FECES & BACTERIA 0 0.04726599

BENTHIC FECES & BACTERIA 0 0.16342292

SHRIMP FECES & BACTERIA

SHRIMP 1

BENTHIC ORGANISMS 0

SHRIMP FECES & BACTERIA 0

BENTHIC FECES & BACTERIA 0

BENTHIC FECES & BACTERIA

SHRIMP 0

BENTHIC ORGANISMS 1

SHRIMP FECES & BACTERIA 0

BENTHIC FECES & BACTERIA 0

$N

SHRIMP BENTHIC ORGANISMS

SHRIMP 1 0.1473716

BENTHIC ORGANISMS 0 1.1953471

SHRIMP FECES & BACTERIA 0 0.8351055

BENTHIC FECES & BACTERIA 0 0.7943953

SHRIMP FECES & BACTERIA

SHRIMP 0.1764706

BENTHIC ORGANISMS 0.0000000

SHRIMP FECES & BACTERIA 1.0000000

BENTHIC FECES & BACTERIA 0.0000000

BENTHIC FECES & BACTERIA
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SHRIMP 0.03623966

BENTHIC ORGANISMS 0.29394387

SHRIMP FECES & BACTERIA 0.20535805

BENTHIC FECES & BACTERIA 1.19534712

$NP

SHRIMP BENTHIC ORGANISMS

SHRIMP 1 0.05649926

BENTHIC ORGANISMS 0 1.19534712

SHRIMP FECES & BACTERIA 0 0.05649926

BENTHIC FECES & BACTERIA 0 0.19534712

SHRIMP FECES & BACTERIA

SHRIMP 1

BENTHIC ORGANISMS 0

SHRIMP FECES & BACTERIA 1

BENTHIC FECES & BACTERIA 0

BENTHIC FECES & BACTERIA

SHRIMP 0.05649926

BENTHIC ORGANISMS 1.19534712

SHRIMP FECES & BACTERIA 0.05649926

BENTHIC FECES & BACTERIA 1.19534712

$ns

Boundary TST TSTp APL FCI BFI DFI

[1,] 379.6 549.3 928.9 1.44705 0.1199863 0.6910614 0.1542493

IFI ID.F ID.F.I ID.F.O HMG.I HMG.O AMP.I

[1,] 0.1546893 1.002852 0.3603839 0.6126851 2.014161 1.891504 1

AMP.O mode0.F mode1.F mode2.F mode3.F mode4.F

[1,] 0 379.6 103.7915 65.90846 103.7915 379.6

We can use the same technique to extract specific information, like just the ratio of Indirect-to-
Direct flow for each model.

> # Example of extracting just specific information - Indirect Effects Ratio

> IDs <- unlist(lapply(m.list, function(x) enaFlow(x)$ns[8]))

> #Look at the first few ID's
> head(IDs)

Marine Coprophagy (oyster) Lake Findley

0.1546893 0.3669420

Mirror Lake Lake Wingra

0.4334588 0.4452123

Marion Lake Cone Springs

0.4391692 0.3105362

We can also collect the set of output-oriented integral flow matrices.

> # Here is a list containing only the output-oriented integral flow matrices

> N.list <- lapply(m.list,function(x) enaFlow(x)$N)
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We can also apply the get.ns function to extract all of the network statistics for each model.
We then use the do.call function to reshape the network statistics into a single data frame.

> # Collecting and combining all network statistics

> ns.list <- lapply(m.list,get.ns) # returns as list

> ns <- do.call(rbind,ns.list) # ns as a data.frame

> # Let's take a quick look at some of the output

> colnames(ns) # return network statistic names.

[1] "n" "L" "C" "LD"

[5] "ppr" "lam1A" "mlam1A" "rho"

[9] "R" "d" "no.scc" "no.scc.big"

[13] "pscc" "Boundary" "TST" "TSTp"

[17] "APL" "FCI" "BFI" "DFI"

[21] "IFI" "ID.F" "ID.F.I" "ID.F.O"

[25] "HMG.I" "HMG.O" "AMP.I" "AMP.O"

[29] "mode0.F" "mode1.F" "mode2.F" "mode3.F"

[33] "mode4.F" "AMI" "ASC" "OH"

[37] "CAP" "ASC.CAP" "OH.CAP" "TSS"

[41] "CIS" "BSI" "DSI" "ISI"

[45] "ID.S" "ID.S.I" "ID.S.O" "HMG.S.O"

[49] "HMG.S.I" "NAS" "NASP" "mode0.S"

[53] "mode1.S" "mode2.S" "mode3.S" "mode4.S"

[57] "lam1D" "synergism.F" "mutualism.F" "lam1DS"

[61] "synergism.S" "mutualism.S"

> dim(ns) # show dimensions of ns matrix

[1] 58 62

> ns[1:5,1:5] # show selected results

n L C LD ppr

Marine Coprophagy (oyster) 4 4 0.250 1.0 1.000000

Lake Findley 4 6 0.375 1.5 1.004975

Mirror Lake 5 9 0.360 1.8 1.324718

Lake Wingra 5 10 0.400 2.0 2.000000

Marion Lake 5 9 0.360 1.8 1.324718

Given this data frame of network statistics, we can construct interesting plots for further anal-
ysis. Here we focus on results of the St. Marks Seagrass ecosystem (Baird et al., 1998).

> opar <- par(las=1,mar=c(9,7,2,1),xpd=TRUE,mfrow=c(1,2),oma=c(1,1,0,0))

> x=dim(ns)[1] # number of models

> m.select <- 40:45

> bp=barplot(ns$ID.F[m.select],ylab="Indirect-to-Direct Flow Ratio (I/D, Realized)",

+ col="darkgreen",border=NA,ylim=c(0,2))

> text(bp,-0.05, # add labels

+ labels=rownames(ns)[m.select],
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Figure 4: Ratio of Indirect-to-Direct Flow for six ecosystem models (left) and relationship between
the Finn Cycling Index and the ratio of Indirect-to-Direct flow in the 56 trophic models.

+ srt=45,adj=1,cex=0.85)

> opar <- par(xpd=FALSE)

> abline(h=1,col="orange",lwd=2)

> #

> plot(ns$FCI,ns$ID.F,pch=20,col="blue",cex=2,

+ ylab="Indirect-to-Direct Flow Ratio (I/D, Realized)",

+ xlab="Finn Cycling Index (FCI)",

+ xlim=c(0,0.8),ylim=c(0,8))

> #

> rm(opar) # remove the plotting parameters

9 Connecting to Other Useful Packages

Another advantage of building the enaR package in R is that it lets ecologists take advantage
of other types of network analysis and statistical tools that already exist in R. We highlight two
examples here.

9.1 sna: Social Network Analysis

The sna package for Social Network Analysis is bundled in the statnet package and uses the same
network data object defined in network that we selected to use for enaR. Thus, the design decision
to use the network data object gives users direct access to sna tools.

Multiple measures of network centrality have been proposed, and the sna package provides a
way of calculating several. Thus, ecologists can now use the sna algorithms to determine different
types of centrality for their models.

> betweenness(oyster)

[1] 0.0 0.0 0.5 3.5 0.0 9.0

> closeness(oyster)
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[1] 0.625 0.000 0.000 0.000 0.000 0.000

The sna package introduced new graphical capabilities as well. For example, it will create a
target diagram of centralities.

> m <- troModels[[38]]

> b <- betweenness(m) # calculate betweenness centrality

> nms <- m%v%'vertex.names' # get vertex names

> show(nms)

[1] "Phytoplankton" "Bacteria in Suspended POC"

[3] "Bacteria in Sediment POC" "Benthic Diatoms"

[5] "Free Bacteria" "Heterotrophic Microflagelates"

[7] "Ciliates" "Zooplankton"

[9] "Ctenophores" "Sea Nettle"

[11] "Other Suspension Feeders" "Mya arenaria"

[13] "Oysters" "Other Polychaetes"

[15] "Nereis" "Macoma spp."

[17] "Meiofauna" "Crustacean Deposit Feeder"

[19] "Blue Crab" "Fish Larvae"

[21] "Alewife & Blue Herring" "Bay Anchovy"

[23] "Menhaden" "Shad"

[25] "Croaker" "Hogchoker"

[27] "Spot" "White Perch"

[29] "Catfish" "Bluefish"

[31] "Weakfish" "Summer Flounder"

[33] "Striped Bass" "Dissolved Organic Carbon"

[35] "Suspended Particulate Carbon" "Sediment Partculate Carbon"

> nms[b<=(0.1*max(b))] <- NA # exclude less central nodes

> set.seed(3)

> opar <- par(xpd=TRUE,mfrow=c(1,1))

> # create target plot

> gplot.target(m,b,#circ.lab=FALSE,

+ edge.col="grey",

+ label=nms) # show only labels of most central nodes

> #xlim=c(-1,4))

> rm(opar)

In addition to the node-level measures, sna includes graph-level indices.

> centralization(oyster, degree)

[1] 0.45

> centralization(oyster,closeness)

[1] 0.75

> centralization(oyster,betweenness)

[1] 0.41
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[1] "Phytoplankton" "Bacteria in Suspended POC"

[3] "Bacteria in Sediment POC" "Benthic Diatoms"

[5] "Free Bacteria" "Heterotrophic Microflagelates"

[7] "Ciliates" "Zooplankton"

[9] "Ctenophores" "Sea Nettle"

[11] "Other Suspension Feeders" "Mya arenaria"

[13] "Oysters" "Other Polychaetes"

[15] "Nereis" "Macoma spp."

[17] "Meiofauna" "Crustacean Deposit Feeder"

[19] "Blue Crab" "Fish Larvae"

[21] "Alewife & Blue Herring" "Bay Anchovy"

[23] "Menhaden" "Shad"

[25] "Croaker" "Hogchoker"

[27] "Spot" "White Perch"

[29] "Catfish" "Bluefish"

[31] "Weakfish" "Summer Flounder"

[33] "Striped Bass" "Dissolved Organic Carbon"

[35] "Suspended Particulate Carbon" "Sediment Partculate Carbon"

Bacteria in Sediment POC

Other Polychaetes

Nereis

Crustacean Deposit Feeder
Bay Anchovy

Suspended Particulate Carbon

Sediment Partculate Carbon
348.8310271.3232.5193.8155116.377.538.80

Figure 5: Target plot of node betweenness centrality for the Chesapeake Bay model (mesohaline,
carbon, annual).

9.2 iGraph

The iGraph package can also be useful for analyzing network data. Here are a few examples of using
the package. Note that some functions in iGraph conflict with other functions already defined, so
care is required when using iGraph.

> library(igraph)

> ### The adjacency matrix

> A <- St$A

> ### creating an iGraph graph

> g <- graph.adjacency(A)

> plot(g) # uses iGraph plot tools
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Figure 6: Plot of Oyster reef model using iGraph

iGraph has a different set of visualization tools and generates a different looking graph (Fig. 6).

> # betweenness centrality (calculated by iGraph and sna)

> betweenness(g)

Filter Feeders Microbiota Meiofauna

0.0 0.0 0.5

Deposit Feeders Predators Deposited Detritus

3.5 0.0 9.0

> # shortest path between any two nodes

> shortest.paths(g)

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0 2 2 2

Microbiota 2 0 1 1

Meiofauna 2 1 0 1

Deposit Feeders 2 1 1 0

Predators 1 2 2 1

Deposited Detritus 1 1 1 1

Predators Deposited Detritus

Filter Feeders 1 1

Microbiota 2 1

Meiofauna 2 1

Deposit Feeders 1 1

Predators 0 1

Deposited Detritus 1 0

> # average path length in the network (graph theory sense)

> average.path.length(g,directed=TRUE)

[1] 1.52
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> diameter(g) # diameter of the graph

[1] 2

> vertex.connectivity(g) # connectivity of a graph (group cohesion)

[1] 0

> subcomponent(g,1,'in') # subcomponent reachable from 1 along inputs

[1] 1

> subcomponent(g,2,'in') # subcomponent reachable from 2 along inputs

[1] 2 6 1 3 4 5

> subcomponent(g,1,'out') # subcomponent reachable from 1 along outputs

[1] 1 5 6 2 3 4

> subcomponent(g,2,'out') # subcomponent reachable from 2 along output

[1] 2 3 4 6 5

> edge.connectivity(g)

[1] 0

> detach(package:igraph) # detach igraph package

There are other R packages that have graph and network analysis tools, like Bioconductor, that
might also be useful for ecologists

10 Summary and Future

This vignette shows how to use several of the key features of the enaR package that enables
scientists to perform Ecological Network Analysis in R. The vision for this package is that it will
provide access to ENA algorithms from both the Ulanowicz and Patten Schools. In its current
form it replicates, updates, and extends the functionality of the NEA.m function (Fath and Borrett,
2006). It also includes both ascendency calculations and mixed trophic impacts from the Ulanowicz
school of ENA, but there remains many possibilities for future development. We hope to do this
in collaboration with users. This vignette also illustrates how users can further analyze their data
with other R packages for graph and network analysis like sna and iGraph. In summary, we hope
you find this package useful for your ENA needs.
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Table 8: Trophic ecosystem networks (58) included in the enaR model library.

Models Units n† C† Input† TST† FCI† Reference

Marine Coprophagy (oyster) kcal m−2 yr−1 4 0.25 379 549 0.12 Haven and Morales-Alamo (1966)

Lake Findley gC m−2 yr−1 4 0.38 21 50 0.30 Richey et al. (1978)

Mirror Lake gC m−2 yr−1 5 0.36 72 217 0.32 Richey et al. (1978)

Lake Wingra gC m−2 yr−1 5 0.40 478 1517 0.40 Richey et al. (1978)

Marion Lake gC m−2 yr−1 5 0.36 87 242 0.31 Richey et al. (1978)

Cone Springs kcal m−2 yr−1 5 0.32 11819 30626 0.09 Tilly (1968)

Silver Springs kcal m−2 yr−1 5 0.28 21296 29175 0.00 Odum (1957)

English Channel kcal m−2 yr−1 6 0.25 1096 2280 0.00 Brylinsky (1972)

Oyster Reef kcal m−2 yr−1 6 0.33 41 83 0.11 Dame and Patten (1981)

Baie de Somme mgC m−2 d−1 9 0.30 876 2034 0.14 Rybarczyk et al. (2003)

Bothnian Bay gC m−2 yr−1 12 0.22 44 183 0.23 Sandberg et al. (2000)

Bothnian Sea gC m−2 yr−1 12 0.24 117 562 0.31 Sandberg et al. (2000)

Ythan Estuary gC m−2 yr−1 13 0.23 1258 4181 0.24 Baird and Milne (1981)

Sundarban Mangrove (virgin) kcal m−2 yr−1 14 0.22 111317 440931 0.19 Ray (2008)

Sundarban Mangrove (reclaimed) kcal m−2 yr−1 14 0.22 38484 103056 0.05 Ray (2008)

Baltic Sea mg C m−2 d−1 15 0.17 603 1973 0.13 Baird et al. (1991)

Ems Estuary mg C m−2 d−1 15 0.19 282 1067 0.32 Baird et al. (1991)

Swartkops Estuary 15 mg C m−2 d−1 15 0.17 3544 13996 0.47 Baird et al. (1991)

Southern Benguela Upwelling mg C m−2 d−1 16 0.23 714 2545 0.31 Baird et al. (1991)

Peruvian Upwelling mg C m−2 d−1 16 0.22 14927 33491 0.04 Baird et al. (1991)

Crystal River (control) mg C m−2 d−1 21 0.19 7357 15062 0.07 Ulanowicz (1986)

Crystal River (thermal) mg C m−2 d−1 21 0.14 6018 12032 0.09 Ulanowicz (1986)

Charca de Maspalomas Lagoon mg C m−2 d−1 21 0.12 1486230 6010331 0.18 Almunia et al. (1999)

Northern Benguela Upwelling mg C m−2 d−1 24 0.21 2282 6611 0.05 Heymans and Baird (2000)

Swartkops Estuary mg C m−2 d−1 25 0.17 2859 8949 0.27 Scharler and Baird (2005)

Sunday Estuary mg C m−2 d−1 25 0.16 4440 11937 0.22 Scharler and Baird (2005)

Kromme Estuary mg C m−2 d−1 25 0.16 2571 11087 0.38 Scharler and Baird (2005)

Okefenokee Swamp g dw m−2 y−1 26 0.20 2533 12855 0.48 Whipple and Patten (1993)

Neuse Estuary (early summer 1997) mg C m−2 d−1 30 0.09 4385 13827 0.12 Baird et al. (2004b)

Neuse Estuary (late summer 1997) mg C m−2 d−1 30 0.11 4639 13035 0.13 Baird et al. (2004b)

Neuse Estuary (early summer 1998) mg C m−2 d−1 30 0.09 4568 14025 0.12 Baird et al. (2004b)

Neuse Estuary (late summer 1998) mg C m−2 d−1 30 0.10 5641 15031 0.11 Baird et al. (2004b)

Gulf of Maine g ww m−2 yr−1 31 0.35 5053 18381 0.15 Link et al. (2008)

Georges Bank g ww m−2 yr−1 31 0.35 4380 16889 0.18 Link et al. (2008)

Middle Atlantic Bight g ww m−2 yr−1 32 0.37 4869 17916 0.18 Link et al. (2008)

Narragansett Bay mgC m−2 yr−1 32 0.15 693845 3917246 0.51 Monaco and Ulanowicz (1997)

Southern New England Bight g ww m−2 yr−1 33 0.35 4717 17597 0.16 Link et al. (2008)

Chesapeake Bay mg C m−2 yr−1 36 0.09 888791 3227453 0.19 Baird and Ulanowicz (1989)

Mondego Estuary (Zostera sp. Meadows) g AFDW m−2 yr−1 43 0.19 4030 6822 0.03 Patŕıcio and Marques (2006)

St. Marks Seagrass, site 1 (Jan.) mg C m−2 d−1 51 0.08 514 1315 0.13 Baird et al. (1998)

St. Marks Seagrass, site 1 (Feb.) mg C m−2 d−1 51 0.08 601 1590 0.11 Baird et al. (1998)

St. Marks Seagrass, site 2 (Jan.) mg C m−2 d−1 51 0.07 602 1383 0.09 Baird et al. (1998)

St. Marks Seagrass, site 2 (Feb.) mg C m−2 d−1 51 0.08 800 1921 0.08 Baird et al. (1998)

St. Marks Seagrass, site 3 (Jan.) mg C m−2 d−1 51 0.05 7809 12651 0.01 Baird et al. (1998)

St. Marks Seagrass, site 4 (Feb.) mg C m−2 d−1 51 0.08 1432 2865 0.04 Baird et al. (1998)

Sylt-Rømø Bight mg C m−2 d−1 59 0.08 683448 1781028 0.09 Baird et al. (2004a)

Graminoids (wet) g C m−2 yr−1 66 0.18 6272 13676 0.02 Ulanowicz et al. (2000)

Graminoids (dry) g C m−2 yr−1 66 0.18 3472 7519 0.04 Ulanowicz et al. (2000)

Cypress (wet) g C m−2 yr−1 68 0.12 1418 2571 0.04 Ulanowicz et al. (1997)

Cypress (dry) g C m−2 yr−1 68 0.12 1035 1919 0.04 Ulanowicz et al. (1997)

Lake Oneida (pre-ZM) g C m−2 yr−1 74 0.22 1034 1697 0.00 Miehls et al. (2009a)

Lake Oneida (post-ZM) g C m−2 yr−1 76 0.22 810 1462 0.00 Miehls et al. (2009a)

Bay of Quinte (pre-ZM) g C m−2 yr−1 74 0.21 984 1509 0.00 Miehls et al. (2009b)

Bay of Quinte (post-ZM) g C m−2 yr−1 80 0.21 1129 2039 0.01 Miehls et al. (2009b)

Mangroves (wet) g C m−2 yr−1 94 0.15 1531 3265 0.10 Ulanowicz et al. (1999)

Mangroves (dry) g C m−2 yr−1 94 0.15 1531 3272 0.10 Ulanowicz et al. (1999)

Florida Bay (wet) mg C m−2 yr−1 125 0.12 738 2720 0.14 Ulanowicz et al. (1998)

Florida Bay (dry) mg C m−2 yr−1 125 0.13 547 1778 0.08 Ulanowicz et al. (1998)

† n is the number of nodes in the network model, C = L/n2 is the model connectance when L is the number of direct links or

energy–matter transfers, Input = sumzi is the total amount of energy–matter flowing into the system, TST =
∑∑

fij +
∑

zi

is the total system throughflow, and FCI is the Finn Cycling Index (Finn, 1980). Flow based network statistics (Input, TST ,

and FCI) were calculated after models were balanced using the AVG2 algorithm.
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Table 9: Biogeochemical ecosystem networks (42) included in the enaR model library.

Model Units n† C† Input† TST† FCI† Reference

Hubbard Brook (Waide) kg Ca Ha−1 yr−1 4 0.25 11 168 0.76 Waide et al. (1974)

Hardwood Forest, NH kg Ca Ha−1 yr−1 4 0.31 11 200 0.80 Jordan et al. (1972)

Douglas Fir Forest, WA kg Ca Ha−1 yr−1 4 0.31 4 54 0.74 Jordan et al. (1972)

Douglas Fir Forest, WA kg K Ha−1 yr−1 4 0.31 0 45 0.97 Jordan et al. (1972)

Puerto Rican Rain Forest kg Ca Ha−1 yr−1 4 0.31 43 274 0.57 Jordan et al. (1972)

Puerto Rican Rain Forest kg K Ha−1 yr−1 4 0.31 20 433 0.86 Jordan et al. (1972)

Puerto Rican Rain Forest kg Mg Ha−1 yr−1 4 0.31 10 70 0.58 Jordan et al. (1972)

Puerto Rican Rain Forest kg Cu Ha−1 yr−1 4 0.31 0 2 0.37 Jordan et al. (1972)

Puerto Rican Rain Forest kg Fe Ha−1 yr−1 4 0.31 0 7 0.95 Jordan et al. (1972)

Puerto Rican Rain Forest kg Mn Ha−1 yr−1 4 0.38 0 7 0.98 Jordan et al. (1972)

Puerto Rican Rain Forest kg Na Ha−1 yr−1 4 0.31 64 140 0.24 Jordan et al. (1972)

Puerto Rican Rain Forest kg Sr Ha−1 yr−1 4 0.31 0 1 0.71 Jordan et al. (1972)

Tropical Rain Forest g N m−2 d−1 5 0.24 10 71 0.48 Edmisten (1970)

Neuse River Estuary (AVG) mmol N m−2 season−1 7 0.45 795 41517 0.89 Christian and Thomas (2003)

Neuse River Estuary (Spring 1985) mmol N m−2 season−1 7 0.45 133 9120 0.91 Christian and Thomas (2003)

Neuse River Estuary (Summer 1985) mmol N m−2 season−1 7 0.45 119 20182 0.96 Christian and Thomas (2003)

Neuse River Estuary Fall 1985) mmol N m−2 season−1 7 0.45 181 8780 0.88 Christian and Thomas (2003)

Neuse River Estuary Winter 1986) mmol N m−2 season−1 7 0.43 187 6880 0.85 Christian and Thomas (2003)

Neuse River Estuary (Spring 1986) mmol N m−2 season−1 7 0.45 128 12915 0.94 Christian and Thomas (2003)

Neuse River Estuary (Summer 1986) mmol N m−2 season−1 7 0.45 165 11980 0.91 Christian and Thomas (2003)

Neuse River Estuary (Fall 1986) mmol N m−2 season−1 7 0.45 100 9863 0.94 Christian and Thomas (2003)

Neuse River Estuary (Winter 1987) mmol N m−2 season−1 7 0.45 691 7907 0.62 Christian and Thomas (2003)

Neuse River Estuary (Spring 1987) mmol N m−2 season−1 7 0.45 334 11533 0.84 Christian and Thomas (2003)

Neuse River Estuary (Summer 1987) mmol N m−2 season−1 7 0.45 90 15621 0.96 Christian and Thomas (2003)

Neuse River Estuary (Fall 1987) mmol N m−2 season−1 7 0.45 85 7325 0.93 Christian and Thomas (2003)

Neuse River Estuary (Winter 1988) mmol N m−2 season−1 7 0.45 171 8680 0.89 Christian and Thomas (2003)

Neuse River Estuary (Spring 1988) mmol N m−2 season−1 7 0.45 176 6898 0.85 Christian and Thomas (2003)

Neuse River Estuary (Summer 1988) mmol N m−2 season−1 7 0.45 132 16814 0.95 Christian and Thomas (2003)

Neuse River Estuary (Fall 1988) mmol N m−2 season−1 7 0.45 128 5732 0.87 Christian and Thomas (2003)

Neuse River Estuary (Winter 1989) mmol N m−2 season−1 7 0.45 291 5739 0.75 Christian and Thomas (2003)

Cape Fear River Estuary (Oligohaline) nmol N cm−3 d−1 8 0.36 3802 7088 0.20 Hines et al. (2012)

Cape Fear River Estuary (Polyhaline) nmol N cm−3 d−1 8 0.36 3068 5322 0.17 unpublished

Lake Lanier (AVG) mg P m−2 day−1 11 0.21 95 749 0.40 Borrett and Osidele (2007)

Baltic Sea mg N m−3 day−1 16 0.15 2348 44510 0.67 Hinrichsen and Wulff (1998)

Chesapeake Bay mg N m−2 yr−1 36 0.12 73430 484325 0.33 Baird et al. (1995)

Chesapeake Bay mg P m−2 yr−1 36 0.12 9402 101091 0.51 Ulanowicz and Baird (1999)

Chesapeake Bay (Winter) mg P m−2 season−1 36 0.08 1009 11926 0.53 Ulanowicz and Baird (1999)

Chesapeake Bay (Spring) mg P m−2 season−1 36 0.10 1932 27325 0.57 Ulanowicz and Baird (1999)

Chesapeake Bay (Summer) mg P m−2 season−1 36 0.12 4184 42935 0.46 Ulanowicz and Baird (1999)

Chesapeake Bay (Fall) mg P m−2 season−1 36 0.10 2276 18904 0.40 Ulanowicz and Baird (1999)

Sylt-Rømø Bight mg N m−2 yr−1 59 0.09 99613 363693 0.23 Baird et al. (2008)

Sylt-Rømø Bight mg P m−2 yr−1 59 0.09 2508 57739 0.66 Baird et al. (2008)

† n is the number of nodes in the network model, C = L/n2 is the model connectance when L is the number of direct links or

energy–matter transfers, Input = sumzi is the total amount of energy–matter flowing into the system, TST =
∑∑

fij +
∑

zi

is the total system throughflow, and FCI is the Finn Cycling Index (Finn, 1980). Flow based network statistics (Input, TST ,

and FCI) were calculated after models were balanced using the AVG2 algorithm.
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