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Abstract

This paper is the first of two papers describing the editrules pack-
age. The current paper is concerned with the treatment of numerical
data under linear constraints, while the accompanying paper (Van der
Loo and De Jonge, 2011) is concerned with constrained categorical and
mixed data. The editrules package is designed to offer a user-friendly
interface for edit definition, manipulation and checking. The package
offers functionality for error localization based on the paradigm of Fel-
legi and Holt and a flexible interface to binary programming based on
the choice point paradigm. Lower-level functions include echelon trans-
formation of linear systems, variable substitution and a fast Fourier-
Motzkin elimination routine. We describe theory, implementation and
give examples of package usage.

This vignette is a near-literal transcript of De Jonge and Van der
Loo (2011). The vignette is a living document which will be updated
with the package while the reference corresponds to version 1.0.

1



Contents

1 Introduction 3

2 Defining and checking numerical restrictions 4
2.1 The editmatrix object . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Basic manipulations and edit checking . . . . . . . . . . . . . 7
2.3 Obvious redundancy and infeasibility . . . . . . . . . . . . . . 8

3 Manipulation of linear restrictions 9
3.1 Value substitution . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Gaussian elimination . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Fourier-Motzkin elimination . . . . . . . . . . . . . . . . . . . 11

4 Error localization for numerical data 16
4.1 The generalized Fellegi-Holt paradigm . . . . . . . . . . . . . 16
4.2 Two examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 (new!) Error localization with localizeErrors . . . . . . . . . . 21
4.4 Error localization with errorLocalizer . . . . . . . . . . . . . . 22
4.5 General binary search with the backtracker object . . . . . . . 27

5 Related R-packages 30

6 Conclusions 31

Index 34

List of Algorithms

1 isObviouslyInfeasible(E) . . . . . . . . . . . . . . . . . . 9
2 isObviouslyRedundant(E, duplicates, ε) . . . . . . . . . . 9
3 substValue(E, j, x) . . . . . . . . . . . . . . . . . . . . . . . 10
4 echelon(E) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 eliminate(E, j) . . . . . . . . . . . . . . . . . . . . . . . . . 14
6 backtracker (φ0, φl, φr, ψ) . . . . . . . . . . . . . . . . . . 29

2



1 Introduction

The value domain of real numerical data records with n variables is often re-
stricted to a subdomain of Rn due to linear equality and inequality relations
which the variables in the records have to obey. Examples include equality
restrictions imposed by financial balance accounts, positivity demands on
certain variables or limits on the ratio of variables.

Any such restriction can be written in the form

a · x� b with � ∈ {<,≤,=}, (1)

where x is a numerical data record, a, x ∈ Rn and b ∈ R. In data editing
literature, data restriction rules are referred to as edits, or edit rules. In this
paper we will call edits, written in the form of Eq. (1) (specifically, without
using ≥ or >), edits in normal form.

Large, complex surveys are often endowed with dozens or even hundreds
of edit rules. For example, the Dutch Structural Business Survey, which
aims to report on the financial structure of companies in the Netherlands,
contains about 100 variables, and has a similar number of linear equality
and inequality restrictions involving multiple variables, as well as many uni-
variate positivity constraints.

Defining and manipulating large edit sets in matrix representation is a
daunting task, because it may involve hundreds of rows and columns. This
is also true for finding which variables in a record are responsible for edit
violations: the so-called error localization problem.

The editrules package for the R statistical computing environment (R De-
velopment Core Team, 2011) aims to provide an environment to conveniently
define, read and check linear (in)equality restrictions, perform common edit
manipulations and offer error localization functionality based on the (gen-
eralized) paradigm of Fellegi and Holt (1976). This paradigm assumes that
errors are distributed randomly over the variables and there is no detectable
cause of error. It also decouples the detection of corrupt variables from their
correction.

For some types of error, such as sign flips, typing errors or rounding
errors, this assumption does not hold. The cause of these errors can be
detected and are closely related to their resolution. The reader is referred
to the deducorrect package (Van der Loo et al., 2011; Scholtus, 2008, 2009)
for treating such errors.

The following chapters demonstrate the functionality of the editrules
package with coded examples as well a description of the underlying the-
ory and algorithms. For a detailed per-function description the reader is
referred to the reference manual accompanying the package. Unless men-
tioned otherwise, all code shown in this paper can be executed from the R
command line after loading the editrules package.
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2 Defining and checking numerical restrictions

2.1 The editmatrix object

For computational processing, a general set of edits of the form

a · x� b with � ∈ {<,≤,=,≥, >}, (2)

is most conveniently represented as a matrix. In the editrules package, a set
of linear edits is stored as an editmatrix object. This object stores the linear
relations as an augmented matrix [A,b], where A is the matrix obtained
by combining the a vectors of Eq. (2) in rows of A and constants b in b.
A second attribute holds the comparison operators as a character vector.
Formally, we denote that every editmatrix E is defined by

E = 〈[A|b],�〉 with [A|b] ∈ Rm×(n+1), � ∈ {<,≤,=,≥, >}m, (3)

where n is the number of variables, m the number of edit rules and the
notation 〈 , 〉 denotes a combination of objects. Retrieval functions for
various parts of an editmatrix are available, see Table 1 (page 7) for an
overview. Defining augmented matrices by hand is tedious and prone to
error, which is why the editmatrix function derives edit matrices from a
textual representation of edit rules. Since most functions of the editrules
package expect an editmatrix in normal form (that is, � ∈ {<,≤,=}m), the
editmatrix function by default transforms all linear edits to normal form.

As an example, consider the set of variables

turnover t
personnel cost cp
housing cost ch
total cost ct
profit p,

subject to the rules

t = ct + p (4)

ct = ch + cp (5)

p ≤ 0.6t (6)

ct ≤ 0.3t (7)

cp ≤ 0.3t (8)

t > 0 (9)

ch > 0 (10)

cp > 0 (11)

ct > 0. (12)
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> E <- editmatrix(c(

+ "t == ct + p" ,

+ "ct == ch + cp",

+ "p <= 0.6*t",

+ "ct <= 0.3*t",

+ "cp <= 0.3*t",

+ "t > 0",

+ "ch > 0",

+ "cp > 0",

+ "ct > 0"), normalize=TRUE)

> E

Edit matrix:

ct p t ch cp Ops CONSTANT

e1 -1 -1 1.0 0 0 == 0

e2 1 0 0.0 -1 -1 == 0

e3 0 1 -0.6 0 0 <= 0

e4 1 0 -0.3 0 0 <= 0

e5 0 0 -0.3 0 1 <= 0

e6 0 0 -1.0 0 0 < 0

e7 0 0 0.0 -1 0 < 0

e8 0 0 0.0 0 -1 < 0

e9 -1 0 0.0 0 0 < 0

Edit rules:

e1 : t == ct + p

e2 : ct == ch + cp

e3 : p <= 0.6*t

e4 : ct <= 0.3*t

e5 : cp <= 0.3*t

e6 : 0 < t

e7 : 0 < ch

e8 : 0 < cp

e9 : 0 < ct

Figure 1: Defining an editmatrix from a character vector containing verbose
edit statements. The option normalize=TRUE ensures that all comparison
operators are either <, ≤ or ==.

Clearly, these can be written in the form of Eq. (1). Here, the equality
restrictions correspond to balance accounts, the 3rd, 4th and 5th restrictions
are sanity checks and the last four edits demand positivity. Figure 1 shows
how these edit rules can be transformed from a textual representation to a
matrix representation with the editmatrix function. To define an editmatrix,
edit restrictions can be defined in usual R syntax, using == as comparison
operator for equalities and <, <=, >= or > for inequalities. Coefficients
may be negative or positive, and both the binary + and − operator are
recognized.

As Figure 1 shows, the editmatrix object is shown on the console as a
matrix, as well as a set of textual edit rules. The editrules package is capable
of coercing a set of R expressions to an editmatrix and vice versa. To coerce
text to a matrix, the editmatrix function processes the R language parse tree
of the textual R expressions as provided by the R internal parse function. To
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> data(edits)

> edits

name edit description

1 b1 t == ct + p total balance

2 b2 ct == ch + cp cost balance

3 s1 p <= 0.6*t profit sanity

4 s2 cp <= 0.3*t personnel cost sanity

5 s3 ch <= 0.3*t housing cost sanity

6 p1 t >0 turnover positivity

7 p2 ch > 0 housing cost positivity

8 p3 cp > 0 personnel cost positivity

9 p4 ct > 0 total cost positivity

> editmatrix(edits)

Edit matrix:

ct p t ch cp Ops CONSTANT

b1 -1 -1 1.0 0 0 == 0

b2 1 0 0.0 -1 -1 == 0

s1 0 1 -0.6 0 0 <= 0

s2 0 0 -0.3 0 1 <= 0

s3 0 0 -0.3 1 0 <= 0

p1 0 0 -1.0 0 0 < 0

p2 0 0 0.0 -1 0 < 0

p3 0 0 0.0 0 -1 < 0

p4 -1 0 0.0 0 0 < 0

Edit rules:

b1 : t == ct + p [ total balance ]

b2 : ct == ch + cp [ cost balance ]

s1 : p <= 0.6*t [ profit sanity ]

s2 : cp <= 0.3*t [ personnel cost sanity ]

s3 : ch <= 0.3*t [ housing cost sanity ]

p1 : 0 < t [ turnover positivity ]

p2 : 0 < ch [ housing cost positivity ]

p3 : 0 < cp [ personnel cost positivity ]

p4 : 0 < ct [ total cost positivity ]

Figure 2: Declaring an editmatrix with a data.frame. The input data.frame
is required to have three columns named name, edit (textual representation
of the edit rule) and description (a comment stating the intent of the rule).
All must be of type character.

coerce the matrix representation to textual representation, an R character
string is derived from the matrix which can be parsed to a language object.
In the example, the edits were automatically named e1, e2, . . ., e9.

It is also possible to name and comment edits by reading them from a
data.frame. The ability to read edit sets from a data.frame facilitates defining
and maintaining the rules outside of the R environment by storing them in
a user-filled database or text file. Manipulating and combining edits, for
example through variable elimination methods will cause editrules to drop
or change the names and drop the comments, as they become meaningless
after certain manipulations.
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Table 1: Simple manipulation functions for objects of class editmatrix.
Only the mandatory arguments are shown, refer to the built-in docu-
mentation for optional arguments.

function description

getA(E) Get matrix A
getb(E) Get constant vector b
getAb(E) Get augmented matrix [A,b]
getOps(E) Get comparison operators
E[i,] Select edit(s)
as.editmatrix(A,b,ops) Create an editmatrix from its attributes
normalize(E) Transform E to normal form
isNormalized(E) Check whether E is in normal form
violatedEdits(E, x) Check which edits are violated by x
duplicated(E) Check for duplicates in rows of E
isObviouslyRedundant(E) Check for tautologies and duplicates in E
isObviouslyInfeasible(E) Check for contradictions in rows of E
isFeasible(E) Complete feasibility check for E
blocks(E) Decompose E in independent blocks
summary(E) Summarize the contents of E

2.2 Basic manipulations and edit checking

Table 1 shows simple manipulation functions available for an editmatrix.
Basic manipulations include retrieval functions for the augmented matrix,
coefficient matrix, constant vector and operators of an editmatrix. There are
also functions to test for and transform to normality.

When groups of editrules are unrelated, that is, if they do not share any
variables, the edit matrix can be decomposed as

E = E1 ⊕ E2 ⊕ . . .⊕ Ek, (13)

where the Ej are mutually independent edit matrices and ⊕ is the direct
sum operator. The function blocks expects an editmatrix and returns a list
of independent edit matrices composing the original one. Splitting an edit
matrix into independent blocks can yield a significant speedup in error lo-
calization problems.

The function violatedEdits expects an editmatrix and a data.frame or a
named numeric vector. It returns a logical array where every row indicates
which edits are violated (TRUE) by records in the data.frame. It has an
optional argument tol, (default: square root of machine precision) which can
be increased to ignore rounding errors. Figure 3 demonstrates the result
of checking two records against the edit rules defined in Eqs. (4)–(12).
Indexing of edits with the [ operator is restricted to selection only.
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> # define two records in a data.frame

> dat <- data.frame(

+ t = c(1000, 1200),

+ ct = c(400, 200),

+ ch = c(100, 350),

+ cp = c(200, 575),

+ p = c(500, 652 ))

> # check for violated edits

> violatedEdits(E,dat)

edit

record e1 e2 e3 e4 e5 e6 e7 e8 e9

1 TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

2 TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

Figure 3: Checking which edits are violated for every record in a data.frame.
The editmatrix is the same as used in Fig. 2. The first record violates e1, e2
and e4, the second record violates e1, e2, and e5.

2.3 Obvious redundancy and infeasibility

After manipulating a linear edit set by value substitution and/or variable
elimination, it can contain redundant edits or become infeasible. The ed-
itrules package has two methods available which check for easily detectable
redundancies or infeasibility. The Fourier-Motzkin elimination method has
auxiliary built-in redundancy removal, which is described in Section 3.3.

A system of inequalities Ax ≤ b is called infeasible or overconstraint
when there is no real vector x satisfying it. It is a consequence of Farkas’
lemma (Farkas (1902), but see Schrijver (1998) and/or Kuhn (1956)) on
feasibility of systems of linear equalities, that a system is infeasible if and
only if 0 ≤ −1 can be derived by taking positive linear combinations of the
rows of the augmented matrix [A,b].

The function isFeasible eliminates variables one by one using Fourier-
Motzkin elimination (Section 3.3), and checks if such infeasible rules arise.
If none are found after the last variable has been eliminated, the system is
feasible. This function is useful in checking the feasibility of large sets of
edits, which may contain contradictory edits after maintenance.

A complete feasibility check is as computationally expensive as solving a
system of inequalities. Therefore, the function isObviouslyInfeasible was writ-
ten to perform a quick check on obvious inconsistent rules in an editmatrix.
It returns a logical indicating whether an obvious contradiction of the form
0 < −1 or 0 = 1 is present in an editmatrix. The latter inconsistency can be
caused by substitution of values in the edit matrix. Algorithm 1 gives the
pseudo-code for reference purposes.

Both value substitution and variable elimination derive new edits, that
may be of the form 0 ≤ 1 or 0 = 0. The function isObviouslyRedundant
detects such rules and returns a logical vector indicating which rows of an
editmatrix are redundant. By default, the function detects row duplicates
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Algorithm 1 isObviouslyInfeasible(E)

Input: a normalized editmatrix E
for ai · x�i bi ∈ E do

if ai = 0 ∧ ¬0�i bi then
return true

return false
Output: . logical indicating if E is obviously infeasible.

Algorithm 2 isObviouslyRedundant(E, duplicates, ε)

Input: a normalized editmatrix E, with m edits, a boolean“duplicates”, and
a tolerance ε.
v← (false)m

for ai · x�i bi ∈ E do
if ai = 0 ∧ 0�i bi then

vi ←true

if duplicates then
for {(ai · x�i bi, aj · x�j bj) ∈ E × E : j > i} do

if |(ai, bi)− (aj , bj)| ≤ ε element wise ∧ �i = �j then
vj ←true

Output: v . logical vector indicating which rows of E are obviously
redundant.

within an adjustable tolerance, but this may be switched of by providing the
option duplicates=FALSE. Pseudo-code is given in Algorithm 2. The actual
implementation avoids explicit loops and makes use of R’s built-in duplicated
function, which is also overloaded for editmatrix (see Table 1).

3 Manipulation of linear restrictions

There are two fundamental operations possible on edit sets, both of which
reduce the number of variables involved in the edit set. The first, most simple
one is to substitute a variable with a value. The second possibility is variable
elimination. For a set of linear inequalities, one can apply Fourier-Motzkin
elimination to eliminate a variable. The package also has functionality to
rewrite systems of equalities in echelon form. Table 2 (page 13) gives an
overview.

3.1 Value substitution

Given a set of m linear edits as defined in Eq. (3). For any record x it must
hold that

Ax � b, � ∈ {<,≤,=,≥, >}m. (14)
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Algorithm 3 substValue(E, j, x)

Input: E = 〈[A = [a1,a2, . . . ,aj , . . . ,an]|b],�〉, x ∈ R, j ∈ {1, 2, . . . n}
. Note that here, the subscripts of a denote the column index of A

Output: 〈[A = [a1,a2, . . . ,aj−1,0,aj+1, . . .an] |b− ajx],�〉

> substValue(E, "t", 10)

Edit matrix:

ct p t ch cp Ops CONSTANT

e1 -1 -1 0 0 0 == -10

e2 1 0 0 -1 -1 == 0

e3 0 1 0 0 0 <= 6

e4 1 0 0 0 0 <= 3

e5 0 0 0 0 1 <= 3

e7 0 0 0 -1 0 < 0

e8 0 0 0 0 -1 < 0

e9 -1 0 0 0 0 < 0

Edit rules:

e1 : 10 == ct + p

e2 : ct == ch + cp

e3 : p <= 6

e4 : ct <= 3

e5 : cp <= 3

e7 : 0 < ch

e8 : 0 < cp

e9 : 0 < ct

Figure 4: Substituting the value 10 for the turnover variable using the
substValue function. substValue can substitute multiple values as well.

Substituting one of the unknowns xj by a certain value x amounts to re-
placing the jth column of A with 0 and b with b − a′jx. After this, the
reduced record of unknowns, with xj replaced by x has to obey the adapted
system (14). For reference purposes, Algorithm 3 spells out the substitution
routine. Figure 4 shows how substValue can be called from the R environ-
ment. The function is set up so multiple variables can be substituted in a
single call as well.

3.2 Gaussian elimination

The well-known Gaussian elimination routine has been implemented as a
utility function, enabling users to reduce the equality part of their edit ma-
trices to reduced row echelon form. The echelon function has been overloaded
to take either an R matrix or an editmatrix as argument. In the latter case,
the equalities are transformed to reduced row echelon form, while inequali-
ties are left untreated. Gaussian elimination is explained in many textbooks
(see for example Lipschutz and Lipson (2000)). Algorithm 4 is written in a
notation which is close to our R implementation in the sense that it involves
just one explicit loop. Figure 5 demonstrates a call to the R function.
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Algorithm 4 echelon(E)

Input: An editmatrix 〈[A|b],=〉, [A|b] ∈ Rm×(n+1), m ≤ n+ 1.
I ← {1, 2, . . . ,m}
J ← {1, 2, . . . , n+ 1}
for j ∈ I do . eliminate variables

i← arg maxi′ : j≤i′≤m |Ai′j |
if |Aij | > 0 then

if i > j then
Swap rows i and j of [A|b].

[A|b]I\j,J ← [A|b]I\j,J − [A|b]I\j,j ⊗ [A|b]j,JA
−1
jj

Divide each row [A|b]i,J by Aii when Aii 6= 0
Move rows of [A|b] with all zeros to bottom.

Output: E, transformed to reduced row echelon form.

3.3 Fourier-Motzkin elimination

Fourier-Motzkin elimination [Fourier (1826); Motzkin (1936), but see Williams
(1986) for an elaborate or Schrijver (1998) for a concise description] is an
extension of Gaussian elimination to solving systems of linear inequalities.
While Gaussian elimination is based on the reversible operations of row per-
mutation and linear combination, Fourier-Motzkin elimination is based on
the irreversible action of taking positive combinations of rows.

A full Fourier-Motzkin operation on a system of inequalities involves
eliminating variables (where possible) one by one from the augmented ma-
trix [A|b]. Eliminating a single variable is an important step in the error
localization algorithm elaborated in Section 4.

Consider a system of inequalities Ax ≤ b. The jth variable is eliminated
by generating a positive combination of every row of [A|b] where Aij > 0
with every row of [A|b] where Aij < 0 such that for the resulting row the
jth coefficient equals zero. Rows of [A|b] for which Aij = 0 are copied to the
resulting system. If the system does not contain rows for which Aij > 0 and
rows for which Aij < 0, the result is the removal of all rows with nonzero
Aij

Mixed systems with linear restrictions of the form a · x � b with � ∈
{<,≤,=} can in principle be transformed to a form where every � ∈ {≤}.
Restricions with � ∈ {<} can be transformed to ≤ by subtracting a suitible
small number from the right hand side of the inequation. However, it is
more efficient to take the comparison operators into account when combining
rows. In that case, new rules are derived by first solving the jth variable from
each equality and substituting them in each inequality. Next, inequalities
are treated as stated before. When inequalities are combined where one
comparison operator is < and the other is ≤, it is not difficult to show that
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> (E2 <- editmatrix(c("2*x1 + x2 -x3 == 8",

+ "2*x3 + 11 == 3*x1 + x2",

+ "x2 + 2*x3 + 3 == 2*x1")

+ ))

Edit matrix:

x1 x2 x3 Ops CONSTANT

e1 2 1 -1 == 8

e2 -3 -1 2 == -11

e3 -2 1 2 == -3

Edit rules:

e1 : 2*x1 + x2 == x3 + 8

e2 : 2*x3 + 11 == 3*x1 + x2

e3 : x2 + 2*x3 + 3 == 2*x1

> echelon(E2)

Edit matrix:

x1 x2 x3 Ops CONSTANT

e1 1 0 0 == 2

e2 0 1 0 == 3

e3 0 0 1 == -1

Edit rules:

e1 : x1 == 2

e2 : x2 == 3

e3 : x3 == -1

Figure 5: Transforming linear equalities of an editmatrix to reduced row
echelon form. If the editmatrix argument contains inequalities, these are
copied to the resulting system.

< becomes the operator for the resulting inequality.
It is a basic result of the theory of linear inequalities that the system

resulting from a single variable elimination is equivalent to the original sys-
tem. In Fourier-Motzkin elimination, h elimination steps can generate up
to (12m)2h new rows (m being the original number of rows), of which many
are redundant. Since the number of redundant rows increases fast during
elimination, removing (most of) them is highly desirable. In our implemen-
tation, we use the property that if h variables have been eliminated, any
row derived from more than h+ 1 rows of the original system is redundant.
This result was originally stated by Černikov (1963) and rediscovered by
Kohler (1967). A proof can also be found in Williams (1986). For the im-
plementation in R, an editmatrix is augmented with an integer h, recording
the number of eliminations and a logical array H, which records for each edit
from which original edit it was derived. Obviously, H is true only on the
diagonal when h = 0. It is worth mentioning that by using R’s vectorized
indices and recycling properties, it is possible to avoid any explicit looping
in the elimination process. Algorithm 5 gives an overview of the algorithm
where explicit loops are included for readability. Figure 6 shows how one or
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Table 2: Edit manipulation functions. Only mandatory
functions are shown. Refer to the built-in documentation
for optional arguments

function description

substValue(E,var,value) (multiple) value substitution
echelon(E) bring equalities in echelon form
eliminate(E,var) Fourier-Motzkin elimination
getH(E) derivation history of E
geth(E) nr. of eliminated variables

more variables can be eliminated from an editmatrix with the eliminate func-
tion. Note that when multiple variables are eliminated, the editmatrix must
be overwritten at every iteration to ensure that the history H is updated
accordingly.
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Algorithm 5 eliminate(E, j). In the actual implementation all explicit
loops are avoided by making use of R’s recycling properties and vectorized
indices.
Input: A normalized editmatrix E = 〈[A|b],�,H, h〉, and a variable index
j.
if H = ∅ then

H← diag(true)m

h← 0
J ← {1, 2, . . . , n+ 1}
I0 ← {i : Aij = 0}
I= ← {i : �i ∈ {=}}\I0
I+ ← {i : Aij > 0}\I=
I− ← {i : Aij < 0}\I=
for i ∈ {1, 2, . . . ,m}\I0 do . All rows get jth coefficient in {−1, 0, 1}

if �i ∈ {<,≤} then
[A|b]i,J ← [A|b]i,J |Aii|−1

else
[A|b]i,J ← [A|b]i,JA

−1
ii

. Substitute equalities and inequalities with positive jth coefficient in
inequalities with negative jth coefficient:
for (i, j) ∈ (I= ∪ I+)× I− do

k ← k + 1
[Ã|b̃]k,J ← [A|b]i,J + [A|b]j,J
H̃k,J ← Hi,J ∨Hj,J

if �i ∈ {<} then �̃k ← �i else �̃k ← �j

. Substitute equalities in inequalities with positive jth coefficient
for (i, j) ∈ I+ × I= do

k ← k + 1
[Ã|b̃]k,J ← [A|b]i,J − [A|b]j,J
H̃k,J ← Hi,J ∨Hj,J

�̃k ← �i

for {(i, j) ∈ I×2= : j > i} do . Substitute equalities in equalities
k ← k + 1
[Ã|b̃]k,J ← [A|b]i,J − [A|b]j,J
H̃k,J ← Hi,J ∨Hj,J

�̃k ← �i

Ẽ ←
〈[

Ã|b̃]′, [A|b]′I0,J

]′
, (�̃,�I0), H̃, h+ 1

〉
Remove edit rules of Ẽ which have more than h+1 elements of Hi,J true
Remove edit rules of Ẽ for which isObviouslyRedundant(Ẽ) is true

Output: editmatrix Ẽ with variable j eliminated and updated history
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> eliminate(E, "t")

Edit matrix:

ct p t ch cp Ops CONSTANT

e1 -1.000000 0.6666667 0 0 0.000000 <= 0

e2 2.333333 -1.0000000 0 0 0.000000 <= 0

e3 -1.000000 -1.0000000 0 0 3.333333 <= 0

e4 -1.000000 -1.0000000 0 0 0.000000 < 0

e5 1.000000 0.0000000 0 -1 -1.000000 == 0

e6 0.000000 0.0000000 0 -1 0.000000 < 0

e7 0.000000 0.0000000 0 0 -1.000000 < 0

e8 -1.000000 0.0000000 0 0 0.000000 < 0

Edit rules:

e1 : 0.666666666666667*p <= ct

e2 : 2.33333333333333*ct <= p

e3 : 3.33333333333333*cp <= ct + p

e4 : 0 < ct + p

e5 : ct == ch + cp

e6 : 0 < ch

e7 : 0 < cp

e8 : 0 < ct

> F <- E

> for (var in c("t", "cp", "p")) F <- eliminate(F, var)

> F

Edit matrix:

ct p t ch cp Ops CONSTANT

e1 -2.5000000 0 0 0.000000 0 < 0

e2 0.8333333 0 0 -3.333333 0 <= 0

e3 0.8333333 0 0 0.000000 0 <= 0

e4 -1.0000000 0 0 1.000000 0 < 0

e5 0.0000000 0 0 -1.000000 0 < 0

e6 -1.0000000 0 0 0.000000 0 < 0

Edit rules:

e1 : 0 < 2.5*ct

e2 : 0.833333333333334*ct <= 3.33333333333333*ch

e3 : 0.833333333333334*ct <= 0

e4 : ch < ct

e5 : 0 < ch

e6 : 0 < ct

Figure 6: Above: eliminating t from the editmatrix with the eliminate
function. Below: to eliminate multiple variables, the original editmatrix
must be overwritten at each iteration to ensure that the derivation history
is updated at every step.
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4 Error localization for numerical data

While checking whether a numerical record violates any imposed restrictions
(within a certain limit) is easy, finding out which variable(s) of the record
cause the violation(s) can be far from trivial. If possible, the cause of the
violation should be sought out, since it leads immediately to repair sugges-
tions. The deducorrect package (Van der Loo et al., 2011) mentioned above
offers functionality to detect and repair typing errors, rounding errors and
sign errors. Although not directly available in R, methods for detecting and
repairing unit measure errors or other systematic errors have been described
in literature and may readily be implemented in R (see De Waal et al. (2011)
Chapter 2 for an overview).

After systematic errors with detectable causes in a data set have been
resolved, one may assume that remaining errors are distributed randomly
(but not necessarily uniformly) over one or more of the variables. In that
case, error localization based on the (generalized) principle of Fellegi and
Holt can be applied.

4.1 The generalized Fellegi-Holt paradigm

In line with the good practice of altering source data as little as possible,
the paradigm of Fellegi and Holt (1976) advises to edit an as small number
of variables as possible, under the condition that after editing, every edit
rule can be obeyed. A generalization of this principle says that a weighted
number of variables should be minimized. More formally the principle yields
the following problem. Given a record x, violating a number of edits in an
edit matrix E (see Eq. (3)) with m rules and n variables, find G such that

G = argmin
g⊂{1,2,...,n}

∑
j∈g

wj

such that a solution x̃ ∈ R|G| exists for∑
j∈G

Aij x̃j �i bi −
∑
j 6∈G

Aijxj , i ∈ {1, 2, . . . ,m}. (15)

In other words, for every variable in x, we have to decide whether to use or
adapt its value. Unadapted variables can be replaced with their observed
value xj while the values of the remaining variables have to be changed into
x̃j , such that these values form no contradiction. The solution to (15) need
not be unique, but there is always at least one solution unless the edit rules
in E are contradictory.

The minimization (15) amounts to a binary search problem, of which the
search space increases as 2n (n the number of variables). De Waal (2003) and
De Waal et al. (2011) describe a branch-and-bound binary search algorithm
which generates all minimal weight solutions. It works by generating the
following binary tree: the root node contains E and x and weight w = 0.
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Both left and right child nodes of the root node receive a copy of the objects
in their parent. In the left child node, x1 is assumed correct and its value is
substituted in E. In the right child node, x1 is assumed to contain an error
and it is eliminated from E by Fourier-Motzkin elimination. The weight w in
the right node is increased by w1. Each child node gets a left and right child
node where x2 is substituted or eliminated, and so on until every variable
has been treated. Every path from root to leaf represents one element of the
search space. A branch is pruned when E contains obvious inconsistencies,
so no combinations not satisfying the condition in (15) are generated. If a
solution with certain weight w is found, branches developed later, receiving
a higher weight are pruned as well.

To clarify the above, in the next subsection we give two worked exam-
ples. Subsection (4.5) describes a flexible binary search algorithm, which we
implemented to support general binary search problems. Subsection 4.4 de-
scribes its application to the branch-and-bound algorithm mentioned above.

4.2 Two examples

To illustrate the binary search algorithm outlined above we will consider a
simple two-dimensional example. The reader is encouraged to follow the rea-
soning below by checking the calculations using the R-functions mentioned
in the previous sections.

Consider a 2-variable record (x, y) subject to the set of constraints E:

E =


e1 : y > x− 1
e2 : y > −x+ 3
e3 : y < x+ 1
e4 : y < −x+ 5.

(16)

Each separate inequality yields a half-plane of which the border is deter-
mined by the line obtained by replacing < or > by =. The intersection of
the four half-planes is the region of allowed records. In this example, the
region is a diamond, depicted as the gray area in Figure 1. The borders are
labeled with the edit rules in Eq. (16). Consider the record (x = 2, y = −1),
depicted as the bottom black dot in Figure 1. It is easy to confirm either
graphically or by substitution that (2,−1) violates edits e1 and e2, and that
the record can be made consistent by altering only y and leaving x constant
(indicated by the black arrow). It is also clear from the graph that the al-
lowed values for y are between 1 and 3 (indicated by the thin black vertical
line in the diamond). The case (x = 0, y = 0) also violates e1 and e2 and can
only be repaired by altering both x and y, while the record (x = −1, y = 2)
can be repaired by changing x only.

In the following we show that the binary search algorithm described
in the previous subsection indeed solves the error localization problem for
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Figure 1: Graphic representation of edit rules and the allowed area. Left
panel: a convex case, as defined by Eq. (16). Right panel: the non-convex
unconnected case, as defined by Eq. (24). Gray areas indicate the valid
record domain, black dots indicate erroneous records and black arrows indi-
cate the solution of the error localization problem, while the thin black lines
show the range of solutions. The dotted arrows in the left panel indicate
the range of directions in which the record (0,0) can move to reach the valid
area.

(x = 2, y = −1). To find the unweighted, least number of variables to adapt,
so that E can be fulfilled, consider the triple

T0 = 〈E, (2,−1), w = 0)〉 , (17)

This is the root node of the binary search tree described in the previous
subsection, with w the initial solution weight. The left child is generated by
assuming that the first value in the record is correct. We therefore replace
the variable x in E by its value in the record, which yields after removing
redundancies,

T0l =

〈
y > 1
y < 3

, (2,−1), 0

〉
. (18)

In this notation, each time a left (right) node is added, the subscript of T is
augmented with an l (r). Substituting one of the values further restricts the
possible values for variables that have not been treated yet. In fact, after the
error localization problem has been solved, substituting all unaltered values
into E yields a set of equations which determine the range of the variables
which have to be altered or imputed.

Since no variables were eliminated, the weight in T0l is 0, and the record
has not changed. In the right child of the root, x is assumed to be wrong,
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and therefore eliminated using Fourier-Motzkin elimination:

T0r =

〈
y > 1
y < 3

, (x,−1), 1

〉
. (19)

The system of equations left after elimination of x illustrates the geometrical
interpretation of Fourier-Motzkin elimination. The range of y corresponds
to the projection of the diamond in the left pane of Figure 1 onto the y-
axis. (The fact that T0l yields the same system is mere coincidence and
depends on the fact that the x-coordinate in the record at hand equals 2).
Calculating the left child of T0l means substituting y by −1 in the edits of
T0l. This yields

T0ll =

〈
−1 > 1
−1 < 3

, (2,−1), 0

〉
, (20)

where the contradiction −1 > 1 indicates that T0ll is not a solution (which is
obvious since none of the values in the records are assumed incorrect). The
right child of T0l is obtained by eliminating y:

T0lr = 〈∅, (2, y), 1〉 , (21)

where the tautology 0 < 2 was removed. This end node does represent a
solution, since no conflicting rules have been generated. To see if any other
solutions exist, continue to calculate the left child node of T0r

T0rl =

〈
−1 > 1
−1 < 3

, (x,−1), 1

〉
, (22)

which is no solution since its edits hold a contradiction. The final, right
child node of T0r reads

T0rr = 〈∅, (x, y), 2〉 , (23)

which also is a solution, but since both x and y have to be adapted, it has
a higher weight than the solution T0lr found earlier.

The edit sets described so far involved a single set of (in)equalities, yield-
ing a convex record domain in Rn. However, in practical cases the sets of
allowed values for a record need not be convex, or even connected. As an
example consider the space of allowed records, indicated by the gray areas
in the right panel of Figure 1. Such a range can be defined by a conditional
edit of the form

if e0 : x < 0 then


e1 : y > x+ 3
e2 : y > −x+ 1
e3 : y < x+ 5
e4 : y < −x+ 1

else


e′1 : y > x
e′2 : y > −x+ 4
e′3 : y < x+ 2
e′4 : y < −x+ 6.

(24)
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〈 y > x− 1
y > −x+ 3
y < x+ 1
y < −x+ 5

, (2,−1), 0

〉

〈
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y > 1
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〉
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, (2,−1), 0

〉
〈∅, (2, y), 1〉
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Figure 2: Graphical representation of the binary tree used to solve the error
localization problem for the record (x = −2, y = −1), subject to the edits
of Eqn.(16). Each node contains an edit set, a (partially completed) record
and the solution weight.

This error localization problem can be handled by solving the partial lo-
calization problems for {e0, e1, . . . , e4} and {e0, e′1, . . . , e′4} separately, where
e0 stands for the complement e0 : x ≥ 0. The partial solution with the
lowest weight solves the complete optimization problem. As an illustration
consider the record (x = 2, y = 0) in the right panel of Figure 1. The error
localization problem corresponding to x < 0 yields a solution where both x
and y have to be altered, while the localization problem corresponding to
x ≥ 0 implies that only y needs to be altered.

To generalize this example, note that a conditional edit set of the form

if E0 then E1 else E2, (25)

can be written as

(E0 ∧ E1) ∨ (E0 ∧ E2), (26)

which may be treated by finding the minimum weight solution between the
solutions generated by E0 ∧ E1 and E0 ∧ E2. Taking the complement can
cause the number of partial localization problems to grow quickly. As an
illustration, consider the following case where taking the complement yields
three cases to be treated by the error localization routine.

if (x = 0) then E1 else E2

⇔ ((x = 0) ∧ E1) ∨ ((x 6= 0) ∧ E2)

⇔ ((x = 0) ∧ E1) ∨ ((x < 0) ∧ E2) ∨ ((x > 0) ∧ E2). (27)
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Table 3: Slots in the errorLocation object
Slot description.

$adapt boolean array, stating which variables must be adapted for
each record.

$status A data.frame, giving solution weights, number of equivalent
solutions, timings and wether the maximum search time was
exceeded.

$user Name of user running R during the error localization
$timestamp date() at the end of the run.
$call The call to localizeErrors

The number of partial error localization problems to be treated grows as
2neq + nineq, where neq is the number of equalities and nineq the number of
inequalities in E0. This is easily derived from Eq. (26) since by De Morgan’s
rule, if E0 = e1 ∧ e2 ∧ . . . ∧ ek, then

E0 = e1 ∧ e2 ∧ . . . ∧ ek = e1 ∨ e2 ∨ . . . ∨ ek. (28)

Here, each negated inequality translates to a single inequality, while each
negated equality yields two inequalities (as in Eq. (27)).

We will have more to say on conditional edits in the accompanying paper
(Van der Loo and De Jonge, 2011) where the error localization problem for
categorical and mixed data are treated.

4.3 Error localization with localizeErrors

The function localizeErrors accepts an editmatrix and a data.frame, and re-
turns an object of class errorLocation. An errorLocation object contains the
locations of errors for each record in the data.frame as well as logging infor-
mation, solution weights and degeneracy. Table 3 gives an overview of the
slots.

Apart from the mandatory arguments (an editarray and a data.frame),
there are optional arguments which will be passed to the underlying error-
Localizer function which is described in detail in the next section. These
arguments are given in table 4.

Figure 7 shows an example of localizing errors with errorLocalizer. The
function applies a branch-and-bound algorithm to find the least weighted
number of variables which may be adapted in such a way that all edits are
satisfied. If there are multiple degenerate (equally weighted) solutions, one
of those solutions is drawn at random.
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Table 4: Arguments of localizeErrors. Optional arguments are given
in square brackets. The optional arguments are also arguments of the
underlying errorLocalizer function.

Argument description

E An editmatrix or an editarray.
dat The data, in the form of a data.frame.
[weight] Nonnegative weights for each variable in dat.
[maxadapt] Maximum number of variables to adapt.
[maxweight] Maximum weight of solution, if weights are not given,

this is equal to the maximum number of variables to
adapt.

[maxduration] Maximum time (in seconds), spent searching for a
solution for a single record.

> E <- editmatrix(c(

+ "x + y == z",

+ "x > 0",

+ "y > 0",

+ "z > 0"))

> dat <- data.frame(

+ x = c(1,-1,1),

+ y = c(-1,1,1),

+ z = c(2,0,2))

> # localize all errors in the data

> localizeErrors(E,dat)

Object of class 'errorLocation' generated at Wed Oct 26 20:51:04 2011

call : localizeErrors(E, dat)

slots: $adapt $status $call $user $timestamp

Values to adapt:

adapt

record x y z

1 FALSE TRUE FALSE

2 TRUE FALSE TRUE

3 FALSE FALSE FALSE

Status:

weight degeneracy user system elapsed maxDurationExceeded

1 1 1 0 0 0 FALSE

2 2 1 0 0 0 FALSE

3 0 1 0 0 0 FALSE

Figure 7: Localizing errors for every record in a data.frame with localizeEr-
rors

4.4 Error localization with errorLocalizer

The error localization problem detailed in the previous subsections can be
automated with errorLocalizer. This function expects an editmatrix, a named
numerical record and optionally a vector of reliability weights with the same
length as the record. There are extra options to control the maximum
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number of variables to adapt (maxadapt), the maximum weight (maxweight)
and the maximum search time (maxduration) in seconds. The return value
of errorLocalizer is not the solution to the error localization problem but an
object of class backtracker. With a backtracker object the branch-and-bound
tree can be searched to find solutions one by one. The internal machinery
of backtracker objects is detailed in the next subsection, in this section it is
shown how to use such objects to solve error localization problems.

Consider again the edits of Eqn. (16), and the record (x = 2, y = −1).
Figure 8 shows how the error localization problem can be solved with the
backtracker object returned by errorLocalizer. By calling the built-in search-
Next function, the backtracker object traverses the binary search tree depth-
first, until the first solution is found or maxduration is exceeded. If a solution
is found, the contents of the current node is returned to the user as a list.
It contains the current solution weight w and a named logical vector called
adapt, indicating which variables have to be adapted. If maxduration is ex-
ceeded or no solution is found, NULL is returned. The backtracker object
property maxdurationExceeded indicates if the time limit has been exceeded
or not.

As expected, in the example y is pointed out as the variable to change.
At this point, the backtracker object contains all the information needed to
continue the search for new solutions, starting from the node where it just
ended. It also stores some information on the elapsed time needed for the
previous search in the form of a standard proc time object.

Another call to searchNext will search for the next solution in the tree,
with lower weight. However, since in this example there is only one solution,
searchNext returns NULL.

The method searchNext is not the only method of the backtracker object
returned by errorLocalizer. The available methods are

� $searchNext Searches for the next solution with a lower weight than
the previously found solution.

� $searchAll Returns all solutions encountered in the branch-and-bound
search before maxduration is exceeded.

� $searchBest Returns the lowest-weight solution of all solutions found
before maxduration is exceeded. If multiple solutions have the same,
minimum weight, it returns one of those solutions at random.

All these methods accept the following optional arguments:

� maxduration The number of seconds after which to stop the search.
The default value is the value passed to errorLocalizer, which created
the object.

� VERBOSE Print the path in the search tree and contents of each node
during search.
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> E1 = editmatrix(c(

+ "y > x - 1",

+ "y > -x + 3",

+ "y < x + 1",

+ "y < -x + 5"))

> bt <- errorLocalizer(E1, c(x=2,y=-1))

> bt$searchNext()

$w

[1] 1

$adapt

x y

FALSE TRUE

> bt$duration

user system elapsed

0 0 0

> bt$maxdurationExceeded

[1] FALSE

> bt$searchNext()

NULL

Figure 8: Localizing errors with the backtracker object generated by error-
Localizer. After a search is performed, the backtracker object holds infor-
mation on the duration of the search, and if the time-limit for a search was
exceeded.

Any backtracker object is equipped with the searchNext and searchAll meth-
ods. The searchBest method is specific for the backtracker object returned
by errorLocalizer.

The backtracker method offers a flexible interface for error localization.
To understand what happens when there are multiple solutions, consider the
case of a simple balance account for profit (p), loss (l) and turnover (t):

> E <- editmatrix(c("p + c == t"))

> r <- c(p=755, c=125, t=200)

> bt <- errorLocalizer(E, r)

The record obviously violates the edit in E. Since there is only a single
edit rule, there are three solutions, all of which can be found by calling
bt$searchNext

> bt$searchNext()$adapt

p c t

FALSE FALSE TRUE

> bt$searchNext()$adapt
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p c t

FALSE TRUE FALSE

> bt$searchNext()$adapt

p c t

TRUE FALSE FALSE

Each solution has weight 1. Suppose that the turnover value is trusted more,
for example because it comes from a more reliable source. We may increase
its reliability weight by providing a weight vector:

> bt <- errorLocalizer(E, r, weight=c(1,1,2))

> bt$searchNext()$adapt

p c t

FALSE TRUE FALSE

> bt$searchNext()$adapt

p c t

TRUE FALSE FALSE

> bt$searchNext()$adapt

NULL

The solution where turnover must be adapted is not found anymore. The
reason is that errorLocalizer makes sure that during the search for solutions,
variables with the highest reliability weight are the last ones to be assumed
incorrect. Since it has found solutions for the less reliable variables (p and
c), it won’t search for solutions with higher weight.

If we add more restrictions, the number of solutions to the error local-
ization problem decreases. Here, we demand that the cost to turnover ratio
does not exceed 0.6.

> E <- editmatrix(c(

+ "p + c == t",

+ "c - 0.6*t >= 0"))

> bt <- errorLocalizer(E, r)

> bt$searchNext()$adapt

p c t

FALSE TRUE TRUE

> bt$searchNext()$adapt

p c t

TRUE FALSE FALSE

> bt$searchNext()$adapt

NULL
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Here, first a solution of weight 2 is found, which may later be rejected in
favor of the solution which demands only that the profit variable should be
changed.

With errorLocalizer records with missing data can be handled as well.
Variables with missing values are treated as variables that need to be adapted:
they are eliminated from the edit matrix prior to further error localization.
In the next example we add some extra variables and demand positivity of
all variables.

> # An example with missing data.

> E <- editmatrix(c(

+ "p + c1 + c2 == t",

+ "c1 - 0.3*t >= 0",

+ "p > 0",

+ "c1 > 0",

+ "c2 > 0",

+ "t > 0"))

> x <- c(p=755, c1=50, c2=NA,t=200)

> bt <- errorLocalizer(E,x)

> bt$searchNext()$adapt

p c1 c2 t

FALSE TRUE TRUE TRUE

> bt$searchNext()$adapt

p c1 c2 t

TRUE FALSE TRUE TRUE

> (s <- bt$searchNext()$adapt)

p c1 c2 t

TRUE TRUE TRUE FALSE

There are three equivalent solutions, all of which include the field with the
missing value (c2). To obtain the restrictions for the variables which have
altered, simply substitute all values which are retained in the solution, for
example:

> substValue(E, names(x)[!s], x[!s])

Edit matrix:

c1 c2 p t Ops CONSTANT

e1 1 1 1 0 == 200

e2 -1 0 0 0 <= -60

e3 0 0 -1 0 < 0

e4 -1 0 0 0 < 0

e5 0 -1 0 0 < 0

Edit rules:

e1 : c1 + c2 + p == 200

e2 : 60 <= c1

e3 : 0 < p

e4 : 0 < c1

e5 : 0 < c2

This system of equations must be obeyed if p, c1 and c2 are going to be
adapted or imputed.
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4.5 General binary search with the backtracker object

As stated in subsection 4.1, the error localization problem can be interpreted
as a (pruned) binary programming problem. To facilitate implementation
of error localization for numerical, categorical and mixed data, as well as
to help further research in error localization algorithms, we implemented
general-purpose binary search functionality in the form of backtracking pro-
gramming. A backtracking algorithm (Knuth, 1968) finds solutions to a
computational problem by building incrementally candidate solutions. It
starts with a partial solution and extends the partial solution in subsequent
steps until it is a valid solution. When a partial solution is extended the full
state of the current (sub) problem is stored in a “choice point”. If a partial
solution is not valid, the algorithm will “back track” to the last previously
stored choice point and continue its search. In other words, it prunes invalid
search subtrees and does not waste computation time on invalid solutions.
Furthermore the algorithm allows users to specify how to extend a partial
solution and when a partial solution is invalid.

Backtracking is a specific form of the more general “choice point” pro-
gramming which stems from the field of nondeterministic programming. In
nondeterministic programming, the control flow of a program is not deter-
mined explicitly by the programmer with standard branching statements. In
stead, choice points may be created which store the full state of a program
so that control flow can at any time return to a stored state and choose a
new path from there. Choice point programming is supported by various
niche programming environments, such as Alma-0 (Partington, 1997) and
ELAN (Vittek, 1996). See Moreau (1998) for a clear introduction or Mart-
Oliet and Mesguer (2002) for a bibliographic overview. The choice point
paradigm offers an excellent environment for programming backtracking al-
gorithms, of which the branch-and-bound algorithm of subsection 4.1 is just
a specific example.

The R language is ideally suited to develop choice point-like systems be-
cause of its first-class environments. An R environment can be thought of as
a list of R objects, forming the scope for expression evaluation. Expressions
are a series of R statements which may create, manipulate and remove R
objects within an environment. Having first-class environments means that
expressions can also be used to create, manipulate and delete environments
like any other R object. Moreover, expressions can be evaluated in any
environment created by the programmer.

In our implementation, we model the search tree as a binary search tree,
in which each node is a binary choice (left or right) for extending the cur-
rent partial solution. In the backtracker object the sequence of connected
nodes is represented by a sequence of nested environments. Each environ-
ment stores the state of a binary “choice point” . Such a series of nested
environments is equivalent to a stack, where a push-operation corresponds
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to nesting a new environment and a pop-operation ensures that the next
expression will be evaluated in the last-pushed environment. Since environ-
ments are nested, expressions evaluated in a child node have read access to
information stored in the parent node. Pseudo-code for the backtracker
object is given in Algorithm 6. Expressions are denoted with Greek letters ψ
or φ, environments are denoted as E and :: is the scope resolution operator.
The symbol S denotes a formal stack. We denote the result of evaluating
an expression φ in an environment E as φ(E). One can think of φ as a
subroutine which alters the internal state of E . It is also possible for φ to
generate a return value (by issuing a return statement) which is pushed to
the enveloping environment, similar to the action of a standard function.

To construct a backtracker object, the user provides an expression φ0
to initialize the root node, expressions φl and φr to be evaluated at left and
right child nodes and an expression ψ to evaluate the contents of a node. The
initialization expression usually consists of a number of variable declarations.
Expressions φl and φr alter the state of left or right child node, any returned
values are ignored. The expression ψ serves two purposes. First of all, it
judges a node E and must return one of the following values:

ψ(E) =


true if environment E contains a solution
false if environment E cannot lead to a solution
null if environment E contains a partial solution.

(29)

Secondly, ψ may be used to update weights or other administration and
to prepare the variables in a node for output. The method searchNext
generates nodes in the binary tree, depth-first and returns the (contents of)
the first environment corresponding to a solution. If bt is the instance of
a backtracker object, then each call to bt::searchNext will return a
new, and better solution, until all solutions are found, in which case null is
returned. A call to bt::searchAll (not shown in pseudo-code) will return
all solutions. Since search spaces grow exponentially with tree depth, the
backtracker object can be equipped with a time limit for tree search or a
maximum tree depth. The latter is mainly useful for debugging purposes.

The backtracker function constructs a backtracker object and accepts the
following arguments:

� isSolution : An R expression corresponding to ψ of Eqn. (29).

� choiceLeft : An R expression for execution in left child nodes (φl) .

� choiceRight : An R expression for execution in right child nodes (φr).

� maxduration : Optional: the default maximum time in seconds for a
tree search with $searchNext() or $searchAll(). This time may be over-
written by passing a new maxduration when calling a search function.

� maxdepth : Optional: The maximum tree search depth.
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Algorithm 6 backtracker object. φj and ψ are expressions, E and E ′ envi-
ronments :: is the scope resolution operator and S a stack.

Struct backtracker (φ0, φl, φr, ψ)
S ← newStack
E ← newEnvironment
E :: treatedleft← false
E :: treatedright← false
φ0(E) . φ0 Initialize root node
push(E ,S)
Method searchNext
E ← pop(S) . pop returns null if stack is empty
while ψ(E) ∈ {false,null} ∧ E 6= null do

if ¬E :: treatedleft then
E ′ ← E . Create child node
φl(E ′) . Treat child node
E :: treatedleft← true . Mark parent node
push(E ,S)
push(E ′,S)

else if ¬E :: treatedright then
E ′ ← E
φr(E ′)
E :: treatedright← true
push(E ,S)
push(E ′,S)

E ← pop(S)
return E

EndMethod
EndStruct

� ... : Named arguments, to initialize the root node (φ0).

As an example, Figure 9 shows a simple implementation of the branch-and-
bound algorithm for error localization (the implementation in errorLocalizer
is somewhat more advanced and faster than this example). The top en-
vironment (root node) receives an edit matrix E, a record r, a vector of
variable names that have yet to be treated (totreat), a logical vector indi-
cating whether a variable should be altered or not (adapt), a weight vector
weight with reliability weights for each variable. Also, the weight wsol of the
current solution is initialized to the maximum possible weight.

The expression isSolution first computes the weight of the current solution
by adding all elements of weight for which adapt==TRUE. Next, it checks
if the editmatrix is infeasible, or if the current weight exceeds the weight of
the last found solution. Since wsol is initialized on the maximum weight,
the latter can only happen when at least one solution has been found. If
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either condition is met, the branch must be pruned, so FALSE is returned.
Otherwise, it is checked whether any variables are left to treat. If so, the
search continues. If not, the solution weight in the top environment is set
(using the <<- operator) and TRUE is returned. Before returning, output
is prepared by copying the variable adapt from the enveloping environment,
and removing the empty vector totreat.

In choiceLeft, the first variable to be treated is chosen and its value
replaced in the editmatrix. The value of E in the call to substValue is copied
automatically from the enveloping environment which by construction holds
the parent node of the node under treatment. For the same reason assigning
the indexed value of adapt works. The value corresponding to the variable
under treatment in adapt is set to FALSE since a variable for which the
value is substituted in the editmatrix is assumed correct in the treated node.
Finally, the vector of variables to be treated is updated.

In choiceRight, the same administrative chores are performed as in the
choiceLeft. The only difference is that in the right node a variable is elimi-
nated from the editmatrix, and therefore assumed incorrect.

The editmatrix used here corresponds to edit e1 and e2 of Eqn. (16),
which are the edits violated by the record (x = 2, y = −1). As expected, a
single call to bt$searchNext() yields the correct solution.

5 Related R-packages

The editrules packages provides methods to specify, modify and solve sets of
linear constraints. Solving systems of linear constraints is the domain of lin-
ear programming (Schrijver, 1998). The comprehensive R Archive Network
(CRAN, 2011) provides several R packages that use external libraries to solve
linear programming problems. For example R packages linprog (Henningsen,
2010) and lpSolve (Berkelaar and others, 2011). editrules takes a different
approach for a number of reasons.

First of all, the specification of constraints in editrules is in R syntax,
while other packages typically use the specification format of the external
library. This facilitates the maintenance of edits and reuse of these state-
ments within R. It is very useful to check data within R before, during and
after data analysis.

Secondly, De Waal et al. (2011), Chapter 3.4.9 compare various im-
plementations of error localizers, based on specifically written branch-and-
bound software and based on general linear solvers. They observed that
branch and bound algorithms for error localization problems in realistic
data are as fast as linear programming techniques, but have the added ad-
vantage of returning multiple equivalent solutions to the specified problem.
errorLocalizer is an improved implementation of their original branch and
bound algorithm.
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> bt <- backtracker(

+ isSolution = { # check for solution or pruning

+ w <- sum(weight[adapt])

+ if ( isObviouslyInfeasible(.E) || w > wsol ) return(FALSE)

+ if (length(.totreat) == 0){

+ wsol <<- w

+ adapt <- adapt

+ return(TRUE)

+ }

+ },

+ choiceLeft = { # things to do in the left node

+ .var <- .totreat[1]

+ .E <- substValue(.E, .var , r[.var])

+ .totreat <- .totreat[-1]

+

+ adapt[.var] <- FALSE

+ },

+ choiceRight = { # things to do in the right node

+ .var <- .totreat[1]

+ .E <- eliminate(.E, .var)

+ .totreat <- .totreat[-1]

+

+ adapt[.var] <- TRUE

+ },

+ # Initialize variables in root node

+ .E = editmatrix(c("y > x-1 ","y > -x+3")),

+ .totreat = c("x","y"),

+ r = c(x=2,y=-1),

+ adapt = c(x=FALSE, y=FALSE),

+ weight = c(1,1),

+ wsol = 2

+ )

> bt$searchNext()

$w

[1] 1

$adapt

x y

FALSE TRUE

Figure 9: Solving a simple error localization problem using the backtracker
object directly.

Thirdly, editrules provides a powerful toolbox to write advanced editing
and backtracking operations on sets of edits using R statements. Some
linear programming libraries also offer branch and bound or branch and cut
methods, but these typically have to be specified in the original programming
language of the library. In editrules all coding is in R.

6 Conclusions

The editrules package offers an interface to define and manipulate sets of
linear (in)equality restrictions. Linear restrictions can be entered textually
for automated translation to matrix form or vice versa. Edit sets can be
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manipulated by value substitution or variable elimination, through a newly
developed fast routine for Fourier-Motzkin elimination. The latter routine
also allows the user to check sets of linear (in)equalities for internal consis-
tency.

The package offers the ability to identify the edit rules violated by a set of
records. Based on the generalized Fellegi-Holt assumption, one can localize
the erroneous fields in edit-violating records. The error localization routines
are based on a backtracker-programming paradigm which is exported to user
space, providing users with a flexible and easy to use interface for solving
binary programming problems.
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