
Manipulation of categorical data edits and error

localization with the editrules package

package version 1.5.2

Mark van der Loo and Edwin de Jonge

September 26, 2011

Abstract

This vignette is far from finished. Version 2.0 fo the package will
have the full vignette. At the moment, functionality for treating
categorical data has beta status so bugs are likely.

Refer to the accompanying paper De Jonge and Van der Loo (2011)
for manipulation of linear edits.

1

Contents

1 Introduction 3

2 Defining and checking categorical constraints 4
2.1 Boolean representation of records and edits 4
2.2 The editarray object . 5
2.3 Coercion, checking, redundancy and infeasibility 8

3 Manipulation of categorical restrictions 9
3.1 Value substitution . 9
3.2 Variable elimination by category resolution 10

4 Error localization in categorical data 11

A Notation 13

2

1 Introduction

The value domain of categorical data records is usually limited by domain
rules interrelating these variables. The simplest examples are cases where
the value of one variable excludes values of another variable. For example:
if the age class of a person is “child”, then (by law) the marital status cannot
be “married”. In survey or administrative data, violations of such rules are
frequently encountered. Resolving such violations is an important step prior
to data analysis and estimation.

A categorical data record r with n variables may be defined as an element
of the cartesian product space D:

D = D1 ×D2 × . . .×Dn, (1)

where each Dk is a finite set of dk possible categories for variable k We label
the categories as follows:

Dk = {c ∈ Dk | c = 1, 2, . . . , dk}. (2)

Each restriction e is a subset of D and we say that that if r ∈ e then r
violates e. Conversely, when r 6∈ e we say that r satisfies e. In data editing
literature, such rules are referred to as edit rules or edits, in short. In the
context of contingency tables they are referred to as structural zeros since
each rule implies that one or more cells in the d1×d2× . . .×dn contingency
table must be zero. A record is valid if it satisfies every edit imposed on D.

Large, complex surveys may consist of hundreds of interrelated rules
and variables, which impedes resolution of edit violations and renders man-
ual manipulation infeasible. Winkler (1999) mentions practical cases where
statistical offices handle 250, 300 or 750 categorical edit rules for surveys.

The R package editrules offers functionality to define, manipulate and
maintain sets of edit rules with relative ease. It also implements error local-
ization functionality based on the generalized principle of (Fellegi and Holt,
1976), which states that one should find the smallest (weighted) number of
variables whose values can be adapted such that all edits can be satisfied.
Fellegi and Holt’s principle should be considered as the last resort of data
editing. It is useful in situations where a record violates one or more edits
and there is no information about the cause of the error. In certain cases,
the cause of error can be estimated with near certainty, for example in the
case of typing errors in numerical data. We refer the reader to Scholtus
(2008, 2009) and Van der Loo et al. (2011) for such cases.

The purpose of this paper is to give a technical overview of the repre-
sentation and manipulation of edits in the editrules package, as well as some
coded examples to get new users started.

3

2 Defining and checking categorical constraints

In the next section we describe the representation of edits and records as im-
plemented in the editrules package. Readers not interested in the underlying
principles may skip Section 2.1.

2.1 Boolean representation of records and edits

Categorical records may be represented as a vector of boolean values. A
boolean vector of dimension d is an element of the boolean algebra

Bd =
(
{0, 1}d,∧,∨,¬

)
, (3)

where 0 and 1 have the usual interpretations false and true and the logical
operators work elementwise on their operands. To facilitate the discussion
we will also allow the standard arithmetic operations addition and subtrac-
tion on boolean vectors (this is also consistent with the way R handles vectors
of class logical).

To represent a record r = (r1, r2, . . . , rn), assign to every category c in
Dk a unique standard basisvector ~δk(c) of Bdk . The boolean representation
ρ(r) of the full record is the direct sum

r
ρ−→ ~δ1(r1)⊕ ~δ2(r2)⊕ . . .⊕ ~δn(rn), (4)

which we will write as

ρ(r) = v1 ⊕ v2 ⊕ · · · ⊕ vn ≡ v. (5)

The dimension d of ρ(r) is given by the total number of categories of all
variables

d =
n∑
k=1

dk. (6)

When each record in a dataset is represented this way, summing the vectors
yields the d-dimensional vecorized representation of the d1 × d2 × . . . × dn
contingency table of the dataset. This is sometimes called the complete
disjunctive table.

An edit e is a subset of D which can be written as the cartesian product

e = A1 ×A2 . . .×An, where Ak ⊆ Dk, k = 1, 2, . . . n. (7)

The interpretation of an edit is that if a record v ∈ e, then v is considered
invalid. The following properties follow immediately.

Remark 2.1. If e ⊂ D and e′ ⊂ D are edits, then e ∪ e′ = {e, e′} and
e ∩ e′ = A1 ∩A′1 ×A2 ∩A′2 × · · · ×An ∩A′n are also edits.

4

An edit, expressed as in Eq. (7) is said to be in normal form. A variable
vk is involved in an edit if Ak ⊂ Dk. Conversely, we say that e involves vk
if vk is involved in e. A variable vk for which Ak = Dk is not involved in e.
Since every category i of Dk is mapped to a unique basis vector ~δk(i), edits
have a boolean representation ρ(e), given by

e
ρ−→ ∨

i∈A1

~δ1(i)⊕ ∨
i∈A2

~δ2(i)⊕ . . .⊕ ∨
i∈An

~δn(i), (8)

which may simply be written as

ρ(e) = a1 ⊕ a2 ⊕ . . .⊕ an ≡ a. (9)

A simple example is given in Figure 1. It is easy to check that an edit
contains variable k if and only if the inner product 1dk · ak < dk, where 1dk
is a dk vector of ones.

A record v violates an edit if vk ∈ Ak, k = 1, 2, . . . n. In the boolean
representation this can be written as a condition on the standard inner
product between the boolean representation of a record and an edit:

n∑
k=1

~δk(vk) · ak = ρ(v) · a = n. (10)

Suppose that E is a set of edits of the form (7). It is not difficult to
verify that an edit e ∈ E is redundant if

Ak = ∅, for any k ∈ 1, 2, . . . , n (11)

or

e ⊆ e′ with e′ ∈ E. (12)

In (11), e is redundant since it cannot contain any records. It can be tested
by checking if any 1dk · ak = 0. In the case of (12), e is redundant because
any edit violating e also violates e′. Using ρ(e) = a and ρ(e′) = a′, this can
be tested by checking if a ∧ a′ = a or equivalently if a ∨ a′ = a′.

In the editrules the boolean representation is mainly used to store edits
and to manipulate them with methods like variable substitution and elimi-
nation. Data records can be stored in data.frame objects, as usual.

2.2 The editarray object

In the editrules package, a set of categorical edits is represented as an editarray
object. Formally, we denote an editarray E for n categorical variables and
m edits as (brackets indicate a combination of objects)

E = 〈A, ind〉, with A ∈ {0, 1}m×d and d =

n∑
k=1

dk, (13)

5

Each row a of A contains the boolean representation of one edit, and the dk
denote the number of categories of each variable. The object ind is a nested
list which relates columns of A to variable names and categories. Labeling
variables with k ∈ 1, 2, . . . , n and category values with c ∈ 1, 2, . . . , dk, we
use the following notations:

ind(k, c) =
∑
l<k

dl + c (14)

ind(k) = {ind(k, c) | c ∈ Dk}. (15)

So ind(k, c) is the column index in A for variable k and category c and
ind(k) is the set of column indices corresponding to the categories of variable
k. The editarray is the central object for computing with catgegorical edits,
just like the editmatrix is the central object for computations with linear
edits.

It is both tedious and error prone to define and maintain an editarray
by hand. In practice, categorical edits are usually stated verbosely, such
as: “a male subject cannot be pregnant”, or “an under-aged subject cannot
be married”. To facilitate the definition of edit arrays, editrules is equipped
with a parser, which takes R-statements in character format, and translates
them to an editarray.

Figure 1 shows a simple example of defining an editmatrix with the
editrules package. The first two edits in Figure 1 define the data model.
The editarray function derives the datamodel based on the variable names
and categories it finds in the edits, whether they are univariate (defining
domains) of multivariate. This means that if all possible variables and cat-
egories are mentioned in the multivariate edits, the correct datamodel will
be derived as well.

The function datamodel accepts an edit array as input and returns an
overview of variables and their categories for easy inspection. When printed
to the screen, the boolean array is shown with column heads of the form

<abbreviated var. name><separator><abbreviated cat. label>,

where both variable names and categories are abbreviated for readability,
and the standard separator is a colon (:). The separator may not occur as a
symbol in either variable or category name, and its value can be determined
by passing a custom sep argument to editarray.

Internally, editarray uses the R internal parse function to transform the
character expressions to a parse tree, which is subsequently traversed recur-
sively to derive the entries of the editmatrix. The opposite is also possible.
The R internal function as.character has been overloaded to derive a char-
acter representation from a boolean representation. When printed to the
screen, both the boolean and textual representation are shown.

The character expressions that can be read by editarray, such as

6

> E <- editarray(c(

+ "gender %in% c('male','female')",

+ "pregnant %in% c('yes','no')",

+ "if (gender == 'male') pregnant == 'no'"

+)

+)

> E

Edit array:

levels

edits gndr:feml gndr:male prgn:no prgn:yes

e1 FALSE TRUE FALSE TRUE

Edit rules:

d1 : gender %in% c('female', 'male')

d2 : pregnant %in% c('no', 'yes')

e1 : if(gender == 'male') pregnant != 'yes'

> datamodel(E)

variable value

1 gender female

2 gender male

3 pregnant no

4 pregnant yes

Figure 1: Defining a simple editarray with the editarray function. The array
is printed with abbreviated column heads, which themselves consist of vari-
able names and categories seperated by a colon (by default). When printed
to screen, a character version of the edits is shown as well, for readability.

"if (gender == 'male') pregnant = 'no'"

follows standard R syntax, which should be already familliar to the reader.
Note that double quotes are used to enclose the whole string, while single
quotes are used for category names. Table 1 shows which operators and
functions can be used to specify categorical edit rules.

Categories may be litaral characters, or booleans. It is worth noting
that expressions on the right hand side of the %in% and == operators are
evaluated. One useful application of this is that the categories, or data
model can be defined outside of the edits:

> xval <- letters[1:4]

> yval <- c(TRUE,FALSE)

> editarray(c("x %in% xval","y %in% yval","if (x %in% c('a','b')) !y "))

Edit array:

levels

edits x:a x:b x:c x:d y:FALS y:TRUE

e1 TRUE TRUE FALSE FALSE FALSE TRUE

Edit rules:

d1 : x %in% c('a', 'b', 'c', 'd')

d2 : y %in% c(FALSE, TRUE)

e1 : if(x %in% c('a', 'b')) y == FALSE

7

Table 1: Functions and operators that may be used to define edits
with editarray

Operator Description

%in% Set membership∗

== Equality∗

if(<condition>) <expression> conditional statement
c('<cat1>','<cat2>',...) categories, character or logical
&&, & logical and
||, | logical or
! logical not

∗Right-hand side is evaluated.

The above example also illustrates the use of boolean categories.

2.3 Coercion, checking, redundancy and infeasibility

Table 2 lists basic functions of editarray objects. The datamodel function
retrieves the variables and categories in an edit array, and returns them as
a two-column data.frame. With as.data.frame or as.character one can coerce
an editarray so that it can be written to a file or database. Character coer-
cion is used when edeits are printed to the screen. Optionally, coercing the
datamodel to character form can be switched off. The result of as.data.frame
version contains columns with edit names, a character representation of the
edits and a column for remarks.

The function violatedEdits takes an editarray and a data.frame as input
and returns a logical matrix indicating which record (rows) violate which
edits (columns). It works by parsing the editarray to R-expressions and
evaluating them within the data.frame environment. By default, the records
are checked against the data model. This can be turned off by providing the
optional argument datamodel=FALSE.

When manipulating edit sets, redundant edits of the form of Eq. (11) may
arise. Such redundancies can be detected in the boolean representation with
isObviouslyRedundant. By default, this function also checks for duplicate
edits, but this may be turned off. The function duplicated is overloaded from
the standard R function and the function isSubset (pseudocode in Algorithm
1) detects which edits are a subset or duplicate of another one. In the actual
R implementation, the only explicit loop is a call to R’s vapply function. The
other loops are avoided using R’s indexing and vectorization properties.

Manipulations may also lead to edits of the form e = D, in which case
every possible record is invalid, and the editarray has become impossible to
satisfy. The function isObviouslyInfeasible detects whether any such edits are
present. They can be detected by checking if

∑d
j=1 ρ(e)j = d.

8

Table 2: Basic functions for objects of class editarray. Only mandatory
arguments are shown, refer to the built-in documentation for optional
arguments.

Function description

datamodel(E) get datamodel
getVars(E) get a list of variables
as.data.frame(E) coerce edits to data.frame
contains(E) which edits contains which variable
as.character(E) coerce edits to character vector
violatedEdits(E,x) check which edits are violated by x
isObviouslyRedundant(E) find redundancies [Eq. (11)], duplicates
duplicated(E) find duplicate edits
isSubset(E) find edits, subset of another edit [Eq. (12)]
isObviouslyInfeasible(E) detect contradictions
substValue(E,var,value) substitute a value

Algorithm 1 isSubset(E)

Input: An editarray E = 〈A, ind〉.
s← (false)m

for (a(i),a(i′)) ∈ rows(A)× rows(A) do
if a(i) ∨ a(i′) = a(i′) then

si ← true

Output: Boolean vector s indicating which edits represented by A are a
subset of another edit.

3 Manipulation of categorical restrictions

The basic operations on sets of categorical edits are value substitution and
variable elimination. The former amounts to adapting the datamodel un-
derlying the edit set while the latter amounts to deriving relations between
variables not involving the eliminated variable.

3.1 Value substitution

If it is assumed that in a record, one of the variables takes a certain value,
that value may be substituted in the edit rules. In the boolean representation
this amounts to removing all edits which exclude that value, since the record
cannot violate those edits. Secondly, the columns related to the substituted
variable, but not to the substituted category are removed, thus adapting the
datamodel to the new assumption. Algorithm 2 gives the pseudocode for
reference purposes.

In the editrules package, value substitution is performed by the subst-
Value function, which accepts variable and category names. In the following

9

Algorithm 2 substValue(E,k,v)

Input: an editarray E = 〈A, ind〉, a variable index k and a value v
i← ind(k, v)
A← A\{a ∈ rows(A) | ai = false} . Remove rows not involving v
A← A\{atj ∈ columns(A) | j ∈ ind(k)\i} . Remove categories 6= v
Update ind

Output: 〈A, ind〉 with v substituted for variable k.

example the editmatrix defined in Figure 1 is used.

> substValue(E, "gender", "female")

Edit array:

levels

edits gndr:feml prgn:no prgn:yes

Edit rules:

d1 : gender == 'female'

d2 : pregnant %in% c('no', 'yes')

In this case, the variable “gender” is substituted by the value “female”. With
the gender is fixed, the datamodel reduces to {male}×{no, yes} and the re-
striction“if male then pregnant = true”becomes meaningless and is therefore
removed.

The R implementation of substValue has an extra option, allowing to
choose if the datamodel is reduced or not, which by default is set to true .

3.2 Variable elimination by category resolution

Given two edits e and e′, with boolean representations a and a′ respectively.
We define the resolution operator Rk as:

aRk a′ = a1 ∧ a′1 ⊕ . . .⊕ ak−1 ∧ a′k−1

⊕ ak ∨ a′k ⊕ ak+1 ∧ a′k+1 ⊕ . . .⊕ an ∧ a′n (16)

For two edit sets A and A′, we also introduce the notation

ARk A′ = {aRk a′ | (a,a′) ∈ rows(A)× rows(A′)}. (17)

Observe that the resolution operator has the following properties, relevant
for record checking.

ρ(v) ∈ aRk a′ ⇒ ρ(v) ∈ a ∨ ρ(v) ∈ a′ (18)

ρ(v) ∈ a ⇒ ρ(v) ∈ aRk a′ ∨ aRk a′ = ∅ (19)

That is, if a record violates aRk a′, it does so because it violates a and/or a′.
Therefore, aRk a′ is also an edit in the sense that a record is invalid if it is

10

Algorithm 3 eliminate(E,k)

Input: an editarray E = 〈A, ind〉, a variable index k
for j ∈ ind(k) do

A+ = {a ∈ rows(A) : aj = true}
A− = {a ∈ rows(A) : aj = false}
if A+ = ∅ then

A← ∅
break

A← A+ ∪A+Rk A−

Delete rows which have isSubset(〈A, ind〉) = true.

Output: editarray 〈A, ind〉 with variable k eliminated

falls in the derived edit.When ak = a′k, the resulting edit is the intersection
of the original edits, in which case the resulting edit is redundant.

The operator is called resolution operator since its action strongly re-
sembles a resolution operation from formal logic. If ak ∨ a′k = (true)dk ,
the operator “resolves” or eliminates the kth variable and we are left with
a relation between the other variables, regardless of the value of variable k.
The edit resulting from a resolution operation on two explicitly defined edits
is called an implied edit. If the resolution operation happens to eliminate
one of the variables, it is called an essentially new implied edit. These terms
were introduced by Fellegi and Holt (1976) who first solved the problem of
error localization for categorical data.

The resolution operator can be used to eliminate a variable k from a set
of edits represented by A category by category as follows (Algorithm 3).
Suppose that j is the column index of the first category of k. Collect all
pairs of (a+,a−) obeying a+j = true and a−j = false. If there are no edits

of type a+, the variable cannot be eliminated and the empty set is returned.
Otherwise, copy all a+ to a new set of edits and add every a+Rk a−. By
construction, these new edits all have aj = true. Possibly, redundant edits
have been produced, and these may be removed. The procedure is iterated
for every category of k, adding a category for which each aj = true at each
iteration.

4 Error localization in categorical data

See the help on localizeErrors and errorLocalizer.

References

De Jonge, E. and M. Van der Loo (2011). Manipulation of linear edits and
error localization with the editrules package. Technical Report 201120,

11

Statistics Netherlands, The Hague.

Fellegi, I. P. and D. Holt (1976). A systematic approach to automatic edit
and imputation. Journal of the Americal Statistical Association 71, 17–35.

Scholtus, S. (2008). Algorithms for correcting some obvious inconsistencies
and rounding errors in business survey data. Technical Report 08015,
Statistics Netherlands, Den Haag. The papers are available in the inst/doc
directory of the R package or via the website of Statistics Netherlands.

Scholtus, S. (2009). Automatic correction of simple typing error in numerical
data with balance edits. Technical Report 09046, Statistics Netherlands,
Den Haag. The papers are available in the inst/doc directory of the R
package or via the website of Statistics Netherlands.

Van der Loo, M., E. de Jonge, and S. Scholtus (2011). deducorrect: Deductive
correction of simple rounding, typing and sign errors. R package version
1.0-1.

Winkler, W. E. (1999). State of statistical data editing and current research
problems. In Working paper no. 29. UN/ECE Work Session on Statistical
Data editing, Rome.

12

A Notation

Symbol Explanation and reference

a An edit, in boolean representation: a = ρ(e), Eq. (9).
ak Boolean representation of one variable in a. a = ⊕nk=1ak.
A Set of edits, in m× d boolean representation.
c Label for a single category of Dk.
D Set (domain) of all possible categorical records, Eq. (1).
Dk Set of possible categories for variable k. Eq. (2).
d Number of categories (in total), Eq. (6).
dk Number of categories in Dk.
e An edit, in set representation: e ⊆ D, [Eq. (7)].
E An editarray, Eq. (13), or a set of edits in set representation.
ind Function relating categories c of variable k to columns in A,

Eqs.(14) and (15).
i row index in A (labeling edits).
j column index in A (labeling categories).
m Number of edits.
n Number of variables.
r Categorical record, in set representation: r ∈ D.
Rk Resolution operator Eq. (16).
ρ Map, sending set representation to boolean representation.
v Categorical record, in boolean representation: v = ρ(r).
vk Boolean representation of a single variable v = ⊕nk=1vk.

13

