
Manipulation of categorical and mixed data edits

and error localization with the editrules package

package version 1.0.0

Mark van der Loo and Edwin de Jonge

August 1, 2011

Abstract

This vignette is far from finished. Version 2.0 fo the package will
have the full vignette. At the moment, functionality for treating cate-
gorical data has alpha status and is not public yet.

1

Contents

1 Introduction 3

2 Defining and checking categorical constraints 3
2.1 The editarray object . 3
2.2 Basic manipulations and edit checking 5
2.3 Obvious redundancy and infeasibility 6

3 Manipulation of categorical restrictions 7
3.1 Value substitution . 7
3.2 Variable elimination by category resolution 7

2

1 Introduction

2 Defining and checking categorical constraints

We spend some time to define the boolean representation, since it eventually
allow for an elegant elimination method.

2.1 The editarray object

A categorical record v is a combination of values from the cartesian product
space

D = D1 ×D2 × . . .×Dn, (1)

where each Dk is a finite set of dk categories. The total number of categories
is d =

∑n
k=1 dk. Categorical records can be represented as a boolean vector.

A boolean vector of dimension d is an element of the boolean algebra

Bd =
(
{0, 1}d,∧,∨,¬

)
, (2)

where 0 and 1 have the usual interpretations false and true and the logical
operators work elementwise on their operands. To represent a record v,
assign to every category i in Dk a unique standard basisvector ~δk(i) of Bdk .
The boolean representation ρ(v) of the full record reads

v
ρ−→ ~δ1(v1)⊕ ~δ2(v2)⊕ . . .⊕ ~δn(vn). (3)

An edit e is a subset of D, which can be written as the cartesian product

e = e1 × e2 . . .× en, (4)

where each ek ⊆ Dk. The interpretation of an edit is that if a record v ∈ e,
then v is considered invalid. We say that a record fails an edit when it
satisfies Eq. (8). A variable vi is involved in an edit if ei ⊂ Dj is a proper
subset. Conversely, we say that e contains vk if vk is involved in e. A variable
for which ek = Dk is not contained in e.

Since every category i of Dk is mapped to a unique basis vector ~δk(i),
edits have a boolean representation ρ(e), given by

e
ρ−→ ∨

i∈e1
~δ1(i)⊕ ∨

i∈e2
~δ2(i)⊕ . . .⊕ ∨

i∈ek
~δn(i), (5)

which may simply be written as

ρ(e) = a = a1 ⊕ a2 ⊕ . . .⊕ an. (6)

One may think of the ak as boolean vectors indicating which elements of Dk

occur in ek.

3

> #editarray(c(

> # "gender %in% c('male','female')",

> # "pregnant %in% c('yes','no')",

> # "if (gender == 'male') pregnant == 'no'"

> #)

> #)

Figure 1: Defining a simple editarray with the editarray function. Col-
umn heads of the array are abbreviated versions of variable names and
categories seperated by a colon (by default). When printed to screen, a
character version of the edits is shown as well, for readability.

In the editrules package, a set of categorical edits is represented as an
editarray object. Formally, we denote an edit array E for n categorical
variables and m edits as

E = 〈A〉, with A ∈ {0, 1}m×d and d =

n∑
k=1

dk. (7)

Here, each row of A contains the boolean representation of one edit, and
the dk denote the number of categories of each variable. The brackets are
used to indicate a combination of objects. The editarray is the central
object for computing with catgegorical edits, just like the editmatrix is the
central object for computations with linear edits.

It is both tedious and error prone to define and maintain an editarray by
hand. In practice, categorical edits are usually stated verbosely, such as: “if
the gender is male, then pregnant must be false”, or “if you are under-aged,
you cannot be married”. To facilitate the definition of edit arrays, editrules
is equipped with a parser, which takes R-statements in character format,
and translates them to an editarray.

Figure 1 shows a simple example of defining an editmatrix with the
editrules package. The first two edits in Figure 1 define the data model.
The editarray function derives the datamodel based on the variable names
and categories it finds in the edits, whether they are univariate (defining
domains) of multivariate. This means that if all possible variables and cat-
egories are mentioned in the multivariate edits, the correct datamodel will
be derived as well. It is important to note that most functions working
with categorical edits, assume that the full datamodel is represented in the
columns of an editarray. The function datamodel accepts an edit array as
input and returns an overview of variables and their categories.

When printed to the screen, the boolean array is shown with column
heads of the form

<variable><separator><category>,

where both variable names and categories are abbreviated for readability,
and the standard separator is a colon (:). The separator may not occur as a

4

Table 1: Functions and operators that may be used to define edits with
editarray

Operator Description

%in% Set membership∗

== Equality∗

if(<condition>) <expression> conditional statement
c('<cat1>','<cat2>',...) categories, character or logical
&& logical and
|| logical or
! logical not

∗Right-hand side is evaluated.

symbol in either variable or category name, and its value can be determined
by passing a custom sep argument to editarray.

Internally, editarray uses the R internal parse function to transform
the character expressions to a parse tree, which is subsequently traversed
recursively to derive the entries of the editmatrix. The opposite is also
possible. The R internal function as.character has been overloaded to
derive a character representation from a boolean representation. When
printed to the screen, both the boolean and textual representation are shown.

The character expressions that can be read by editarray, such as

"if (gender == 'male') pregnant = 'no'"

follows standard R syntax, which should be already familliar to the reader.
Note that double quotes are used to enclose the whole string, while single
quotes are used for category names. Table 1 shows which operators and
functions can be used to specify categorical edit rules. Categories may be
litaral characters, or booleans. It is worth noting that expressions on the
right hand side of the %in% and == operators are evaluated. One useful
application of this is that the categories, or data model can be defined outside
of the edits:

> #xval <- letters[1:4]

> #yval <- c(TRUE,FALSE)

> #editarray(c("x %in% xval","y %in% yval","if (x %in% c('a','b')) !y "))

The above example also illustrates the use of boolean categories.

2.2 Basic manipulations and edit checking

Table 2 shows lists basic functions of editmatarray objects. The datamodel
function retrieves the variables and categories in an edit array, and returns
them as a two-column data.frame.

5

Table 2: Basic functions for objects of class editarray. Only manda-
tory arguments are shown, refer to the built-in documentation for op-
tional arguments.

Function description

datamodel(E) get datamodel
getArr get array A
as.data.frame(E) coerce to data.frame

as.character(E) coerce to character vector
violatedEdits(E,x) check which edits are violated by x

duplicated(E) detect duplicate edits
isObviouslyRedundant(E) detect simple redundancies
isSubset(E) detect edits contained in another edit
isObviouslyInfeasible detect if E contains a contradiction
substValue substitute a value

With getArr the array part of an editarray can be retrieved. The
other contents of an editarrray are of no use for users and are editrules

internal.
The function violatedEdits takes a data.frame or named character

vector as input and returns a logical array where each row indicates which
edits are violated by the input data. The relation

v ∈ e⇔
d∑
j=1

(ρ(v) ∧ ρ(e))j = n, (8)

is used to test the validity of records. Here, n is the number of variables and
the sum is over the coefficients of ρ(v) ∧ ρ(e), interpreted as numbers. The
relation holds since a record can have at most one coefficient per variable
equal to 1 in the boolean representation.

2.3 Obvious redundancy and infeasibility

When manipulating edit sets, edits may arise which have ek = ∅ for one
of the variables. A record can never be an element of such an edit, and
such edits are therefore redundant. Such redundancies are easily detected
since all coefficients of the corresponding ak (Eq. (6)) are equal to zero for
these edits. The function isObviouslyRedundant returns a logical vector
indicating which edits in an editarray have become obviously redundant.
If an edit is a subset of another edit, it is also redundant. The function
isSubset returns a logical, indicating if an edit is a subset of any other edit
in the editarray.

Manipulations may also lead to edits of the form e = D, in which case
every possible record is invalid, and the editarray has become impossible

6

to satisfy. The function isObviouslyInfeasible detects whether any such
edits are present.They can be detected by checking if

∑d
j=1 ρ(e)j = d.

3 Manipulation of categorical restrictions

3.1 Value substitution

Substituting a value in an editarray consists of two steps. First, all edits
that exclude the value which is to be subsituted are removed. They have
become redundant, since no record can be contained in such edits. Second,
if variable k is substituted by category j ∈ Dk, for every remaining edit, all
coefficients of ak except the jth are set to 0. The function substValue can
be used to substitute one or more values in an editarray.

3.2 Variable elimination by category resolution

Suppose e1 and e2 are edits, with boolean representations a and b respec-
tively. We define the resolution operator Rj as follows:

aRj b = (a1 ∧ b1, . . . , aj−1 ∧ bj−1, aj ∨ bj , aj+1 ∧ bj+1, . . . , ad ∧ bd). (9)

Observe that if a record v ∈ aRj b, it must hold that v ∈ e1 and/or v ∈ e2.
The converse is also true: If v ∈ e1 or e2, then it must be in e1Rj e2. The
operator is called resolution operator since its action strongly resembles a
resolution operation from formal logic. If aj = ¬bj , the operator “resolves”
or eliminates one of the categories j ∈ D. If aj = bj , the resulting edit is
the intersection of the original edits.

Given the boolean vectors a, b and c in Bd. It is not difficult to show
that the resolution operator has the following properties

symmetry: aRj b = bRj a
associativity: (aRj b)Rj c = aRj(bRj c)
idempotency: aRj a = a.

(10)

The following distributive property also holds

distributivity: (aRi b)Rj c = (aRj c)Ri(bRj c). (11)

References

7

