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Abstract

This package vignette is an update of the eRm papers by published in a special issue on
Psychometrics in the Journal of Statistical Software and in Psychology Science (Mair and
Hatzinger 2007a,b). Since the publication of these papers various extensions and addi-
tional features have been incorporated into the package. We start with a methodological
introduction to extended Rasch models followed by a general program description and ap-
plication topics. The package allows for the computation of simple Rasch models, rating
scale models, partial credit models and linear extensions of these. The incorporation of
such linear structures allows for modeling the effects of covariates and enables the analysis
of repeated categorical measurements. The item parameter estimation is performed by
means of CML, for the person parameters we use ordinary ML. The estimation routines
work for incomplete data matrices as well. Based on these estimators, item-wise and
global goodness-of-fit statistics are described and various plots are presented.

Keywords:˜eRm package, Rasch model, LLTM, RSM, LRSM, PCM, LPCM, CML estimation.

1. Introduction

Rost (1999) claimed in his article that “even though the Rasch model has been existing for
such a long time, 95% of the current tests in psychology are still constructed by using methods
from classical test theory” (p. 140). Basically, he quotes the following reasons why the Rasch
model (RM) is being rarely used: The Rasch model in its original form (Rasch 1960), which
was limited to dichotomous items, is arguably too restrictive for practical testing purposes.
Thus, researchers should focus on extended Rasch models. In addition, Rost argues that there
is a lack of user-friendly software for the computation of such models. Hence, there is a need
for a comprehensive, user-friendly software routine. Corresponding recent discussions can be
found in Kubinger (2005) and Borsboom (2006).

In addition to the RM, the models that can be computed by means of the eRm package are:
the linear logistic test model (Scheiblechner 1972), the rating scale model (Andrich 1978), the
linear rating scale model (Fischer and Parzer 1991), the partial credit model (Masters 1982),
and the linear partial credit model (Glas and Verhelst 1989; Fischer and Ponocny 1994).
These models and their main characteristics are presented in Section 2.

Concerning parameter estimation, these models have an important feature in common: Sep-
arability of item and person parameters. This implies that the item parameters β can be
estimated without estimating the person parameters achieved by conditioning the likelihood
on the sufficient person raw score. This conditional maximum likelihood (CML) approach is
described in Section 3.
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Several diagnostic tools and tests to evaluate model fit are presented in Section 4.

In Section 5, the corresponding implementation in R (R Development Core Team 2007) is
described by means of several examples. The eRm package uses a design matrix approach
which allows to reparameterize the item parameters to model common characteristics of the
items or to enable the user to impose repeated measurement designs as well as group contrasts.
By combining these types of contrasts one allows that the item parameter may differ over
time with respect to certain subgroups. To illustrate the flexibility of the eRm package some
examples are given to show how suitable design matrices can be constructed.

2. Extended Rasch models

2.1. General expressions

Briefly after the first publication of the basic Rasch Model (Rasch 1960), the author worked
on polytomous generalizations which can be found in Rasch (1961). Andersen (1995) derived
the representations below which are based on Rasch’s general expression for polytomous data.
The data matrix is denoted as X with the persons in the rows and the items in the columns.
In total there are v = 1, . . . , n persons and i = 1, . . . , k items. A single element in the data
matrix X is indexed by xvi. Furthermore, each item Ii has a certain number of response
categories, denoted by h = 0, . . . , mi. The corresponding probability of response h on item i
can be derived in terms of the following two expressions (Andersen 1995):

P (Xvi = h) =
exp[φh(θv + βi) + ωh]∑mi
l=0 exp[φl(θv + βi) + ωl]

(1)

or

P (Xvi = h) =
exp[φhθv + βih]∑mi
l=0 exp[φlθv + βil]

. (2)

Here, φh are scoring functions for the item parameters, θv are the uni-dimensional person
parameters, and βi are the item parameters. In Equation 1, ωh corresponds to category pa-
rameters, whereas in Equation 2 βih are the item-category parameters. The meaning of these
parameters will be discussed in detail below. Within the framework of these two equations,
numerous models have been suggested that retain the basic properties of the Rasch model so
that CML estimation can be applied.

2.2. Representation of extended Rasch models

For the ordinary Rasch model for dichotomous items, Equation 1 reduces to

P (Xvi = 1) =
exp(θv − βi)

1 + exp(θv − βi)
. (3)

The main assumptions, which hold as well for the generalizations presented in this paper, are:
uni-dimensionality of the latent trait, sufficiency of the raw score, local independence, and
parallel item characteristic curves (ICCs). Corresponding explanations can be found, e.g., in
Fischer (1974) and mathematical derivations and proofs in Fischer (1995a).
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Figure 1: Model hierarchy

For dichotomous items, Scheiblechner (1972) proposed the (even more restricted) linear logis-
tic test model (LLTM), later formalized by Fischer (1973), by splitting up the item parameters
into the linear combination

βi =

p∑
j=1

wijηj . (4)

Scheiblechner (1972) explained the dissolving process of items in a test for logics (“Mengen-
rechentest”) by so-called “cognitive operations” ηj such as negation, disjunction, conjunction,
sequence, intermediate result, permutation, and material. Note that the weights wij for item i
and operation j have to be fixed a priori. Further elaborations about the cognitive operations
can be found in Fischer (1974, p.˜361ff.). Thus, from this perspective the LLTM is more
parsimonous than the Rasch model.

Though, there exists another way to look at the LLTM: A generalization of the basic Rasch
model in terms of repeated measures and group contrasts. It should be noted that both
types of reparameterization also apply to the linear rating scale model (LRSM) and the linear
partial credit model (LPCM) with respect to the basic rating scale model (RSM) and the
partial credit model (PCM) presented below. Concerning the LLTM, the possibility to use
it as a generalization of the Rasch model for repeated measurements was already introduced
by Fischer (1974). Over the intervening years this suggestion has been further elaborated.
Fischer (1995b) discussed certain design matrices which will be presented in Section 2.3 and
on the basis of examples in Section 5.

At this point we will focus on a simple polytomous generalization of the Rasch model, the
RSM (Andrich 1978), where each item Ii must have the same number of categories. Pertaining
to Equation 1, φh may be set to h with h = 0, . . . , m. Since in the RSM the number of item
categories is constant, m is used instead of mi. Hence, it follows that

P (Xvi = h) =
exp[h(θv + βi) + ωh]∑m
l=0 exp[l(θv + βi) + ωl]

, (5)

with k item parameters β1, . . . , βk and m+ 1 category parameters ω0, . . . , ωm. This param-
eterization causes a scoring of the response categories Ch which is constant over the single
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items. Again, the item parameters can be split up in a linear combination as in Equation 4.
This leads to the LRSM proposed by Fischer and Parzer (1991).

Finally, the PCM developed by Masters (1982) and its linear extension, the LPCM (Fischer
and Ponocny 1994), are presented. The PCM assigns one parameter βih to each Ii × Ch

combination for h = 0, . . . , mi. Thus, the constant scoring property must not hold over the
items and in addition, the items can have different numbers of response categories denoted by
mi. Therefore, the PCM can be regarded as a generalization of the RSM and the probability
for a response of person v on category h (item i) is defined as

P (Xvih = 1) =
exp[hθv + βih]∑mi
l=0 exp[lθv + βil]

. (6)

It is obvious that (6) is a simplification of (2) in terms of φh = h. As for the LLTM and the
LRSM, the LPCM is defined by reparameterizing the item parameters of the basic model,
i.e.,

βih =

p∑
j=1

wihjηj . (7)

These six models constitute a hierarchical order as displayed in Figure 1. This hierarchy is
the base for a unified CML approach presented in the next section. It is outlined again that
the linear extension models can be regarded either as generalizations or as more restrictive
formulations pertaining to the underlying base model. The hierarchy for the basic model is
straightforward: The RM allows only items with two categories, thus each item is represented
by one parameter βi. The RSM allows for more than two (ordinal) categories each represented
by a category parameter ωh. Due to identifiability issues, ω0 and ω1 are restricted to 0. Hence,
the RM can be seen as a special case of the RSM whereas, the RSM in turn, is a special case
of the PCM. The latter model assigns the parameter βih to each Ii × Ch combination.

To conclude, the most general model is the LPCM. All other models can be considered as
simplifications of Equation 6 combined with Equation 7. As a consequence, once an estimation
procedure is established for the LPCM, this approach can be used for any of the remaining
models. This is what we quote as unified CML approach. The corresponding likelihood
equations follow in Section 3.

2.3. The concept of virtual items

When operating with longitudinal models, the main research question is whether an individ-
ual’s test performance changes over time. The most intuitive way would be to look at the
shift in ability θv across time points. Such models are presented, e.g., in Mislevy (1985), Glas
(1992), and discussed by Hoijtink (1995).

Yet there exists another look onto time dependent changes, as presented in Fischer (1995b,
p˜158ff.): The person parameters are fixed over time and instead of them the item parameters
change. The basic idea is that one item Ii is presented at two different times to the same
person Sv is regarded as a pair of virtual items. Within the framework of extended Rasch
models, any change in θv occuring between the testing occasions can be described without
loss of generality as a change of the item parameters, instead of describing change in terms of
the person parameter. Thus, with only two measurement points, Ii with the corresponding
parameter βi generates two virtual items Ir and Is with associated item parameters β∗r and
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η1 η2 . . . ηk ηk+1

Time 1 β
∗(1)
1 1 0 0 0 0

β
∗(1)
2 0 1 0 0 0
...

. . .
...

β
∗(1)
k 1 0 0 1 0

Time 2 β
∗(2)
k+1 1 0 0 0 1

β
∗(2)
k+2 0 1 0 0 1
...

. . .
...

β
∗(2)
2k 1 0 0 1 1

Table 1: A design matrix for an LLTM with two timepoints.

β∗s . For the first measurement point β∗r = βi, whereas for the second β∗s = βi+τ . In this linear
combination the β∗-parameters are composed additively by means of the real item parameters
β and the treatment effects τ . This concept extends to an arbitrary number of time points
or testing occasions.

Correspondingly, for each measurement point t we have a vector of virtual item parameters
β∗(t) of length k. These are linear reparameterizations of the original β(t), and thus the CML
approach can be used for estimation. In general, for a simple LLTM with two measurement
points the design matrix W is of the form as given in Table 1.

The parameter vector β∗(1) represents the item parameters for the first test occasion, β∗(2)

the parameters for the second occasion. It might be of interest whether these vectors differ.
The corresponding trend contrast is ηk+1. Due to this contrast, the number of original β-
parameters is doubled by introducing the 2k virtual item parameters. If we assume a constant
shift for all item parameters, it is only necessary to estimate η̂′ = (η̂1, . . . , η̂k+1) where η̂k+1

gives the amount of shift. Since according to (4), the vector β̂∗ is just a linear combination
of η̂.

As mentioned in the former section, when using models with linear extensions it is possible to
impose group contrasts. By doing this, one allows that the item difficulties are different across
subgroups. However, this is possible only for models with repeated measurements and virtual
items since otherwise the introduction of a group contrast leads to overparameterization and
the group effect cannot be estimated by using CML.

Table 2 gives an example for a repeated measurement design where the effect of a treatment
is to be evaluated by comparing item difficulties regarding a control and a treatment group.
The number of virtual parameters is doubled compared to the model matrix given in Table
1.

Again, ηk+1 is the parameter that refers to the time contrast, and ηk+2 is a group effect within
measurement point 2. More examples are given in Section 5 and further explanations can be
found in Fischer (1995b), Fischer and Ponocny (1994), and in the software manual for the
LPCM-Win program by Fischer and Ponocny-Seliger (1998).

By introducing the concept of virtual persons, eRm allows for the computation of the linear
logistic test model with relaxed assumptions (LLRA Fischer 1977). Corresponding explana-
tions will be given in a subsequent version of this vignette.
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η1 η2 . . . ηk ηk+1 ηk+2

Time 1 Group 1 β
∗(1)
1 1 0 0 0 0 0

β
∗(1)
2 0 1 0 0 0 0
...

. . .
...

...

β
∗(1)
k 1 0 0 1 0 0

Group 2 β
∗(1)
k+1 1 0 0 0 0 0

β
∗(1)
k+2 0 1 0 0 0 0
...

. . .
...

...

β
∗(1)
2k 1 0 0 1 0 0

Time 2 Group 1 β
∗(2)
1 1 0 0 0 1 0

β
∗(2)
2 0 1 0 0 1 0
...

. . .
...

...

β
∗(2)
k 1 0 0 1 1 0

Group 2 β
∗(2)
k+1 1 0 0 0 1 1

β
∗(2)
k+2 0 1 0 0 1 1
...

. . .
...

...

β
∗(2)
2k 1 0 0 1 1 1

Table 2: Design matrix for a repeated measurements design with treatment and control group.

3. Estimation of item and person parameters

3.1. CML for item parameter estimation

The main idea behind the CML estimation is that the person’s raw score rv =
∑k

i=1 xvi is
a sufficient statistic. Thus, by conditioning the likelihood onto r′ = (r1, . . . , rn), the person
parameters θ, which in this context are nuisance parameters, vanish from the likelihood
equation, thus, leading to consistently estimated item parameters β̂.

Some restrictions have to be imposed on the parameters to ensure identifiability. This can
be achieved, e.g., by setting certain parameters to zero depending on the model. In the
Rasch model one item parameter has to be fixed to 0. This parameter may be considered
as baseline difficulty. In addition, in the RSM the category parameters ω0 and ω1 are also
constrained to 0. In the PCM all parameters representing the first category, i.e., βi0 with
i = 1, . . . , k, and one additional item-category parameter, e.g., β11 have to be fixed. For the
linear extensions it holds that the β-parameters that are fixed within a certain condition (e.g.,
first measurement point, control group etc.) are also constrained in the other conditions (e.g.,
second measurement point, treatment group etc.).

At this point, for the LPCM the likelihood equations with corresponding first and second
order derivatives are presented (i.e., unified CML equations). In the first version of the
eRm package numerical approximations of the Hessian matrix are used. However, to ensure
numerical accuracy and to speed up the estimation process, it is planned to implement the
analytical solution as given below.
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The conditional log-likelihood equation for the LPCM is

logLc =

k∑
i=1

mi∑
h=1

x+ih

p∑
j=1

wihjηj −
rmax∑
r=1

nr log γr. (8)

The maximal raw score is denoted by rmax whereas the number of subjects with the same raw
score is quoted as nr. Alternatively, by going down to an individual level, the last sum over r
can be replaced by

∑n
v=1 log γrv . It is straightforward to show that the LPCM as well as the

other extended Rasch models, define an exponential family (Andersen 1983). Thus, the raw
score rv is minimally sufficient for θv and the item totals x.ih are minimally sufficient for βih.

Crucial expressions are the γ-terms which are known as elementary symmetric functions.
More details about these terms are given in the next section. However, in the eRm package
the numerically stable summation algorithm as suggested by Andersen (1972) is implemented.
Fischer and Ponocny (1994) adopted this algorithm for the LPCM and devised also the first
order derivative for computing the corresponding derivative of logLc:

∂ logLc

∂ηa
=

k∑
i=1

mi∑
h=1

wiha

(
x+ih − εih

rmax∑
r=1

nr
γ
(i)
r

γr

)
. (9)

It is important to mention that for the CML-representation, the multiplicative Rasch ex-
pression is used throughout equations 1 to 7, i.e., εi = exp(−βi) for the person parameter.
Therefore, εih corresponds to the reparameterized item × category parameter whereas εih > 0.

Furthermore, γ
(i)
r are the first order derivatives of the γ-functions with respect to item i. The

index a in ηa denotes the first derivative with respect to the ath parameter.

For the second order derivative of logLc, two cases have to be distinguished: the derivatives
for the off-diagonal elements and the derivatives for the main diagonal elements. The item
categories with respect to the item index i are coded with hi, and those referring to item l
with hl. The second order derivatives of the γ-functions with respect to items i and l are

denoted by γ
(i,l)
r . The corresponding likelihood expressions are

∂ logLc

∂ηaηb
=−

k∑
i=1

mi∑
hi=1

wihiawihibεihi

rmax∑
r=1

nr
log γr−hi

γr
(10)

−
k∑

i=1

mi∑
hi=1

k∑
l=1

ml∑
hl=1

wihiawlhlb

[
εihi

εlhl

(
rmax∑
r=1

nr
γ
(i)
r γ

(l)
r

γ2r
−

rmax∑
r=1

nr
γ
(i,l)
r

γr

)]

for a 6= b, and

∂ logLc

∂η2a
=−

k∑
i=1

mi∑
hi=1

w2
ihia

εihi

rmax∑
r=1

nr
log γr−hi

γr
(11)

−
k∑

i=1

mi∑
hi=1

k∑
l=1

ml∑
hl=1

wihiawlhlaεihi
εlhl

rmax∑
r=1

nr
γ
(i)
r−hi

γ
(l)
r−hl

γ2r

for a = b.
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To solve the likelihood equations with respect to η̂, a Newton-Raphson algorithm is applied.
The update within each iteration step s is performed by

η̂s = η̂s−1 −H−1s−1δs−1. (12)

The starting values are η̂0 = 0. H−1s−1 is the inverse of the Hessian matrix composed by the
elements given in Equation 10 and 11 and δs−1 is the gradient at iteration s− 1 as specified

in Equation 9. The iteration stops if the likelihood difference
∣∣∣logL

(s)
c − logL

(s−1)
c

∣∣∣ ≤ ϕ

where ϕ is a predefined (small) iteration limit. Note that in the current version (0.15-4) H
is approximated numerically by using the nlm Newton-type algorithm provided in the stats
package. The analytical solution as given in Equation 10 and 11 will be implemented in the
subsequent version of eRm.

3.2. Mathematical properties of the CML estimates

A variety of estimation approaches for IRT models in general and for the Rasch model in
particular are available: The joint maximum likelihood (JML) estimation as proposed by
Wright and Panchapakesan (1969) which is not recommended since the estimates are not
consistent (see e.g. Haberman 1977). The basic reason for that is that the person parameters
θ are nuisance parameters; the larger the sample size, the larger the number of parameters.

A well-known alternative is the marginal maximum likelihood (MML) estimation (Bock and
Aitkin 1981): A distribution g(θ) for the person parameters is assumed and the resulting
situation corresponds to a mixed-effects ANOVA: Item difficulties can be regarded as fixed
effects and person abilities as random effects. Thus, IRT models fit into the framework of
generalized linear mixed models (GLMM) as elaborated in de Boeck and Wilson (2004). By
integrating over the ability distribution the random nuisance parameters can be removed from
the likelihood equations. This leads to consistent estimates of the item parameters. Further
discussions of the MML approach with respect to the CML method will follow.

For the sake of completeness, some other methods for the estimation of the item parame-
ters are the following: Anderson, Li, and Vermunt (2007) propose a Pseudo-ML approach,
Molenaar (1995) and Linacre (2004) give an overview of various (heuristic) non-ML methods,
Bayesian techniques can be found in Baker and Kim (2004, Chapter 7), and for nonparame-
teric approaches it is referred to de˜Leeuw and Verhelst (1986).

However, back to CML, the main idea behind this approach is the assumption that the raw
score rv is a minimal sufficient statistic for θv. Starting from the equivalent multiplicative
expression of Equation 1 with ξv = exp(θv) and εi = exp(−βi), i.e.,

P (Xvi = 1) =
ξvεi

1 + ξvεi
, (13)

the following likelihood for the response pattern xv for a certain subject v results:

P (xv|ξv, ε) =
k∏

i=1

(ξvεi)
xvi

1 + ξvεi
=
θv

rv
∏k

i=1 εi
xvi∏k

i=1(1 + ξvεi)
. (14)

Using the notation y = (y1, . . . , yk) for all possible response patterns with
∑k

i=1 yi = rv, the
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probability for a fixed raw score rv is

P (rv|ξv, ε) =
∑
y|rv

k∏
i=1

(ξvεi)
xvi

1 + ξvεi
=
θv

rv
∑

y|rv
∏k

i=1 εi
xvi∏k

i=1(1 + ξvεi)
. (15)

The crucial term with respect to numerical solutions of the likelihood equations is the second
term in the numerator:

γr(εi) ≡
∑
y|rv

k∏
i=1

εi
xvi (16)

These are the elementary symmetric functions (of order r). An overview of efficient compu-
tational algorithms and corresponding simulation studies can be found in Liou (1994). The
eRm package uses the summation algorithm as proposed by Andersen (1972).

Finally, by collecting the different raw scores into the vector r the conditional probability of
observing response pattern xv with given raw score rv is

P (xv|rv, ε) =
P (xv|ξv, ε)
P (rv|ξv, ε)

. (17)

By taking the product over the persons (independence assumption), the (conditional) likeli-
hood expression for the whole sample becomes

L(ε|r) = P (x|r, ε) =
n∏

v=1

∏k
i=1 εi

xvi

γrv
. (18)

With respect to raw score frequencies nr and by reintroducing the β-parameters, (18) can be
reformulated as

L(β|r) =
exp

(∑k
i=1 x+iβi

)
∏k

r=0 γ
nr
r

, (19)

where x+i are the item raw scores. It is obvious that by conditioning the likelihood on the raw
scores r, the person parameters completely vanished from the expression. As a consequence,
the parameters β̂ can be estimated without knowledge of the subject’s abilities. This issue is
referred as person-free item assessment and we will discuss this topic within the context of
specific objectivity in the next section.

Pertaining to asymptotical issues, it can be shown that under mild regularity conditions
(Pfanzagl 1994) the CML estimates are consistent for n→∞ and k fixed, unbiased, asymp-
totically efficient, and normally distributed (Andersen 1970). For the computation of a Rasch
model, comparatively small samples are sufficient to get reliable estimates (Fischer 1988).
Whether the MML estimates are unbiased depends on the correct specification of the ability
distribution g(θ). In case of an incorrect assumption, the estimates are biased which is surely
a drawback of this method. If g(θ) is specified appropriately, the CML and MML estimates
are asymptotically equivalent (Pfanzagl 1994).

Fischer (1981) elaborates on the conditions for the existence and the uniqueness of the CML
estimates. The crucial condition for the data matrix is that X has to be well-conditioned.
To introduce this issue it is convenient to look at a matrix which is ill-conditioned : A matrix
is ill-conditioned if there exists a partition of the items into two nonempty subsets such that
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X =

(
X1 X2

X3 X4

)
=



1 . . . 1

X1
...

. . .
...

1 . . . 1

0 . . . 0
...

. . .
... X4

0 . . . 0



all of a group of subjects responded correctly to items i + 1, . . . , k (X2) and all of all other
subjects failed for items 1, . . . , i (X3), i.e.,

Thus, following the definition in Fischer (1981): X will be called well-conditioned iff in every
possible partition of the items into two nonempty subsets some subjects has given response
1 on some item in the first set and response 0 on some item in the second set. In this case a
unique solution for the CML estimates β̂ exists.

This issue is important for structurally incomplete designs which often occur in practice;
different subsets of items are presented to different groups of persons g = 1, . . . , G where
G ≤ n. As a consequence, the likelihood values have to be computed for each group separately
and the joint likelihood is the product over the single group likelihoods. Hence, the likelihood
in Equation 19 becomes

L(β|r) =
G∏

g=1

exp
(∑k

i=1 x+iβi

)
∏k

r=0 γg,r
ng,r

(20)

This also implies the necessity to compute the elementary symmetric functions separately for
each group. The eRm package can handle such structurally incomplete designs.

From the elaborations above it is obvious that from an asymptotical point of view the CML
estimates are at least as good as the MML estimates. In the past, computational problems
(speed, numerical accuracy) involved in calculating the elementary symmetric functions lim-
ited the practical usage of the CML approach (see e.g. Gustafsson 1980). Nowadays, these
issues are less crucial due to increased computer power.

In some cases MML estimation has advantages not shared by CML: MML leads to finite
person parameters even for persons with zero and perfect raw score, and such persons are not
removed from the estimation process (Molenaar 1995). On he other hand the consideration
of such persons does not seem meaningful from a substantial point of view since the person
parameters are not reliable anymore – for such subjects the test is too difficult or too easy,
respectively. Thus, due to these covering effects, a corresponding ability estimation is not
feasible. However, if the research goal is to find ability distributions such persons should be
regarded and MML can handle this.

When estimates for the person parameters are of interest some care has to be taken if the
CML method is used since person parameters cancel from the estimation equations. Usually,
they are estimated (once having obtained values for the item parameters) by inserting β̂
(or equivalently ε̂) into Equation 14 and solving with respect to θ. Alternatively, Bayesian
procedures are applicable (Hoijtink and Boomsma 1995). It is again pointed out that each
person in the sample gets an own parameter even though limited by the number of different
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raw scores.

3.3. CML and specific objectivity

In general, the Rasch model can be regarded as a measurement model: Starting from the
(nominally scaled) 0/1-data matrix X, the person raw scores rv are on an ordinal level.
They, in turn, are used to estimate the item parameters β which are on an interval scale
provided that the Rasch model holds.

Thus, Rasch models allow for comparisons between objects on an interval level. Rasch rea-
soned on requirements to be fulfilled such that a specific proposition within this context can
be regarded as “scientific”. His conclusions were that a basic requirement is the “objectivity”
of comparisons (Rasch 1961). This claim contrasts assumptions met in classical test theory
(CTT). A major advantage of the Rasch model over CTT models is the sample independence
of the results. The relevant concepts in CTT are based on a linear model for the “true score”
leading to some indices, often correlation coefficients, which in turn depend on the observed
data. This is a major drawback in CTT. According to Fischer (1974), sample independence
in IRT models has the following implications:

• The person-specific results (i.e., essentially θ) do not depend on the assignment of a
person to a certain subject group nor on the selected test items from an item pool Ψ.

• Changes in the skills of a person on the latent trait can be determined independently
from its base level and independently from the selected item subset ψ ⊂ Ψ.

• From both theoretical and practical perspective the requirement for representativeness
of the sample is obsolete in terms of a true random selection process.

Based on these requirements for parameter comparisons, Rasch (1977) introduced the term
specific objectivity : objective because any comparison of a pair of parameters is independent
of any other parameters or comparisons; specifically objective because the comparison made
was relative to some specified frame of reference (Andrich 1988). In other words, if specific
objectivity holds, two persons v and w with corresponding parameters θv and θw, are com-
parable independently from the remaining persons in the sample and independently from the
presented item subset ψ. In turn, for two items i and j with parameters βi and βj , the
comparison of these items can be accomplished independently from the remaining items in Ψ
and independently from the persons in the sample.

The latter is crucial since it reflects completely what is called sample independence. If we think
not only of comparing βi and βj but rather to estimate these parameters, we achieve a point

where specific objectivity requires a procedure which is able to provide estimates β̂ that do not
depend on the sample. This implies that β̂ should be computable without the involvement of
θ. CML estimation fulfills this requirement: By conditioning on the sufficient raw score vector
r, θ disappears from the likelihood equation and L(β|r) can be solved without knowledge
of θ. This issue is referred to as separability of item and person parameters (see e.g. Wright
and Masters 1982). Furthermore, separability implies that no specific distribution should be
assumed neither for the person nor for the item parameters (Rost 2000). MML estimation
requires such assumptions. At this point it is clear that CML estimation is the only estimation
method within the Rasch measurement context fulfilling the requirement of person-free item
calibration and, thus, it maps the epistemological theory of specific objectivity to a statistical
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maximum likelihood framework. Note that strictly speaking any statistical result based on
sample observations is sample-dependent because any result depends at least on the sample
size (Fischer 1987). The estimation of the item parameters is “sample-independent”, a term
indicating the fact that the actually obtained sample of a certain population is not of relevance
for the statistical inference on these parameters (Kubinger 1989, p. 23).

3.4. Estimation of person parameters

CML estimation for person parameters is not recommended due to computational issues.
The eRm package provides two methods for this estimation. The first is ordinary ML where
the CML-based item parameters are plugged into the joint ML equation. The likelihood is
optimized with respect to θ. Andersen (1995) gives a general formulation of this ML estimate
with rv = r and θv = θ:

r −
k∑

i=1

mi∑
h=1

h exp(hθ + β̂ih)∑mi
l=0 exp(hθv + β̂il)

= 0 (21)

Warm (1989) proposed a weighted likelihood estimation (WLE) which is more accurate com-
pared to ML. For the dichotomous Rasch model the expression to be solved with respect to
θ is

P (θv|xv, β̂) ∝ exp(rvθv)∏
i(1 + exp(θv − β̂i)

∑
i

pvi(1− pvi) (22)

Again, the item parameter vector β̂ is used from CML. This approach will implemented in
a subsequent eRm version. Additional explanations and simulation studies regarding person
parameter estimation can be found in Hoijtink and Boomsma (1995).

4. Testing extended Rasch models

Testing IRT models involves two parts: First, item- and person-wise statistics can be ex-
amined; in particular item-fit and person-fit statistics. Secondly, based on CML properties,
various model tests can be derived (see Glas and Verhelst 1995a,b).

4.1. Item-fit and person-fit statistics

Commonly in IRT, items and persons are excluded due to item-fit and person-fit statistics.
Both are residual based measures: The observed data matrix X is compared with the model
probability matrix P . Computing standardized residuals for all observations gives the n× k
residual matrixR. The squared column sums correspond to item-fit statistics and the squared
row sums to person-fit statistics both of which are χ2-distributed with the corresponding
degrees of freedom. Based on these quantities unweighted (outfit) and weighted (infit) mean-
square statistics can also be used to evaluate item and person fit (see e.g. Wright and Masters
1982).

4.2. A Wald test for item elimination

A helpful implication of CML estimates is that subsequent test statistics are readily obtained
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and model tests are easy to carry out. Basically, we have to distinguish between test on item
level and global model tests.

On item level, sample independence reflects the property that by splitting up the sample in,
e.g., two parts, the corresponding parameter vectors β̂(1) and β̂(2) should be the same. Thus,
when we want to achieve Rasch model fit those items have to be eliminated from the test which
differ in the subsamples. This important issue in test calibration can be examined, e.g., by
using a graphical model test. Fischer and Scheiblechner (1970) propose a N (0, 1)-distributed
test statistic which compares the item parameters for two subgroups:

z =
β
(1)
i − β

(2)
i√

V ar
(1)
i − V ar

(2)
i

(23)

The variance term in the denominator is based on Fisher’s function of “information in the
sample”. However, as Glas and Verhelst (1995a) point out discussing their Wald-type test
that this term can be extracted directly from the variance-covariance matrix of the CML
estimates. This Wald approach is provided in eRm by means of the function Waldtest().

4.3. Andersen’s likelihood-ratio test

In the eRm package the likelihood ratio test statistic LR, initially proposed by Andersen
(1973) is computed for the RM, the RSM, and the PCM. For the models with linear extensions,
LR has to be computed separately for each measurement point and subgroup.

LR = 2

 G∑
g=1

logLc(η̂g;Xg)− logLc(η̂;X)

 (24)

The underlying principle of this test statistic is that of subgroup homogeneity in Rasch models:
for arbitrary disjoint subgroups g = 1, . . . , G the parameter estimates η̂g have to be the same.
LR is asymptotically χ2-distributed with df equal to the number of parameters estimated
in the subgroups minus the number of parameters in the total data set. For the sake of
computational efficiency, the eRm package performs a person raw score median split into
two subgroups. In addition, a graphical model test (Rasch 1960) based on these estimates
is produced by plotting β̂1 against β̂2. Thus, critical items (i.e. those fairly apart from the
diagonal) can be identified and eliminated. Further elaborations and additional test statistics
for polytomous Rasch models can be found, e.g., in Glas and Verhelst (1995a).

4.4. Nonparametric (“exact”) Tests

Based on the package RaschSampler by Verhelst, Hatzinger, and Mair (2007) several Rasch
model tests as proposed by (Ponocny 2001) are provided.

4.5. Martin-Löf Test

Applying the LR principle to subsets of items, Martin-Löf (1973, see Glas and Verhelst 1995a)
suggested a statistic to evaluate if two groups of items are homogeneous, i.e., to test the
unidimensionality axiom.
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5. The eRm package and application examples

The underlying idea of the eRm package is to provide a user-friendly flexible tool to compute
extended Rasch models. This implies, amongst others, an automatic generation of the design
matrix W . However, in order to test specific hypotheses the user may specify W allowing the
package to be flexible enough for computing IRT-models beyond their regular applications.
In the following subsections, various examples are provided pertaining to different model and
design matrix scenarios. Due to intelligibility matters, the artificial data sets are kept rather
small. A detailed description in German of applications of various extendend Rasch models
using the eRm package can be found in Poinstingl, Mair, and Hatzinger (2007).

5.1. Structure of the eRm package

Embedding eRm into the flexible framework of R is a crucial benefit over existing stand-alone
programs like WINMIRA (von Davier 1998), LPCM-WIN (Fischer and Ponocny-Seliger 1998),
and others.

Another important issue in the development phase was that the package should be flexible
enough to allow for CML compatible polytomous generalizations of the basic Rasch model
such as the RSM and the PCM. In addition, by introducing a design matrix concept linear
extensions of these basic models should be applicable. This approach resulted in including
the LLTM, the LRSM and the LPCM as the most general model into the eRm package. For
the latter model the CML estimation was implemented which can be used for the remaining
models as well. A corresponding graphical representation is given in Figure 2.

function RM

X

function LLTM

X
W
mpoints
groupvec

function RSM

X

function LRSM

X
W
mpoints
groupvec

function PCM

X

function LPCM

X
W
mpoints
groupvec

Unified CML
(Log-)Likelihood, Parameter Estimates, Standard Errors, …

Tests for Model Fit

Figure 2: Bodywork of the eRm routine

An important benefit of the package with respect to linearly extended models is that for cer-
tain models the design matrix W can be generated automatically (LPCM-WIN, Fischer and
Ponocny-Seliger 1998) also allows for specifying design matrices but in case of more complex
models this can become a tedious task and the user must have a thorough understanding of es-
tablishing proper design structures). For repeated measurement models time contrasts in the
eRm can be simply specified by defining the number of measurement points, i.e., mpoints.
To regard group contrasts like, e.g., treatment and control groups, a corresponding vector
(groupvec) can be specified that denotes which person belongs to which group. However, W
can also be defined by the user.
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A recently added feature of the routine is the option to allow for structurally missing values.
This is required, e.g., in situations when different subsets of items are presented to different
groups of subjects as described in Section 3.2. These person groups are identified automat-
ically: In the data matrix X, those items which are not presented to a certain subject are
declared as NAs, as usual in R.

After solving the CML equations by the Newton-Raphson method, the output of the routine
consists of the “basic” parameter estimates η̂, the corresponding variance-covariance matrix,
and consequently the vector with the standard errors. Furthermore, the ordinary item pa-
rameter estimates β̂ are computed by using the linear transformation β̂ = Wη̂. For ordinary
Rasch models these basic parameters correspond to the item easiness. For the RM, the RSM,
and the PCM, however, we display η̂ as −η̂, i.e., as difficulty. It has to be mentioned that
the CML equation is solved with the restriction that one item parameter has to be fixed to
zero (we use β1 = 0). For the sake of interpretability, the resulting estimates β̂ can easily be
transformed into“sum-zero”restricted β̂∗ by applying β̂∗i = β̂i−

∑
i β̂i/k. This transformation

is also used for the graphical model test.

5.2. Example 1: Rasch model

We start the example section with a simple Rasch model based on a 100×30 data matrix. First,
we estimate the item parameters using the function RM() and then the person parameters with
person.parameters().

> library("eRm")

> data(raschdat1)

> res.rasch <- RM(raschdat1)

> pres.rasch <- person.parameter(res.rasch)

Then we use Andersen’s LR-test for goodness-of-fit with mean split criterion:

> lrres.rasch <- LRtest(res.rasch, splitcr = "mean", se = TRUE)

> lrres.rasch

Andersen LR-test:

LR-value: 30.288

Chi-square df: 29

p-value: 0.4

We see that the model fits and a graphical representation of this result (subset of items only)
is given in Figure 3 by means of a goodness-of-fit plot with confidence ellipses.

> plotGOF(lrres.rasch, beta.subset = c(14, 5, 18, 7, 1), tlab = "item",

+ conf = list(ia = FALSE, col = "blue", lty = "dotted"))

To be able to draw confidence ellipses it is needed to set se = TRUE when computing the
LR-test.

5.3. Example 2: LLTM as a restricted Rasch model

As mentioned in Section 2.2, also the models with the linear extensions on the item parameters
can be seen as special cases of their underlying basic model. In fact, the LLTM as presented
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Figure 3: Goodness-of-fit plot for some items with confidence ellipses.

below and following the original idea by Scheiblechner (1972), is a restricted RM, i.e. the
number of estimated parameters is smaller compared to a Rasch model. The data matrix X
consists of n = 15 persons and k = 5 items. Furthermore, we specify a design matrix W
(following Equation 4) with specific weight elements wij .

> data(lltmdat2)

> W <- matrix(c(1, 2, 1, 3, 2, 2, 2, 1, 1, 1), ncol = 2)

> res.lltm <- LLTM(lltmdat2, W)

> summary(res.lltm)

Results of LLTM estimation:

Call: LLTM(X = lltmdat2, W = W)

Conditional log-likelihood: -31.65225

Number of iterations: 7

Number of parameters: 2
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Basic Parameters eta with 0.95 CI:

Estimate Std. Error lower CI upper CI

eta 1 -0.098 0.313 -0.711 0.516

eta 2 0.114 0.478 -0.823 1.051

Item Easiness Parameters (beta) with 0.95 CI:

Estimate Std. Error lower CI upper CI

beta I1 0.130 1.098 -2.022 2.283

beta I2 0.033 1.302 -2.519 2.584

beta I3 0.016 0.651 -1.259 1.292

beta I4 -0.179 1.184 -2.500 2.141

beta I5 -0.081 0.903 -1.850 1.688

The summary() method provides point estimates and standard errors for the basic parameters
and for the resulting item parameters. Note that item parameters in eRm are always estimated
as easiness parameters according to equations 1 and 2 but not 3. If the sign is switched, the
user gets difficulty parameters (the standard errors remain the same, of course). However, all
plotting functions plotGOF, plotICC, plotjointICC, and plotPImap, as well as the function
thresholds display the difficulty parameters. The same applies for the basic parameters η
in the output of the RM, RSM, and PCM.

5.4. Example 3: RSM and PCM

Again, we provide an artificial data set now with n = 300 persons and k = 4 items; each
of them with m + 1 = 3 categories. We start with the estimation of an RSM and, subse-
quently, we calculate the corresponding category-intersection parameters using the function
thresholds().

> data(pcmdat2)

> res.rsm <- RSM(pcmdat2)

> thresholds(res.rsm)

Design Matrix Block 1:

Location Threshold 1 Threshold 2

I1 1.60712 0.59703 2.61721

I2 1.92251 0.91242 2.93260

I3 0.00331 -1.00678 1.01340

I4 0.50743 -0.50266 1.51752

The location parameter is basically the item difficulty and the thesholds are the points in the
ICC plot given in Figure 4 where the category curves intersect:

> plotICC(res.rsm, mplot = TRUE, legpos = FALSE, ask = FALSE)

The RSM restricts the threshold distances to be the same across all items. This strong
assumption can be relaxed using a PCM. The results are represented in a person-item map
(see Figure 5).
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Figure 4: ICC plot for an RSM.

> res.pcm <- PCM(pcmdat2)

> plotPImap(res.pcm, sorted = TRUE)

After estimating the person parameters we can check the item-fit statistics.

> pres.pcm <- person.parameter(res.pcm)

> itemfit(pres.pcm)

Itemfit Statistics:

Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t

I1 225.617 255 0.907 0.881 0.885 -1.55 -1.53

I2 215.948 255 0.964 0.844 0.903 -1.81 -1.26

I3 179.811 255 1.000 0.702 0.713 -3.55 -3.92

I4 214.473 255 0.969 0.838 0.809 -1.88 -2.54

A likelihood ratio test comparing the RSM and the PCM indicates that the PCM provides a
better fit.
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Figure 5: Person-Item map for a PCM.

> lr <- 2 * (res.pcm$loglik - res.rsm$loglik)

> df <- res.pcm$npar - res.rsm$npar

> pvalue <- 1 - pchisq(lr, df)

> cat("LR statistic: ", lr, " df =", df, " p =", pvalue, "\n")

LR statistic: 11.69992 df = 3 p = 0.00848509

5.5. An LPCM for repeated measurements in different groups

The most complex example refers to an LPCM with two measurement points. In addition,
the hypothesis is of interest whether the treatment has an effect. The corresponding contrast
is the last column in W below.

First, the data matrix X is specified. We assume an artificial test consisting of k = 3 items
which was presented twice to the subjects. The first 3 columns in X correspond to the
first test occasion, whereas the last 3 to the second occasion. Generally, the first k columns
correspond to the first test occasion, the next k columns for the second, etc. In total, there
are n = 20 subjects. Among these, the first 10 persons belong to the first group (e.g., control),
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and the next 10 persons to the second group (e.g., treatment). This is specified by a group
vector:

> data(lpcmdat)

> grouplpcm <- rep(1:2, each = 10)

Again, W is generated automatically. In general, for such designs the generation of W
consists first of the item contrasts, followed by the time contrasts and finally by the group
main effects except for the first measurement point (due to identifiability issues, as already
described).

> reslpcm <- LPCM(lpcmdat, mpoints = 2, groupvec = grouplpcm, sum0 = FALSE)

> model.matrix(reslpcm)

eta 1 eta 2 eta 3 eta 4 eta 5 eta 6 eta 7 eta 8 eta 9 eta 10

I1.c1 t1 g1 0 0 0 0 0 0 0 0 0 0

I1.c2 t1 g1 1 0 0 0 0 0 0 0 0 0

I1.c3 t1 g1 0 1 0 0 0 0 0 0 0 0

I2.c1 t1 g1 0 0 1 0 0 0 0 0 0 0

I2.c2 t1 g1 0 0 0 1 0 0 0 0 0 0

I2.c3 t1 g1 0 0 0 0 1 0 0 0 0 0

I3.c1 t1 g1 0 0 0 0 0 1 0 0 0 0

I3.c2 t1 g1 0 0 0 0 0 0 1 0 0 0

I3.c3 t1 g1 0 0 0 0 0 0 0 1 0 0

I1.c1 t1 g2 0 0 0 0 0 0 0 0 0 0

I1.c2 t1 g2 1 0 0 0 0 0 0 0 0 0

I1.c3 t1 g2 0 1 0 0 0 0 0 0 0 0

I2.c1 t1 g2 0 0 1 0 0 0 0 0 0 0

I2.c2 t1 g2 0 0 0 1 0 0 0 0 0 0

I2.c3 t1 g2 0 0 0 0 1 0 0 0 0 0

I3.c1 t1 g2 0 0 0 0 0 1 0 0 0 0

I3.c2 t1 g2 0 0 0 0 0 0 1 0 0 0

I3.c3 t1 g2 0 0 0 0 0 0 0 1 0 0

I1.c1 t2 g1 0 0 0 0 0 0 0 0 1 0

I1.c2 t2 g1 1 0 0 0 0 0 0 0 2 0

I1.c3 t2 g1 0 1 0 0 0 0 0 0 3 0

I2.c1 t2 g1 0 0 1 0 0 0 0 0 1 0

I2.c2 t2 g1 0 0 0 1 0 0 0 0 2 0

I2.c3 t2 g1 0 0 0 0 1 0 0 0 3 0

I3.c1 t2 g1 0 0 0 0 0 1 0 0 1 0

I3.c2 t2 g1 0 0 0 0 0 0 1 0 2 0

I3.c3 t2 g1 0 0 0 0 0 0 0 1 3 0

I1.c1 t2 g2 0 0 0 0 0 0 0 0 1 1

I1.c2 t2 g2 1 0 0 0 0 0 0 0 2 2

I1.c3 t2 g2 0 1 0 0 0 0 0 0 3 3

I2.c1 t2 g2 0 0 1 0 0 0 0 0 1 1

I2.c2 t2 g2 0 0 0 1 0 0 0 0 2 2
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I2.c3 t2 g2 0 0 0 0 1 0 0 0 3 3

I3.c1 t2 g2 0 0 0 0 0 1 0 0 1 1

I3.c2 t2 g2 0 0 0 0 0 0 1 0 2 2

I3.c3 t2 g2 0 0 0 0 0 0 0 1 3 3

The parameter estimates are the following:

Results of LPCM estimation:

Call: LPCM(X = lpcmdat, mpoints = 2, groupvec = grouplpcm, sum0 = FALSE)

Conditional log-likelihood: -103.7225

Number of iterations: 37

Number of parameters: 10

Basic Parameters eta:

eta 1 eta 2 eta 3 eta 4 eta 5 eta 6

Estimate -0.461590 -1.609589 -0.5713665 -0.8388421 -1.739492 -0.7232787

Std.Err 0.734684 1.194376 0.6232799 0.9855040 1.438237 0.6534341

eta 7 eta 8 eta 9 eta 10

Estimate -0.7096128 -1.209864 -0.2014868 1.094043

Std.Err 0.9862622 1.414866 0.2608238 0.387040

Testing whether the η-parameters equal 0 is mostly not of relevance for those parameters
referring to the items (in this example η1, . . . , η8). But for the remaining contrasts, H0 :
η9 = 0 (implying no general time effect) can not be rejected (p = .44), whereas hypothesis
H0 : η10 = 0 has to be rejected (p = .004) when applying a z-test. This suggests that there
is a significant treatment effect over the measurement points. If a user wants to perform
additional tests such as a Wald test for the equivalence of two η-parameters, the vcov method
can be applied to get the variance-covariance matrix.

6. Additional topics

This section will be extended successively with new developments and components which do
not directly relate to the modeling core of eRm but may prove to be useful add-ons.

6.1. The eRm simulation module

A recent eRm development is the implementation of a simulation module to generate 0-1
matrices for different Rasch scenarios. In this article we give a brief overview about the
functionality and for more detailed descriptions (within the context of model testing) it is
referred to Mair (2006) and Suárez-Falcón and Glas (2003).

For each scenario the user has the option either to assign θ and β as vectors to the simulation
function (e.g., by drawing parameters from a uniform distribution) or to let the function
draw the parameters from a N (0, 1) distribution. The first scenario is the simulation of
Rasch homogenous data by means of the function sim.rasch(). The parameter values are
plugged into equation 3 and it results the matrix P of model probabilites which is of dimension
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n× k. An element pvi indicates the probability that subject v solves item i. In a second step
the matrix P has to be transformed into the 0-1 data matrix X. The recommended way to
achieve this is to draw another random number p?vi from a uniform distribution in [0; 1] and
perform the transformation according to the following rule:

xvi =

{
1 if p?vi ≤ pvi
0 if p?vi > pvi

Alternatively, the user can specify a fixed cutpoint p? := p?vi (e.g., p? = 0.5) and make the
decision according to the same rule. This option is provided by means of the cutpoint

argument. Caution is advised when using this deterministic option since this leads likely to
ill-conditioned data matrices.

The second scenario in this module regards the violation of the parallel ICC assumption which
leads to the two-parameter logistic model (2-PL) proposed by Birnbaum (1968):

P (Xvi = 1) =
exp(αi(θv − βi))

1 + exp(αi(θv − βi))
. (25)

The parameter αi denotes the item discrimination which for the Rasch model is 1 across all
items. Thus, each item score gets a weight and the raw scores are not sufficient anymore.
The function for simulating 2-PL data is sim.2pl() and if α is not specified by the user by
means of the argument discrim, the discrimination parameters are drawn from a log-normal
distribution. The reasons for using this particular kind of distribution are the following: In
the case of αi = 1 the ICC are Rasch consistent. Concerning the violations, it should be
possible to achieve deviations in both directions (for αi > 0). If αi > 0 the ICC is steeper
than in the Rasch case and, consequently, if αi < 1 the ICC is flatter. This bidirectional
deviation around 1 is warranted by the lognormal distribution LN(µ, σ2) with µ = 0. Since
it is a logarithmic distribution, αi cannot be negative. The degrees of model violation can
be steered by means of the dispersion parameter σ2. A value of σ2 = .50 already denotes a
strong violation. The lower σ2, the closer the values lie around 1. In this case the αi are close
to the Rasch slopes.

Using the function sim.xdim() the unidimensionality assumptions is violated. This function
allows for the simulation of multidimensional Rasch models as for instance given Glas (1992)
and Adams, Wilson, and Wang (1997). Multidimensionality implies that one single item
measures more than one latent construct. Let us denote the number of these latent traits
by D. Consequently, each person has a vector of ability parameters θv of length D. These
vectors are drawn from a multivariate normal distribution with mean µ = 0 and VC-matrix Σ
of dimension D×D. This matrix has to be specified by the user with the argument Sigma. In
order to achieve strong model violations, very low correlations such as .01 should be provided.
To specify to which extend item i is measuring each of the D dimensions, a corresponding
vector of weights zi of length D is defined. If the resulting k ×D matrix Z is not provided
by the user, sim.xdim() generates Z such that each zi contains only nonzero element which
indicates the assigned dimension. This corresponds to the between-item multidimensional
model (Adams et˜al. 1997). However, in any case the person part of the model is zTi θv which
replaces θv in Equation 3.

Finally, locally dependent item responses can be produced by means of the function sim.locdep().
Local dependence implies the introduction of pair-wise item correlations δij . If these correla-
tions are constant across items, the argument it.cor can be a single value δ. A value δ = 0
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corresponds to the Rasch model whereas δ = 1 leads to the strongest violation. Alternatively,
for different pair-wise item correlations, the user can specify a VC-matrix ∆ of dimension
k × k. The formal representation of the corresponding IRT model is

P (Xvi = 1|Xvj = xvj) =
exp(θv − βi + xvjδij)

1 + exp(θv − βi + xvjδij)
. (26)

This model was proposed by Jannarone (1986) and is suited to model locally dependent item
responses.

7. Discussion and outlook

Here we give a brief outline of future eRm developments. The CML estimation approach,
in combination with the EM-algorithm, can also be used to estimate mixed Rasch models
(MIRA). The basic idea behind such models is that the extended Rasch model holds within
subpopulations of individuals, but with different parameter values for each subgroup. Corre-
sponding elaborations are given in Rost and von Davier (1995).

In Rasch models the item discrimination parameter αi is always fixed to 1 and thus it does not
appear in the basic equation. Allowing for different discrimination parameters across items
leads to the two-parameter logistic model as given in Equation 25. In this model the raw scores
are not sufficient statistics anymore and hence CML can not be applied. 2-PL models can be
estimated by means of the ltm package (Rizopoulos 2006). However, Verhelst and Glas (1995)
formulated the one parameter logistic model (OPLM) where the αi do not vary across the
items but are unequal to one. The basic strategy to estimate OPLM is a three-step approach:
First, the item parameters of the Rasch model are computed. Then, discrimination parameters
are computed under certain restrictions. Finally, using these discrimination weights, the item
parameters for the OPLM are estimated using CML. This is a more flexible version of the
Rasch model in terms of different slopes.

To conclude, the eRm package is a tool to estimate extended Rasch models for unidimensional
traits. The generalizations towards different numbers of item categories, linear extensions
to allow for introducing item covariates and/or trend and optionally group contrasts are
important issues when examining item behavior and person performances in tests. This
improves the feasibility of IRT models with respect to a wide variety of application areas.
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