
Particle filters in the dynamichazard package

Benjamin Christoffersen

August 15, 2018

This is vignette covers the particle filter for the dynamichazard package in
R. Some prior knowledge of particle filters is required. See Doucet and Johansen
(2009) provides a tutorial on particle filters and Kantas et al. (2015) covers
parameter estimation with particle filters. See also Cappé et al. (2005) for a
general introduction to Hidden Markov models. This vignette relies heavily on
Fearnhead et al. (2010).

1 Method

The model is

yit ∼ P (yit| ηit)

ηt = XtR
+αt + ot + Ztω

αt = Fαt−1 +Rǫt ǫt ∼ N (0,Q)

α0 ∼ N (a0,Q0)

,
i = 1, . . . , nt

t = 1, . . . , d
(1)

where I denote the conditional densities as yt ∼ gt (·|αt) = g (·|XtR
+αt + ot)

and αt ∼ f (·|αt−1). We are in a survival analysis setting where the simplest
model has an indicator of death of individual i in time t such that yit ∈ {0, 1},
ηit is the linear predictor, and we use the logistic function as the link function.
For each t = 1, . . . , d, we a have risk set given by Rt ⊆ {1, 2, . . . , n}. Further, we
let nt = |Rt| and nmax = maxt=1,...d = nt. The observed outcomes are denoted
by yt = {yit}i∈Rt

. Xt is the design matrix of the covariates and αt is the vector
of time-varying coefficients. The Zt is the design matrix for the fixed effects and
ω are the corresponding coefficients.

Superscript + denotes the Moore-Penrose inverse, the i’th row of Xt is xit,
xit, ǫt ∈ R

r, αt ∈ R
p, F ∈ R

p×p and is invertible, Q ∈ R
r×r is a positive definite

matrix, ot are know offsets, and R ∈ {0, 1}p×r with p ≥ r contains a subset of
the columns of Ip identity matrix with no duplicate columns in R. The latter
implies that R+ = R⊤ and R is left inverse (i.e., R⊤R = Ir). RR⊤ is a p× p
diagonal matrix with r diagonal entries with value 1 and p− r with value zero.
The problems we are looking at have nmax ≫ p ≥ r (e.g. nmax = 100000 and
r = 5). We will let

ξt = R+αt

1

I will use a particle filter and smoother to get smoothed estimates ofα1, . . . ,αd

given the outcomes y1:d = {y1,y2, . . . ,yd} and use an EM-algorithm to esti-
mate Q and a0. One choice of smoother is the generalized two-filter smoothing
in Fearnhead et al. (2010) and Briers et al. (2009). The rest of vignette is struc-
tured as follows: first I cover the particle filter and smoother. Then I cover
the EM-algorithm and other miscellaneous topics. I will end with some points
about the implementation.

Considerations

Algorithm 1 shows one of the generalized two-filter smoother from Fearnhead
et al. (2010). It requires that we specify the following proposal distributions
and re-sampling weights (optimal values are given as the right hand side)

q
(
αt

∣∣∣α(j)
t−1,yt

)
= P

(
αt

∣∣∣α(j)
t−1,yt

)

β
(j)
t ∝ P

(
yt

∣∣∣α(j)
t−1

)
w

(j)
t−1

q̃
(
αt

∣∣∣yt, α̃(k)
t+1

)
β̃
(k)
t ≈ γt (αt) P (yt|αt) P

(
α̃

(k)
t+1

∣∣∣αt

)
w̃

(k)
t+1

γt+1

(
α̃

(k)
t+1

)

q̃
(
α̂
(i)
t

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
= P

(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)

(2)

Further, we need to define a backwards filter distribution approximation

p̃ (αt|yt:d) ∝ γt (αt) P (yt:d|αt) (3)

with an artificial prior distribution γt (αt).
Given the models of interest we have that

• Evaluating gt (yt|αt) is an expensive operation as nmax ≫ r and it has
a O (nmaxr) computational cost. Any O (nmax) operation is going to take
considerable time.

• Evaluating f (αt|αt−1) is cheap, it is done in in closed form, and sampling
is easy.

We can also notice that the second example in Fearnhead et al. (2010) is
close to the model here though with nmax = 1. The following sections will
closely follow the example shown in Fearnhead et al. (2010) and the appendix
of the paper.

Forward filter (Algorithm 2)

This section will cover some options for Algorithm 2. Let N (·| ·, ·) denote a
multivariate normal distribution. We can select the proposal density as

q
(
αt

∣∣∣α(j)
t−1,yt

)
= N

(
ξt

∣∣∣R+Fα
(j)
t−1,Q

)
(4)

2

which we can sample from in O
(
Np2

)
time if we have a pre-computed Cholesky

decomposition of Q. This is often called the bootstrap filter. Another option
is to use normal approximation of yt’s conditional density for some value ᾱt−1
and ᾱt = Fᾱt−1

g (yt| ξt) ≃ g̃t (yt| ξt)

= N
(
Xtξt

∣∣∣XtR
+Fᾱt−1 − ot + Gt

(
R+Fᾱt−1 + ot

)−1
gt

(
R+Fᾱt−1 + ot

)
,−Gt

(
R+Fᾱt−1 + ot

)−1
)

= N
(
Xtξt

∣∣∣XtR
+ᾱt − ot + Gt

(
R+ᾱt + ot

)−1
gt

(
R+ᾱt + ot

)
,−Gt

(
R+ᾱt + ot

)−1
)

= N
(
Xtξt

∣∣∣Xtξ̄t − ot + Gt

(
ξ̄t + ot

)
−1
gt

(
ξ̄t + ot

)
,−Gt

(
ξ̄t + ot

)
−1

)

(5)

where

gt (ξ) =

{
∂ log P(yit|ηit)

∂ηit

∣∣∣
ηit=x⊤

it
ξ

}

i∈Rt

Gt (ξ) = diag

({
∂2 log P(yit|ηit)

∂η2
it

∣∣∣
ηit=x⊤

it
ξ

}

i∈Rt

) (6)

to get

q
(
αt

∣∣∣α(j)
t−1,yt

)
∝ N

(
ξt

∣∣∣R+Fα
(j)
t−1,Q

)
g̃
(
yt

∣∣∣R+Fα
(j)
t−1

)
(7)

Thus, we need to sample from

q
(
·
∣∣∣α(j)

t−1,yt

)
= N

(
·
∣∣∣µt

(
α

(j)
t−1, ξ̄t

)
,Σt

(
ξ̄t

))

ξ̄t = R
+
Fᾱt−1

Σt

(
ξ̄t

)
−1

= X
⊤

t

(
−Gt

(
ξ̄t + ot

))
Xt + Q

−1

µt

(
α

(j)
t−1, ξ̄t

)
= Σt

(
ξ̄t

) (
Q

−1
R

+
Fα

(j)
t−1 + X

⊤

t

(
−Gt

(
ξ̄t + ot

)) (
Xtξ̄t − ot −Gt

(
ξ̄t + ot

)
−1
gt

(
ξ̄t + ot

)))

= Σt

(
ξ̄t

) (
Q

−1
R

+
Fα

(j)
t−1 + X

⊤

t

(
−Gt

(
ξ̄t + ot

)
Xtξ̄t − ot + gt

(
ξ̄t + ot

)))

(8)

We can select ᾱt−1 as the weighted mean given the particle cloud at time t− 1

(that is, {α
(1)
t−1,α

(2)
t−1, . . .α

(N)
t−1}). Observing that P (αt|αt−1,yt) is log-concave,

then following Doucet et al. (2000) we can set µ̄
(0)
t = Fᾱt−1 and for k = 1, . . .

1. Set ξ̄
(k−1)
t = R+µ̄

(k−1)
t and let µ̄

(k)
t = µt

(
ᾱt−1, ξ̄

(k−1)
t

)
.

2. Stop if
∣∣∣µ̄(k)

t − µ̄
(k−1)
t

∣∣∣ /
∣∣∣µ̄(k−1)

t

∣∣∣ < ǫ. Otherwise set k ← k+1 and repeat

1.

for some small ǫ. The final functions µt

(
·, ξ̄

(k)
t

)
and Σt

(
ξ̄
(k)
t

)
defined in Equa-

tion (8) are then used as the proposal distributions. Further, µt

(
ᾱt−1, ξ̄

(k)
t

)
is

the mode of P (αt| ᾱt−1,yt). Similar steps can be taken for the next proposal
distributions. We will drop the argument in the functions in equations similar
to Equation (8) and we will not go into details as the steps are very similar.
See also Section 6.2. The downside is an O

(
nmaxp

2 + p3
)
computational cost

though independent of the number of particles, N . The total cost of sampling
is O

(
nmaxp

2 + p3 +Np2
)
.

3

Another option is to set ᾱt−1 = α
(j)
t−1 for each particle j = 1, 2, . . . , N in the

particle cloud at time t − 1. This is similar to the second order random walk
example in Fearnhead et al. (2010). This will improve the Taylor expansion but
yields an O

(
N
(
nmaxp

2 + p3
))

computational cost. The extra Nnmaxp
2 factor

makes this much slower.
Next, we have the re-sampling weights. A simple solution is not to use an

auxiliary particle filter as in the examples of Fearnhead et al. (2010) and set

β
(j)
t ∝ w

(j)
t−1 (9)

which has an O (N) cost of sampling. Another options is to set

β
(j)
t ∝ P

(
yt

∣∣∣α(j)
t−1

)
w

(j)
t−1

≈ w
(j)
t−1

∫

Rr

N
(
ξt

∣∣∣R+Fα
(j)
t−1,Q

)
g (yt| ξt + ot) ∂ξt

≈ w
(j)
t−1

∫

Rr

N
(
ξt

∣∣∣R+Fα
(j)
t−1,Q

)
g (yt| ξt + ot) ∂ξt

≈
w

(j)
t−1N

(
µt

∣∣∣R+Fα
(j)
t−1,Q

)
g (yt|µt + ot)

q
(
µt

∣∣∣α(j)
t−1,yt

)

(10)

where q
(
µt

∣∣∣α(j)
t−1,yt

)
and µt are from Equation (8) computed with α

(j)
t−1.

The re-sampling weights will differ as we condition of different particle α
(j)
t−1.

This comes at an O
(
Np2

)
computational cost assuming that we are using (8)

already in the sampling step. Otherwise it has the same computational cost as
mentioned when I covered the proposal distribution since we have to make the
Taylor approximation anyway.

Backward filter (Algorithm 3)

We need to specify the artificial prior γt (αt). Briers et al. (2009, page 69 and
70) provides recommendation on the selection. This leads to

γt (αt) = N
(
αt

∣∣∣←−mt,
←−
P t

)

←−mt = Fta0

←−
P t =

{
Q0 t = 0

F
←−
P t−1F

⊤ +RQR⊤ t > 0

(11)

Following Fearnhead et al. (2010) then we end with

P (αt|αt+1) = N
(
αt

∣∣∣←−a t,
←−
S t

)

←−
S t =

←−
P tF

⊤←−P−1t+1RQR⊤
(
F⊤
)−1

←−a t =
←−
P tF

⊤←−P−1t+1αt+1 +
←−
S t
←−
P−1t
←−mt

(12)

4

which simplifies for the first order random walk to

←−mt = a0

←−
P t = tQ+Q0

←−
S t = (tQ+Q0) ((t+ 1)Q+Q0)

−1
Q

←−a t = (tQ+Q0) ((t+ 1)Q+Q0)
−1
αt+1 +

←−
S t
←−
P−1t
←−mt

(13)

Further, setting Q0 = Q (only in the artificial prior where we may alter γ0 –
see Briers et al., 2009, page 70) gives us

←−
S t =

t+ 1

t+ 2
Q

←−a t =
t+ 1

t+ 2
αt+1 +

1

t+ 2
a0

(14)

We get the following backward version of Equation (8)

q̃
(
αt

∣∣∣yt, α̃
(k)
t+1

)
= N

(
αt

∣∣∣←−µ t,
←−
Σt

)

ξ̄t = R
+
F

−1
ᾱt+1

←−
Σ

−1
t =

←−
P

−1
t + RX

⊤

t

(
−Gt

(
ξ̄t + ot

))
XtR

⊤
+ F

⊤
R

+⊤
Q

−1
R

+
F

←−µ t =
←−
Σt

(←−
P

−1
t
←−mt + F

⊤
R

+⊤
Q

−1
R

+
α̃

(k)
t+1 + RX

⊤

t

(
−Gt

(
ξ̄t + ot

)
Xtξ̄t − ot + gt

(
ξ̄t + ot

)))

(15)

Notice that the dimension is now p ≥ r. As an example, we can look at a second
order uni-variate auto-regressive model

F =

(
θ1 θ2
1 0

)
, R =

(
1
0

)
, Q =

(
σ2
)
, Q0 =

(
s21 s12
s12 s22

)

here

F⊤R+⊤Q−1R+α̃
(k)
t+1 =

(
θ1
θ2

)(
σ−2 0

)
α̃

(k)
t+1 =

(
σ−2θ1ξ̃

(k)
t+1

σ−2θ2ξ̃
(k)
t+1

)

We also find that

F⊤R+⊤Q−1R+F = F⊤RQ−1R⊤F =

(
θ21σ
−2 θ1θ2σ

−2

θ1θ2σ
−2 θ22σ

−2

)

Further,

←−
P t = FtQ0F

t⊤+

t∑

i=1

F(i−1)RQR⊤F(i−1)⊤ = FtQ0F
t⊤+

t∑

i=1

(F(i−1))·1σ
2(F(i−1)⊤)1·

where subscript Zk· is the k’th row vector and Z·k is the k’th column vector.
Here, the first term has full rank if Q0 and F has full rank, is not sparse, and
tends toward zero if the largest eigenvalue of F is less than one. Further the
later terms has rank 1 and are not sparse either. The other terms and matrices

5

only have r× r non-zero entry due to multiplication with R or R⊤ which is the
first entry for vectors and the (1, 1) entry for matrices in the above example.
We can use Equation (15) to approximate

q̃
(
αt

∣∣∣yt, α̃(k)
t+1

)
∝ g (yt| ξt) f

(
α̃

(k)
t+1

∣∣∣αt

) γt (αt)

γt+1

(
α̃

(k)
t+1

)

≈ g̃ (yt| ξt)N
(
α̃

(k)
t+1

∣∣∣Fαt,Q
) N

(
αt

∣∣∣←−mt,
←−
P t

)

N
(
α̃

(k)
t+1

∣∣∣←−mt+1,
←−
P t+1

)
(16)

Can we sample from N
(
·
∣∣∣R←−µ t,R

←−
ΣtR

⊤

)
and set the remaining p − r entries corresponding

to the non-included identity matrix columns in R to ←−µ t for each particle α̃
(k)
t+1?

The re-sampling weights can be computed similarly to the forward filter using
the backward transition density in Equation (12) in the numerator. We can also
use a bootstrap like filter where the proposal distribution as in Equation (12).

Combining / smoothing (Algorithm 1)

We need to specify the proposal distribution q̃
(
·
∣∣∣α(j)

t−1,yt, α̃
(k)
t+1

)
(see Fearnhead

et al. (2010, page 453)). Again, we can make a second order Taylor expansion
as in Fearnhead et al. (2010) and choose

q̃
(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
= N

(
αt

∣∣∣←→µ t,
←→
Σ t

)

←→
Σ

−1
t = R

+⊤
Q

−1
R

+
+ RX

⊤

t

(
−Gt

(
ξ̄t + ot

))
XtR

⊤
+ F

⊤
R

+⊤
Q

−1
R

+
F

←→µ t =
←→
Σ t

(
R

+⊤
Q

−1
R

+
Fα

(j)
t−1 + F

⊤
R

+⊤
Q

−1
R

+
α̃

(k)
t+1 + RX

⊤

t

(
−Gt

(
ξ̄t + ot

)
Xtξ̄t − ot + gt

(
ξ̄t + ot

)))

(17)

where ξ̄t can be a combined mean given the cloud means at time t− 1 and t+1
or a mean for each of the two drawn particles in the (ji, ki) pairs. This is to
approximate

q̃
(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
∝ g̃ (yt| ξt) f

(
αt

∣∣∣α(j)
t−1

) f
(
α̃

(k)
t+1

∣∣∣αt

)

γt+1

(
α̃

(k)
t+1

) (18)

Can we sample from N
(
·
∣∣∣R←→µ t,R

←→
Σ

−1
t R⊤

)
and set just the remaining p − r entries cor-

responding to the non-included identity matrix columns in R to ←→µ t for each particle pair or

maybe α
(j)
t−1?

We can also use a bootstrap like filter by sampling from

q̃
(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
= N

(
αt

∣∣∣ m̃, S̃
)

S̃−1 =
(
R+⊤Q−1R+ + F⊤R+⊤Q−1R+F

)−1

m̃ = S̃
(
R+⊤Q−1R+Fα

(j)
t−1 + F⊤R+⊤Q−1R+α̃

(k)
t+1

)

6

←→
Σ t may not have full rank. Take E.g, a third order uni-variate model. In this case

R
+⊤

Q
−1

R
+

=




σ−2 0 0
0 0 0
0 0 0


 ,

RX
⊤

t

(
−Gt

(
ξ̄t

))
XtR

⊤
=




z 0 0
0 0 0
0 0 0


 ,

FR
+⊤

Q
−1

R
+
F = σ

−2




θ2
1 θ1θ2 θ1θ3

θ1θ2 θ2
2 θ2θ3

θ1θ3 θ2θ3 θ2
3




The latter only has rank 1. I gather the current solution requires a full rank matrix...
I gather we have to extend the framework to sample pairs at e.g., time t− 1 and t+2 and then
sample state vectors at time t and t + 1 as mentioned in the discussion in of Fearnhead et al.
(2010) (If I get their argument correctly).

7

Algorithm 1 O (N) generalized two-filter smoother using the method in Fearn-
head et al. (2010).

Input:
Q,Q0,a0,X1, . . . ,Xd,y1, . . . ,yd, R1, . . . , Rd,ω
Proposal distribution which optimally is (see Fearnhead et al. (2010, page
453))

q̃
(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
= P

(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
(19)

Let α
(i)
t denote particle i at time t, w

(i)
t denote the weight of the particle

and β
(i)
t denote the re-sampling weight.

1: procedure Filter forward
2: Run a forward particle filter to get a particle clouds{

α
(j)
t , w

(j)
t , β

(j)
t+1

}
j=1,...,N

approximating P (αt|y1:t) for t = 0, 1, . . . , d. See

Algorithm 2.

3: procedure Filter backwards

4: Run a similar backward filter to get
{
α̃

(k)
t , w̃

(k)
t , β̃

(k)
t−1

}
k=1,...,d

approximating P (αt|yt:d) for t = d+ 1, d, d− 1, . . . , 1. See Algorithm 3.

5: procedure Smooth (combine)
6: for t = 1, . . . , N do

Re-sample
7: i = 1, 2, . . . , Ns pairs of (ji, ki) where each component is

independently sampled using re-sampling weights β
(j)
t and β̃

(k)
t .

Propagate

8: Sample particles α̂
(i)
t from the proposal distribution

q̃
(
·
∣∣∣α(ji)

t−1,yt, α̃
(ki)
t+1

)
.

Re-weight
9: Assign each particle weights

ŵ
(i)
t ∝

f
(
α̂

(i)
t

∣∣∣α(ji)
t−1

)
gt

(
yt

∣∣∣ α̂(i)
t

)
f
(
α̃

(ki)
t+1

∣∣∣ α̂(i)
t

)
w

(ji)
t−1w̃

(ki)
t+1

q̃
(
α̂

(i)
t

∣∣∣α(ji)
t−1,yt, α̃

(ki)
t+1

)
β
(ji)
t β̃

(ki)
t γt+1

(
α̃

(ki)
t+1

) (20)

8

Algorithm 2 Forward filter due to Pitt and Shephard (1999). You can compare
with Doucet and Johansen (2009, page 20 and 25). The version and notation
below is from Fearnhead et al. (2010, page 449).

Input:
Proposal distribution and specification of weights are optimally given by

q
(
αt

∣∣∣α(j)
t−1,yt

)
= P

(
αt

∣∣∣α(j)
t−1,yt

)

β
(j)
t ∝ P

(
yt

∣∣∣α(j)
t−1

)
w

(j)
t−1

(21)

1: Sample α
(1)
0 , . . . ,α

(Nf)
0 particles from N (·|a0,Q0) and set the weights

w
(1)
0 , . . . , w

(Nf)
0 to 1/Nf .

2: for t = 1, . . . , d do
3: procedure Re-sample

4: Compute re-sampling weights β
(j)
t and re-sample according to β

(j)
t

to get indices j1, . . . jN . If we do not re-sample then set β
(j)
t = 1.

5: procedure Propagate

6: Sample new particles α
(i)
t using the proposal distribution

q
(
αt

∣∣∣α(ji)
t−1,yt

)
.

7: procedure Re-weight

8: Re-weight particles using (w
(ji)
t−1/β

(ji)
t is added due to the auxiliary

particle filter)

w
(i)
t ∝

gt

(
yt

∣∣∣α(i)
t

)
f
(
α

(i)
t

∣∣∣α(ji)
t−1

)
w

(ji)
t−1

q
(
α

(i)
t

∣∣∣α(ji)
t−1,yt

)
β
(ji)
t

(22)

9

Algorithm 3 Backwards filter. See Briers et al. (2009) and Fearnhead et al.
(2010).

Input:
A backwards filter distribution approximation

p̃ (αt|yt:d) ∝ γt (αt) P (yt:d|αt) (23)

with an artificial prior distribution γt (αt).
Proposal distribution and specification of weights (Fearnhead et al. (2010,
page 451 – look in the example in the appendix))

q̃
(
αt

∣∣∣yt, α̃(k)
t+1

)
β̃
(k)
t ≈ γt (αt) P (yt|αt) P

(
α̃

(k)
t+1

∣∣∣αt

) w̃
(k)
t+1

γt+1

(
α̃

(k)
t+1

) (24)

where we want (see Briers et al. (2009, page 74))

q̃
(
αt

∣∣∣yt, α̃(k)
t+1

)
∝ P (yt|αt) P

(
α̃

(k)
t+1

∣∣∣αt

)
γt(αt)

γt+1

(
α̃

(k)
t+1

)

β̃
(k)
t ∝ p̃

(
yt

∣∣∣ α̃(k)
t+1

)
w̃

(k)
t+1

(25)

1: Sample α̃
(1)
d+1, . . . , α̃

(Nf)
d+1 particles from γd+1(·) and set the weights

w̃
(1)
d+1, . . . , w

(Nf)
d+1 to 1/Nf .

2: for t = d, . . . , 1 do
3: procedure Re-sample

4: Compute re-sampling weights β̃
(k)
t and re-sample according to β̃

(k)
t

to get indices k1, . . . kN . If we do not re-sample then set β̃
(k)
t = 1.

5: procedure Propagate

6: Sample new particles α̃
(i)
t using the proposal distribution

q̃
(
αt

∣∣∣ α̃(ki)
t+1 ,yt

)
.

7: procedure Re-weight
8: Re-weight particles using (see Briers et al. (2009, page 72) and

w̃
(ki)
t+1/β

(ki)
t is added due to the auxiliary particle filter)

w̃
(i)
t ∝

gt

(
yt

∣∣∣ α̃(i)
t

)
f
(
α̃

(ki)
t+1

∣∣∣ α̃(i)
t

)
γt

(
α̃

(i)
t

)
w̃

(ki)
t+1

q
(
α̃

(i)
t

∣∣∣ α̃(ki)
t+1 ,yt

)
γt+1

(
α̃

(ki)
t+1

)
β
(ki)
t

(26)

10

2 Log likelihood evaluation

We can evaluate the log likelihood for a particular value of θ = {Q,Q0,a0,F}
as described in Doucet and Johansen (2009, page 5) and Malik and Pitt (2011,
page 193) using the forward particle filter shown in Algorithm 2.

3 Parameter inference

In this section I first show an example of parameter estimation the first order
random walk using EM-algorithm (Dempster et al., 1977). Then I cover the
general vector auto-regression model and estimating the fixed effects. Lastly, I
will turn to estimation of observed information matrix.

The formulas for parameter estimation for the first order random with the are
particularly simple. We need to estimateQ and a0 elements of ϕ = {Q,Q0,a0}.
We do this by running Algorithm 1 for the current ϕ. We compute following to
do so

t
(ϕ)
t =

∫

αt

αtPϕ (αt|y1:d) ∂αt ≈
Ns∑

i=1

α̂
(i)
t ŵ

(i)
t

T
(ϕ)
t =

∫

R2p

(αt − Fαt−1) (αt − Fαt−1)
⊤
Pϕ
(
α(t−1):t

∣∣y1:d
)
∂α(t−1):t

≈
Ns∑

i=1

(
α̂

(i)
t − Fα

(jit)
t−1

)(
α̂

(i)
t − Fα

(jit)
t−1

)⊤
ŵ

(i)
t

(27)

where αs:t = {αs,αs+1, . . .αt}, we have extended the notation in Algorithm 1
such that superscript jit is the index from forward cloud at time t− 1 matching
with i’th smoothed particle at time t, and the subscript in P denotes that it
is the probability given the parameter ϕ. The update of a0 and Q given the
summary statistics is

a0 = t
(ϕ)
0 Q =

1

d− 1

d∑

t=2

R+T
(ϕ)
t R+⊤ (28)

We then repeat with the new a0 and Q for a given number of iterations or
till a convergence criteria is satisfied. See Kantas et al. (2015), Del Moral et al.
(2010) and Schön et al. (2011) for further details on parameter estimation with
particle filters.
I do not think we can estimate a0 consistently so we likely just want to fix it at some value...

11

3.1 Vector auto-regression models

We start by defining the following matrices to cover estimation in general vector
auto-regression models for the latent space variable

N =
(
α̂

(1)
2 , α̂

(2)
2 , . . . , α̂

(Ns)
2 , α̂

(1)
3 , . . . , α̂

(Ns)
d

)⊤
R+⊤

M =
(
α

(j12)
1 ,α

(j22)
1 , . . . ,α

(jNs2)
1 ,α

(j13)
2 , . . . ,α

(jNsd)
d−1

)⊤

W = diag
(
ŵ

(1)
2 , . . . , ŵ

(Ns)
2 , ŵ

(1)
3 , . . . , ŵ

(Ns)
d

)

where diag (·) is a diagonal matrix which diagonal elements are the argument.
We implicitly let the above depend on the result of the E-step in a given iteration
of the EM algorithm to ease the notation. The goal is to estimate F and Q in
Equation (1). We can then show that the M-step maximizers are

F̂⊤R+⊤ =
(
M⊤WM

)−1
M⊤WN (29)

Q̂ =
1

d− 1

(
N−R+F̂M

)⊤
W
(
N−R+F̂M

)
(30)

which is the typical vector auto-regression estimators with weights. Equation
(29) and (30) can easily be computed in parallel using QR decompositions as
in the bam in the mgcv package with a low memory footprint (see Wood et al.,
2014). This is currently implemented. Though, the gains from a parallel im-
plementation may be small as the computation here have a computation time
which is independent of the number of observations. In other words, the other
the computation is relatively much less demanding then the other parts.

3.2 Restricted vector auto-regression models

Suppose that we want to restrict some of the parameters of F and Q. E.g., we
can restrict the model to

vec
(
R+F

)
= Gθ Q = VCV

V =




σ1 0 · · · 0

0 σ2
. . . 0

...
. . .

. . .
...

0 . . . 0 σr




C =




1 ρ21 · · · ρr1

ρ21 1
. . . ρr2

...
. . .

. . .
...

ρr1 . . . ρr,r−1 1




σi = exp(si) ρij =
2

1 + exp(−oij)
− 1

with

(s1, s2, . . . , sr)
⊤ = Jψ

(o21, o31, . . . , or1, o32, . . . , or,r−1)
⊤ = Kφ

12

and where vec (·) is the vectorization function which stacks the the columns of
a matrix from left to right. E.g.,

A =



a11 a12 a13
a21 a22 a23
a31 a32 a33




vec (A) = (a11, a21, a31, a12, a22, a32, a13, a23, a33)
⊤

G ∈ R
rp×g is a known matrix with g ≤ rp and we assume that it has full column

rank. Similarly, J ∈ R
r×l with l ≤ r and K ∈ R

r(r−1)/2×k with k ≤ r(r − 1)/2.
Both are known and have full column rank. We assume that G is such that F
is non-singular for some θ. Similarly, we assume that J and K are such that
Q is a positive definite matrix for some ψ and φ pair. V is a diagonal matrix
containing the standard deviations and C is the correlation matrix.

We cannot jointly maximize θ, ψ, and φ analytically but we can maximize
θ analytically conditional on ψ and φ. Hence, we can employ a Monte Carlo
expectation conditional maximization algorithm in which we take two so-called
conditional maximization steps (see Meng and Rubin, 1993, on the, non-Monte
Carlo, expectation maximization algorithm). We need some more notation be-
fore we show the two conditional maximization steps. Let H(r,p) be the (r, p)
commutation matrix so

H(r,p)vec
(
R+F

)
= vec

((
R+F

)⊤)
= vec

(
F⊤R+⊤

)

and let superscript (i) denote the M-step estimates from the i’th iteration of
the EM algorithm. Then the first conditional maximization step is

θ(i+1) = G̃+
(
Q(i) ⊗

(
M⊤WM

)−1)
G̃+⊤G̃⊤vec

(
M⊤WNQ−(i)

)
(31)

where ⊗ is the Kronecker product andQ−(i) is the inverse ofQ(i). Equation (31)
is easily computed with the QR decomposition we compute for Equation (29).
Having obtained the new θ(i+1) then we update the variable elements of F (those

columns ”picked out” by R in R+F) and denote the new estimate F̂(i+1). The
second conditional maximization of ψ and φ is

Z =
(
N−R+F̂(i+1)M

)⊤
W
(
N−R+F̂(i+1)M

)

ψ(i+1),φ(i+1) = argmax
ψ,φ

−(d− 1) log |Q(ψ,φ)| − tr
(
Q(ψ,φ)−1Z

)

which can be done numerically. We have made Q’s depends on ψ and φ explicit
to emphasize which factors are affected. C will not be a valid covariance for
all φ ∈ R

k for some choices of K. The invalid values are ruled out doing the
numerical optimization. This completes the two conditional maximization steps.
The next E-step is then performed using θ(i+1), ψ(i+1), φ(i+1). Meng and Rubin
(1993, see the discussion) comments that it may be beneficial to perform an E-
step between each conditional maximization step when the E-step is relatively
cheap. This is not the case here since all the above computation are independent
of nmax.

13

3.3 Estimating fixed effect coefficients

Next, we turn to estimating the fixed effects, ω, in Equation (1). Since each
observation yit is from an exponential family then it is easy to show that the
M-step estimator amounts to generalized linear model with Ns observations for
each yit which differ only by an offset term and a weight. The offset term comes

from the x⊤itR
+α̂

(t)
j term in Equation (1) for each of the j = 1, . . . , Ns smoothed

particles. The corresponding offset terms are the smoothed weights, ŵ
(t)
j . The

problem can be solved in parallel using QR decompositions as in Section 3.1.
This is what is done in the current implementation.
Currently, I only take one iteration of the iteratively re-weighted least squares. I gather I have
to repeat till convergence though... This is however not nice computationally and the differ-
ence in the estimate from one M-step iteration to the next is very minor when you only take
one iteratively re-weighted least square iteration...

3.4 Observed information matrix

Computing the observed information matrix requires an application of the miss-
ing information principle (Louis, 1982). However we cannot evaluate the quan-
tities we need with the output from Algorithm 1 since we only have discrete
approximation of the smoothed distribution of triplet of particles, αt−1:t+1, but
need an approximation for the entire path, α1:d. One solution is to use so-called
smoothing functionals. This is covered in e.g., (Cappé et al., 2005, section 8.3
and chapter 11) and Poyiadjis et al. (2011). The method in Cappé et al. (2005)
only requires the forward particle filter output. It is though not implemented.

4 Other filter and smoother options

The O
(
N2
)
two-filter smoother in Fearnhead et al. (2010) is going to be compu-

tationally expensive as an approximation is going to be needed for Equation (8)
in the article. For instance, only the Taylor expansion approximation around
a single point to approximate g would be feasible. The non-auxiliary version
in Briers et al. (2009) is more feasible as it only requires evaluation of f in the
smoothing part of the generalized two-filter smoother (see Equation (46) in the
paper). Similar conclusions applies to the forward smoother in Del Moral et al.
(2010) and the backward smoother as presented in Kantas et al. (2015). Both
have a O

(
N2
)
computational cost.

Despite the O
(
N2
)
cost of the method in Briers et al. (2009) and Del Moral

et al. (2010) they are still worthy candidates as the computational cost is inde-
pendent of the number of observations, n. Further, the computational cost can
be reduced to O (N log(N)) with the approximations in Klaas et al. (2006).

The method in Malik and Pitt (2011, see particularly section 6.2 on page
203) can be used to do continuous likelihood evaluation. I am not sure how well
these method scale with higher state dimension, p.

Kantas et al. (2015) show empirically that it may be worth just using a
forward filter. However, the example is with a univariate outcome (n = 1 – not

14

to be confused with the number of periods d). The cost here of the forward filter
is at least O (dNnmaxp). Every new particle yields an O (dnmaxp) cost which
is expensive due to the large number of outcomes, n. Thus, the considerations
are different and a O

(
dNnmaxp+N2

)
method will not make a big difference

unless N is large. Another alternative is to add noise to the parameters θ at
each time t and use the methods in Andrieu and Doucet (2002) or similar ideas
to perform online estimation.

5 Briers et al. (2009)

TheO
(
N2
)
smother from Briers et al. (2009) is also implemented as it is feasible

for a moderate number of particles (though, we can use the approximations in
Kantas et al. (2015) to reduce the computational complexity). It is shown in
Algorithm 4. The weights in Equation (35) comes from the generalized two-filter
formula. To cover this filter, first define

P̃ (αd|yd) =
γd(αd)gd (yd|αd)

P̃ (yd)

P̃ (yd) =

∫
γd(αd)gd (yd|αd) dαd

P̃ (αt:d|yt:d) =
γt(αt)gt (yt|αt)

∏d
k=t+1 f (αk|αk−1) gk (yk|αk)

P̃ (yt:d)

P̃ (yt:d) =

∫
· · ·

∫
γt(αt)gt (yt|αt)

d∏

k=t+1

f (αk|αk−1) gk (yk|αk) dαt:d

We can then find a backward recursion

P̃
(
αt

∣∣y(t+1):d

)
=

∫
P̃
(
αt+1

∣∣y(t+1):d

) f (αt+1|αt) γt(αt)

γt+1(αt+1)
dαt+1

P̃ (αt|yt:d) =
gt (yt|αt) P̃

(
αt

∣∣y(t+1):d

)
∫
gt (yt|αt) P̃

(
αt

∣∣y(t+1):d

)
dαt

∝ gt (yt|αt)

∫
P̃
(
αt+1

∣∣y(t+1):d

) f (αt+1|αt) γt(αt)

γt+1(αt+1)
dαt+1

∝
∼

N∑

i=1

w̃
(i)
t δ

(
αt − α̃

(i)
t

)

which gives us the backward particle filter in Algorithm (3) and δ (·) is the Dirac
Delta function. The final result we need is

P (yt:d|αt) = P̃ (yt:d)
P̃ (αt|yt:d)

γt(αt)

15

Then we can generalize the two-filter formula in Kitagawa (1994) as follows

P (αt|y1:d) =
P (αt|y1:t−1) P (yt:d|αt)

P (yt:d|y1:t−1)
(32)

∝ P (αt|y1:t−1) P (yt:d|αt)

= P (αt|y1:t−1) P̃ (yt:d)
P̃ (αt|yt:d)

γt(αt)

∝ P (αt|y1:t−1)
P̃ (αt|yt:d)

γt(αt)

= P̃ (αt|yt:d)

[∫
P (αt−1|y1:t−1) f (αt|αt−1) ∂αt−1

]

γt(αt)

∝
∼

N∑

i=1

w̃
(i)
t δ

(
αt − α̃

(i)
t

)
[∑N

j=1 w
(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)]

γt

(
α̃

(i)
t

)

Similar arguments leads to

P (αt−1:t|y1:d)

∝ P (αt−1:t|y1:t−1) P (yt:d|αt−1:t)

= f (αt|αt−1) P (αt−1|y1:t−1) P (yt:d|αt)

∝ f (αt|αt−1) P (αt−1|y1:t−1)
P̃ (αt|yt:d)

γt(αt)

∝
∼

N∑

i=1

N∑

j=1

w̃
(i)
t δ

(
αt − α̃

(i)
t

)
[∑N

k=1 w
(k)
t−1f

(
α̃

(i)
t

∣∣∣α(k)
t−1

)]

γt

(
α̃

(i)
t

)
w

(j)
t−1δ

(
αt−1 −α

(j)
t−1

)
f
(
α̃

(i)
t

∣∣∣α(j)
t−1

)

[∑N
k=1 w

(k)
t−1f

(
α̃

(i)
t

∣∣∣α(k)
t−1

)]

=
N∑

i=1

N∑

j=1

ŵ
(i,j)
t δ

(
αt − α̃

(i)
t

)
δ
(
αt−1 −α

(j)
t−1

)

(33)

where

ŵ
(i,j)
t = ŵ

(i)
t

w
(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)

[∑N
j=1 w

(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)] (34)

The above is what we need for the EM-algorithm.

16

Algorithm 4 O
(
N2
)
generalized two-filter smoother using the method in

Briers et al. (2009).

Input:
Q,Q0,a0,X1, . . . ,Xd,y1, . . . ,yd, R1, . . . , Rd,ω

1: procedure Filter forward
2: Run a forward particle filter to get a particle clouds{

α
(j)
t , w

(j)
t , β

(j)
t+1

}
j=1,...,N

approximating P (αt|y1:t) for t = 0, 1, . . . , d. See

Algorithm 2.

3: procedure Filter backwards

4: Run a similar backward filter to get
{
α̃

(k)
t , w̃

(k)
t , β̃

(k)
t−1

}
k=1,...,N

approximating P (αt|yt:d) for t = d+ 1, d, d− 1, . . . , 1. See Algorithm 3.

5: procedure Smooth (combine)
6: for t = 1, . . . , d do
7: Assign each backward filter particle a smoothing weight given by

ŵ
(i)
t ∝ w̃

(i)
t

[∑N
j=1 w

(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)]

γt

(
α̃

(i)
t

) (35)

We can now cover the generalized two-filter smother from Fearnhead et al.
(2010). Similar to Equation (32) we find that

P (αt|y1:d) ∝ P (αt|y1:t−1) P (yt:d|αt)

= P (αt|y1:t−1) gt (yt|αt) P (yt+1:d|αt)

=

∫
f (αt|αt−1) P (αt−1|y1:t−1) dαt−1gt (yt|αt)

∫
f (αt+1|αt) P (yt+1:d|αt+1) dαt+1

∝

∫
f (αt|αt−1) P (αt−1|y1:t−1) dαt−1gt (yt|αt)

∫
f (αt+1|αt)

P̃ (αt+1|yt+1:d)

γt+1(αt+1)
dαt+1

∝
∼

N∑

i=1

N∑

j=1

f
(
αt

∣∣∣α(j)
t−1

)
w

(j)
t−1gt (yt|αt) f

(
α̃

(i)
t+1

∣∣∣αt

) w̃
(i)
t+1

γt+1(α̃
(i)
t+1)

Thus, we can sample αt from a proposal distribution given the time t − 1

forward filter particle, α
(j)
t−1, and time t + 1 backward filter particle, α̃

(i)
t+1, for

all N2 particle pairs. Alternatively, we can sample the t− 1 and t+ 1 particles

17

independently which yields Algorithm 1. Further, we can find that

P (αt−1:t|y1:d) = P (αt−1:t|y1:t−1) gt (yt|αt−1:t) P (yt+1:d|αt−1:t)

∝ f (αt|αt−1) P (αt−1|y1:t−1) gt (yt|αt)

∫
f (αt+1|αt)

P̃ (αt+1|yt+1:d)

γt+1(αt+1)
dαt+1

∝
∼

Ns∑

i=1

δ

(
αt − α̂

(i)
t ,αt − α

(ji)
t−1

)
f

(
α̂

(i)
t

∣∣∣∣α
(ji)
t−1

)
w
(ji)
t−1 gt

(
yt

∣∣∣ α̂(i)
t

)∫
f
(
αt+1

∣∣∣ α̂(i)
t

) P̃ (αt+1|yt+1:d)

γt+1(αt+1)
dαt+1

∝
∼

Ns∑

i=1

ŵ
(i)
t δ

(
αt − α̂

(i)
t ,αt − α

(ji)
t−1

)

where superscripts ji are used as in Algorithm 1 implicitly dependent on t.

6 Implementation

The PF_EM method in the dynamichazard package contains an implementation
of the above described method. You specify the number of particles by the
N_first, N_fw_n_bw and N_smooth argument for respectively the Nf , N and
Ns in the Algorithm 1-3. We may want more particle in the smoothing step,
Ns > N , as pointed out in the discussion in Fearnhead et al. (2010, page 460
and 461). Further, selecting Nf > N may be preferable to ensure coverage of
the state space at time 0 and d+ 1.
We do not need to sample the time 0 and d + 1 particles. Instead we can make a special pro-
posal distribution for time 1 and time d. This is not implemented though...

The method argument specify how the filters are set up. The argument can
take the following values

• "bootstrap_filter" for a bootstrap filter.

• "PF normal approx w cloud mean" and
"AUX normal approx w cloud mean" for the Taylor approximation of the
conditional density of yt made around the weighted mean of the previous
cloud. The PF and AUX prefix specifies whether or not the auxiliary version
should be used.

• "PF_normal_approx_w_particles" and
"AUX_normal_approx_w_particles" for the Taylor approximation of the
conditional density of yt made around the parent (or/and child) particle.
The PF_ and AUX_ prefix specifies whether or not the auxiliary version
should be used.

The smoother is selected with the smoother argument. "Fearnhead_O_N"

gives the smoother in Algorithm 1 and "Brier_O_N_square" gives the smoother
in Algorithm 4.

The Systematic Resampling (Kitagawa, 1996) is used in all re-sampling steps.
See Douc and Cappé (2005) for a comparison of re-sampling methods. The rest
of the arguments to PF_EM are similar to those of the ddhazard function.

18

6.1 Linear maps

The methods describe above involves many linear maps. These are implemented
with C++ abstract classes with specialized map member functions for particular
problem to decrease the computation. An alternative would have been to use
a sparse matrix implementation. As an example we have a mapping matrix A
which C++ abstract member on the main data object used in the package called
xyz. E.g., this could F with name state_trans. Then the following operations
are implemented

• map(): Returns A.

• map(const arma::vec &x, bool tranpose): Returns A⊤x if
tranpose == true and Ax otherwise.

• map(const arma::mat &X, side s, bool tranpose): Let B = A⊤ if
tranpose == true and otherwise B = A. Then the result is BXB⊤ if
s == both, BX if s == left, and XB⊤ if s == right.

These are implemented for

C++ member name Matrix A
err_state R
err_state_inv R+ = R⊤

state_trans F
state_trans_err R+F = R⊤F
state_trans_inv F−1

Further, we will need function to compute terms

←−
P tF

⊤←−P−1t+1αt+1 +
←−
S t
←−
P−1t
←−mt

for an arbitrary αt+1,
←−
S t =

←−
P tF

⊤←−P−1t+1RQR⊤
(
F⊤
)−1

,
←−
P−1t
←−mt, and

←−
P−1t for

Equation (12) and (15). This is done with the methods bw mean(signed int,

const arma::vec&), bw covar(signed int), uncond mean term(signed int),
and uncond covar inv(signed int). The terms and factors that can will com-
puted once using Equation (12) are computed and stored.

6.2 Proposal distribution

The proposal distributions in Equation (8), (15) and (17) can be done as follows.
One input is an extra information matrix term which we denote by B. This is
Q−1 in Equation (8), P−1t + F⊤R+⊤Q−1R+F in Equation (15), and
R+⊤Q−1R+ + F⊤R+⊤Q−1R+F in Equation (17). The other input is an
extra mean term which we denote by c. This is Q−1R+ᾱt−1 in Equation (8),
P−1t mt + F⊤R+⊤Q−1R+ᾱt+1 in Equation (15), and F⊤R+⊤Q−1R+ᾱt+1 +

RQ−1R+ᾱt−1 for Equation (17). Then given an initial value µ̄
(0)
t for k = 1, . . .

1. Set ξ̄
(k−1)
t = R+µ̄

(k−1)
t .

19

2. Compute

Σ
(k)−
t = RX

⊤

t

(
−Gt

(
ξ̄
(k−1)
t XR

⊤
+ ot

))
+ B

µ̄
(k)
t = Σ

(k)
t

(
c+ RX

⊤

t

(
−Gt

(
ξ̄
(k−1)
t + ot

)
Xtξ̄

(k−1)
t − ot + gt

(
ξ̄
(k−1)
t + ot

)))

3. Stop if
∣∣∣µ̄(k)

t − µ̄
(k−1)
t

∣∣∣ /
∣∣∣µ̄(k−1)

t

∣∣∣ < ǫ and return Σ
(k)
t and

t = Σ
(k)
t RX⊤t

(
−Gt

(
ξ̄
(k−1)
t + ot

)
Xtξ̄

(k−1)
t − ot + gt

(
ξ̄
(k−1)
t + ot

))
. Oth-

erwise set k ← k + 1 and repeat 1.

The returned output it was we need to compute the proposal distribution.
Equation (8) only the needs the r × r dimensional output since there is p − r
elements that are constant and where the multiplication by R and R⊤ is not
done. Thus, an is forward flag is used to indicate whether the r dimensional
output is returned in the function taylor normal approx.

20

References

Christophe Andrieu and Arnaud Doucet. Particle filtering for partially observed
gaussian state space models. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 64(4):827–836, 2002.

Mark Briers, Arnaud Doucet, and Simon Maskell. Smoothing algorithms for
state–space models. Annals of the Institute of Statistical Mathematics, 62
(1):61, Jun 2009. ISSN 1572-9052. doi: 10.1007/s10463-009-0236-2. URL
https://doi.org/10.1007/s10463-009-0236-2.

Olivier Cappé, Eric Moulines, and Tobias Ryden. Inference in Hidden Markov
Models. Springer-Verlag New York, 2005. ISBN 978-0-387-40264-2, 978-1-
4419-2319-6.

Pierre Del Moral, Arnaud Doucet, and Sumeetpal Singh. Forward smoothing
using sequential monte carlo. arXiv preprint arXiv:1012.5390, 2010.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the royal statistical
society. Series B (methodological), pages 1–38, 1977.

Randal Douc and Olivier Cappé. Comparison of resampling schemes for particle
filtering. In Image and Signal Processing and Analysis, 2005. ISPA 2005.
Proceedings of the 4th International Symposium on, pages 64–69. IEEE, 2005.

Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and
smoothing: Fifteen years later. Handbook of nonlinear filtering, 12(656-704):
3, 2009.

Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte
carlo sampling methods for bayesian filtering. Statistics and Computing, 10
(3):197–208, Jul 2000. ISSN 1573-1375. doi: 10.1023/A:1008935410038. URL
https://doi.org/10.1023/A:1008935410038.

Paul Fearnhead, David Wyncoll, and Jonathan Tawn. A sequential smoothing
algorithm with linear computational cost. Biometrika, 97(2):447–464, 2010.

Nikolas Kantas, Arnaud Doucet, Sumeetpal S Singh, Jan Maciejowski, Nicolas
Chopin, et al. On particle methods for parameter estimation in state-space
models. Statistical science, 30(3):328–351, 2015.

Genshiro Kitagawa. The two-filter formula for smoothing and an implemen-
tation of the gaussian-sum smoother. Annals of the Institute of Statisti-
cal Mathematics, 46(4):605–623, Dec 1994. ISSN 1572-9052. doi: 10.1007/
BF00773470. URL https://doi.org/10.1007/BF00773470.

Genshiro Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear
state space models. Journal of computational and graphical statistics, 5(1):
1–25, 1996.

21

https://doi.org/10.1007/s10463-009-0236-2
https://doi.org/10.1023/A:1008935410038
https://doi.org/10.1007/BF00773470

Mike Klaas, Mark Briers, Nando De Freitas, Arnaud Doucet, Simon Maskell,
and Dustin Lang. Fast particle smoothing: If i had a million particles. In
Proceedings of the 23rd international conference on Machine learning, pages
481–488. ACM, 2006.

Thomas A. Louis. Finding the observed information matrix when using the em
algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
44(2):226–233, 1982. ISSN 00359246. URL http://www.jstor.org/stable/

2345828.

Sheheryar Malik and Michael K Pitt. Particle filters for continuous likelihood
evaluation and maximisation. Journal of Econometrics, 165(2):190–209, 2011.

Xiao-Li Meng and Donald B. Rubin. Maximum likelihood estimation via the
ecm algorithm: A general framework. Biometrika, 80(2):267–278, 1993. ISSN
00063444. URL http://www.jstor.org/stable/2337198.

Michael K Pitt and Neil Shephard. Filtering via simulation: Auxiliary particle
filters. Journal of the American statistical association, 94(446):590–599, 1999.

George Poyiadjis, Arnaud Doucet, and Sumeetpal S. Singh. Particle approxima-
tions of the score and observed information matrix in state space models with
application to parameter estimation. Biometrika, 98(1):65–80, 2011. ISSN
00063444. URL http://www.jstor.org/stable/29777165.

Thomas B Schön, Adrian Wills, and Brett Ninness. System identification of
nonlinear state-space models. Automatica, 47(1):39–49, 2011.

Simon Wood, Yannig Goude, and Simon Shaw. Generalized additive models for
large data sets. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 64(1):139–155, 2014. doi: 10.1111/rssc.12068. URL https://

rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssc.12068.

22

http://www.jstor.org/stable/2345828
http://www.jstor.org/stable/2345828
http://www.jstor.org/stable/2337198
http://www.jstor.org/stable/29777165
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssc.12068
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssc.12068

	Method
	Log likelihood evaluation
	Parameter inference
	Vector auto-regression models
	Restricted vector auto-regression models
	Estimating fixed effect coefficients
	Observed information matrix

	Other filter and smoother options
	briers09
	Implementation
	Linear maps
	Proposal distribution

