
Bootstrap illustration
Benjamin Christoffersen

2017-05-23

Introduction

This vignette will show how to bootstrap the confidence intervals of a ddhazard call. This vignette builds on
the vignettes ‘ddhazard’ and ‘Comparing methods for time varying logistic models’. Thus, it is recommended
to read these first. You can get the version used to make this vignette by calling:‘

current_version # The string you need to pass devtools::install_github

[1] "boennecd/dynamichazard@8ad8c0701479c79a581e0143a1b01cc12e01d01a"

devtools::install_github(current_version)

You can also get the latest version on CRAN by calling:

install.packages("dynamichazard")

PBC data set

We start by settings up the data set. We will use the pbc2 data set from the survival package as in the
vignette ‘Comparing methods for time varying logistic models’:

PBC data set from survival with time variying covariates

Details of tmerge are not important in this scope. The code is included

to make you able to reproduce the results

See: https://cran.r-project.org/web/packages/survival/vignettes/timedep.pdf

library(survival)

temp <- subset(pbc, id <= 312, select=c(id, sex, time, status, edema, age))

pbc2 <- tmerge(temp, temp, id=id, death = event(time, status))

pbc2 <- tmerge(pbc2, pbcseq, id=id, albumin = tdc(day, albumin),

protime = tdc(day, protime), bili = tdc(day, bili))

pbc2 <- pbc2[, c("id", "tstart", "tstop", "death", "sex", "edema",

"age", "albumin", "protime", "bili")]

Next, we fit the model as in the vignette ‘Comparing methods for time varying logistic models’:

library(dynamichazard)

dd_fit <- ddhazard(Surv(tstart, tstop, death == 2) ~ age + edema +

log(albumin) + log(protime) + log(bili), pbc2,

id = pbc2$id, by = 100, max_T = 3600,

Q_0 = diag(rep(10000, 6)), Q = diag(rep(0.001, 6)),

control = list(save_risk_set = T, save_data = T, eps = .1))

a_0 not supplied. One iteration IWLS of static glm model is used

A plot of the estimates is given below. The dashed lines are 95% point-wise confidence intervals using the
variances estimates from the Extended Kalman filter with smoothing:

plot(dd_fit)

1

0 1000 2000 3000

−
14

−
10

−
6

Time

(I
nt

er
ce

pt
)

0 1000 2000 3000

0.
00

0.
10

Time

ag
e

0 1000 2000 3000

0
1

2
3

Time
ed

em
a

0 1000 2000 3000

−
6

−
5

−
4

−
3

−
2

−
1

Time

lo
g(

al
bu

m
in

)

0 1000 2000 3000

1
2

3
4

5

Time

lo
g(

pr
ot

im
e)

0 1000 2000 3000
0.

0
1.

0
2.

0
Time

lo
g(

bi
li)

Sampling individuals

We can bootstrap the estimates in the model by using the ddhazard_boot function as done below:

set.seed(7451)

R <- 10000

boot_out <- ddhazard_boot(

dd_fit,

do_sample_weights = F, # should re-sampeling be by weights or by

sampling each individual discreetly

R = R # Number of bootstrap samples

)

The list has the same structure and class as the list returned by boot::boot

Though, a few elements are added

class(boot_out)

[1] "ddhazard_boot" "boot"

Above, we bootstrap the model by sampling the individuals. I.e. individuals will have weights of 0, 1, 2, . . .
in the estimation. We can plot 95% confidence bounds from the bootstrap coefficients with the Percentile
Bootstrap method as follows:

2

plot(dd_fit, ddhazard_boot = boot_out, level = 0.95)

Only plotting 500 of the boot sample estimates

0 1000 2000 3000

−
14

−
10

−
6

Time

(I
nt

er
ce

pt
)

0 1000 2000 3000

0.
00

0.
10

0.
20

Time

ag
e

0 1000 2000 3000
0.

0
1.

0
2.

0

Time

ed
em

a

0 1000 2000 3000

−
5

−
4

−
3

−
2

Time

lo
g(

al
bu

m
in

)

0 1000 2000 3000

0
1

2
3

4

Time

lo
g(

pr
ot

im
e)

0 1000 2000 3000

−
0.

5
0.

5
1.

5

Time

lo
g(

bi
li)

The completely black line is the original estimates, the dashed lines are 2.5% and 97.5% quantiles of the
bootstrap coefficient taken at each point and the transparent black lines each represent a bootstrap estimate.
Linear interpolation on the normal quantile scale is used if we do not have a quantile that match exactly.

Strata

You can provide a strata variable to perform stratified sampling with. This is done by setting the strata

argument in the call to ddhazard_boot. Notice that this has to be on an individual level (one indicator
variable per individual) not observation level (not one indicator variable per row in the data set). Further,
you can use the unique_id argument to match the individual entries with the entries in strata. As an
example, we stratify by the age at the start of the study period with the code below:

Individuals have different number of rows in the dataset

xtabs(~xtabs(~pbc2$id))

xtabs(~pbc2$id)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

27 27 34 48 32 30 18 22 21 22 9 9 8 5

3

Though all the individual have the same age for all periods

This age is the age at the start of the study

unique(tapply(pbc2$age, pbc2$id, function(x) length(unique(x))))

1

1

Next, we find the age for each individual

unique_id <- unique(pbc2$id)

age <- sapply(unique_id, function(x) pbc2$age[pbc$id == x][1])

summary(age)

Min. 1st Qu. Median Mean 3rd Qu. Max.

33.63 44.52 52.04 50.69 56.22 70.56

We define a strata variable for those less than age 50

is_less_than_50 <- age < 50

We perform stratified sampling over this variable as follows

set.seed(101)

boot_out_with_strata <- ddhazard_boot(

dd_fit,

unique_id = unique_id,

strata = is_less_than_50,

R = R)

plot(dd_fit, ddhazard_boot = boot_out_with_strata)

Only plotting 500 of the boot sample estimates

4

0 1000 2000 3000

−
14

−
10

−
6

Time

(I
nt

er
ce

pt
)

0 1000 2000 3000

0.
00

0.
10

Time

ag
e

0 1000 2000 3000

0.
0

1.
0

2.
0

Time
ed

em
a

0 1000 2000 3000

−
5

−
4

−
3

−
2

Time

lo
g(

al
bu

m
in

)

0 1000 2000 3000

0
1

2
3

4

Time

lo
g(

pr
ot

im
e)

0 1000 2000 3000
−

0.
5

0.
5

1.
5

Time

lo
g(

bi
li)

The above code is only provided for illustrative purposes. There is no reason to do stratified sampling over
the age variable (as far as I gather). However, it may be useful if you have e.g. categorical variables in your
model and want to ensure that each bootstrap sample has a given amount of observation in each category

Sampling weights

We can also sample the weights. This is done as follows: within each stratum j (e.g. males or females) let rj

denote the number of individuals. Then we sample rj uniform variables li ∼ Unif(0, 1) for i = 1, . . . , rj and
normalize with a constant c such that

∑rj

i=1
li/c = rj . The code below will sample the weights as described

above:

set.seed(401)

boot_out_by_weights <- ddhazard_boot(

dd_fit,

do_sample_weights = T, # changed

R = R)

plot(dd_fit, ddhazard_boot = boot_out_by_weights)

Only plotting 500 of the boot sample estimates

5

0 1000 2000 3000

−
12

−
10

−
8

Time

(I
nt

er
ce

pt
)

0 1000 2000 3000

0.
02

0.
06

0.
10

Time

ag
e

0 1000 2000 3000

0.
5

1.
0

1.
5

2.
0

Time
ed

em
a

0 1000 2000 3000

−
4.

5
−

3.
5

−
2.

5

Time

lo
g(

al
bu

m
in

)

0 1000 2000 3000

1.
0

2.
0

3.
0

Time

lo
g(

pr
ot

im
e)

0 1000 2000 3000
0.

5
1.

0
1.

5
Time

lo
g(

bi
li)

Fixed effects

Fixed effects (time invariant effects) can also be bootstrap to get confidence bounds. The fixed effects
bootstrap coefficients are added as the last entries of the element t of the returned object by ddhazard_boot.
As an example we will estimate a model below where log(protime) and the intercept are fixed

dd_fit <- ddhazard(Surv(tstart, tstop, death == 2) ~

ddFixed(1) + ddFixed(log(protime)) # changed to fixed

+ age + edema + log(albumin) + + log(bili), pbc2,

id = pbc2$id, by = 100, max_T = 3600,

Q_0 = diag(rep(10000, 4)), Q = diag(rep(0.001, 4)),

control = list(

save_risk_set = T, save_data = T, eps = .1,

fixed_terms_method = "E_step") # Fixed effects are

esimated in E-step

)

a_0 not supplied. One iteration IWLS of static glm model is used

The time varying effects are plotted below:

plot(dd_fit)

6

0 500 1500 2500 3500

0.
00

0.
10

Time

ag
e

0 500 1500 2500 3500

−
1

0
1

2
3

Time

ed
em

a

0 500 1500 2500 3500

−
5

−
3

Time

lo
g(

al
bu

m
in

)

0 500 1500 2500 3500

0.
0

1.
0

2.
0

Time

lo
g(

bi
li)

The fixed effects are estimated to:

dd_fit$fixed_effects

(Intercept) log(protime)

-10.449270 2.859554

We can bootstrap the estimates with a call similar to those we made before:

set.seed(9001)

boot_out <- ddhazard_boot(

dd_fit,

do_sample_weights = F, # dont sample weights

R = R)

Plot time varying effects

plot(dd_fit, ddhazard_boot = boot_out)

Only plotting 500 of the boot sample estimates

7

0 500 1500 2500 3500

0.
00

0.
10

Time

ag
e

0 500 1500 2500 3500

0.
0

1.
0

2.
0

Time

ed
em

a

0 500 1500 2500 3500

−
5

−
3

−
1

Time

lo
g(

al
bu

m
in

)

0 500 1500 2500 3500

−
0.

5
1.

0
2.

0

Time

lo
g(

bi
li)

We then turn the bootstrap confidence intervals of the fixed effects. These can be computed with the boot.ci

function from the boot library as shown below:

library(boot)

We start by printing confidence intervals for

colnames(boot_out$t)[ncol(boot_out$t) - 1]

[1] "(Intercept)"

boot.ci(boot_out, index = ncol(boot_out$t) - 1,

We specify the types of confidence intervals estimates here:

type = c(

"norm", # A matrix of intervals calculated using the normal

approximation.

"basic", # The intervals calculated using the basic bootstrap method.

"perc", # The intervals calculated using the bootstrap percentile

method.

"bca") # The intervals calculated using the adjusted bootstrap

percentile (BCa) method.

)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 10000 bootstrap replicates

##

8

CALL :

boot.ci(boot.out = boot_out, type = c("norm", "basic", "perc",

"bca"), index = ncol(boot_out$t) - 1)

##

Intervals :

Level Normal Basic

95% (-38.02, 14.08) (-17.76, -7.11)

##

Level Percentile BCa

95% (-13.79, -3.15) (-16.66, -7.05)

Calculations and Intervals on Original Scale

Then we print confidence intervals for

colnames(boot_out$t)[ncol(boot_out$t)]

[1] "log(protime)"

boot.ci(boot_out, index = ncol(boot_out$t) - 0, type = c(

"norm", "basic", "perc", "bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 10000 bootstrap replicates

##

CALL :

boot.ci(boot.out = boot_out, type = c("norm", "basic", "perc",

"bca"), index = ncol(boot_out$t) - 0)

##

Intervals :

Level Normal Basic

95% (-0.682, 7.466) (1.703, 5.710)

##

Level Percentile BCa

95% (0.001, 4.008) (1.681, 5.004)

Calculations and Intervals on Original Scale

Boot envelope

We may also want to get simultaneous confidence intervals. An easy way to get such confidence intervals is
with the envelope function in the boot library. For instance, we can simultaneous confidence intervals for
the bili covariate as follows:

Find the indices that correspondents to the log(bili) variable

is_bili_coef <- grep("^log\\(bili\\):", colnames(boot_out$t))

Use the envelope

envelopes <- envelope(boot_out, level = 0.95 ,index = is_bili_coef)

Plot curves

plot(dd_fit, cov_index = 4, ylim = c(-1, 2.5))

lines(dd_fit$times, envelopes$point[1,], col = "blue")

lines(dd_fit$times, envelopes$point[2,], col = "blue")

lines(dd_fit$times, envelopes$overall[1,], col = "red")

lines(dd_fit$times, envelopes$overall[2,], col = "red")

9

0 500 1000 1500 2000 2500 3000 3500

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

Time

lo
g(

bi
li)

The dashed black lines are from the smoothed covariance matrix. The blue lines are pointwise confidence
intervals using the percentile method from the envelope function. The red line is the simultaneous confidence
bounds using the envelope method in equation (4.17) of Davison & Hinkley (1997). The latter curves are
formed by creating an envelope over each of the pointwise confidence intervals and hence the name

How good is the coverage

In this section, we will test the coverage of the pointwise confidence intervals using the smoothed covariance
matrix and the bootstrap percentile method. We will test these in a simulation study where:

• The coefficients are drifting deterministically with a some normal noise added to them
• Individuals have time invariant covariates

The simulation is to mimic a situation where we assume that the coefficients are not random (as the model
implies) but we do not know the shape of the coefficient curves across time. We setup the parameters for the
experiment below and plot the coefficients without noise:

tmax <- 22 # Number of periods

n_start_grps <- 3 # Number of "start group" - see text

Number of multiple of tmax - 1 in each

mlt <- 30 # start group

n <- (tmax - 1) * mlt * n_start_grps # Total number of individuals

n

10

[1] 1890

Define the noise free coefficients

beta <- cbind(

x1 = rep(-2, (tmax - 1) + 1),

x2 = (0:(tmax - 1) - (tmax - 1)/2) / ((tmax - 1) / 2),

x3 = ((tmax - 1):0 - (tmax - 1)/2) / ((tmax - 1) / 2),

x4 = - sin(pi / 7 * (0:(tmax - 1))),

x5 = sin(pi / 7 * (0:(tmax - 1))))

Plot noise free coefficients

cols <- c("#BC5C00", "#BEBE00", "#23BC00", "#0082BC", "#3500C1")

matplot(beta, type = "l", lty = 1, ylab = "coefficient without noise",

col = cols)

5 10 15 20

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

co
ef

fic
ie

nt
 w

ith
ou

t n
oi

se

There will be a total of n = 1890 individuals in groups of three. We start observing each group at time 0, 7

and 14. We do so to have a “stable” number of individual through the experiment. The experiment ends
after tmax = 22.

We add a bit of normally distributed noise to the coefficients with mean zero and standard deviation 0.1.
The individuals’ covariates are simulated from the uniform distribution from the range [-1, 1]. The function
sim_func is used to make the simulation. The definition of the function can be found in the markdown
file for this vignette on the github site. We simulate a series below, illustrate the data matrix and plot the
coefficients with noise added to them:

11

Simulate

set.seed(122044)

sim_list <- sim_func()

Show data matrix

head(sim_list$sims, 10)

id tstart tstop x1 x2 x3 x4 x5 eta dies

1 1 14 16 1 0.18 -0.64 0.195 0.14 -1.8 TRUE

2 2 14 22 1 0.76 -0.14 -0.882 -0.80 -1.7 FALSE

3 3 14 16 1 0.58 0.48 0.921 0.50 -2.0 TRUE

4 4 14 22 1 -0.78 0.69 0.995 0.29 -2.5 FALSE

5 5 14 22 1 -0.51 0.80 0.290 0.79 -2.4 FALSE

6 6 14 22 1 -0.27 0.62 0.962 0.94 -2.3 FALSE

7 7 14 19 1 -0.84 0.96 0.816 -0.50 -2.5 TRUE

8 8 14 22 1 -0.58 0.62 0.969 -0.34 -2.4 FALSE

9 9 14 15 1 0.70 -0.87 0.763 -0.70 -1.5 TRUE

10 10 14 17 1 0.59 0.23 0.063 -0.20 -1.9 TRUE

tail(sim_list$sims, 10)

id tstart tstop x1 x2 x3 x4 x5 eta dies

1881 1881 0 3 1 0.48 0.728 -0.834 0.91 -1.92 TRUE

1882 1882 0 12 1 -0.66 -0.385 0.084 -0.97 -1.66 TRUE

1883 1883 0 3 1 0.25 -0.908 0.246 0.40 -3.34 TRUE

1884 1884 0 10 1 0.92 -0.243 -0.544 -0.98 -3.15 TRUE

1885 1885 0 16 1 -0.93 0.514 -0.878 -0.65 -0.45 TRUE

1886 1886 0 12 1 -0.90 -0.230 0.744 0.38 -1.47 TRUE

1887 1887 0 2 1 -0.21 -0.393 -0.621 -0.71 -2.14 TRUE

1888 1888 0 10 1 -0.50 -0.088 0.352 -0.87 -1.56 TRUE

1889 1889 0 5 1 -0.29 0.123 -0.142 0.55 -1.72 TRUE

1890 1890 0 14 1 0.83 0.294 0.643 0.02 -2.71 TRUE

Plot coefficients with noise

matplot(sim_list$beta_w_err, type = "l", lty = 1, ylab = "coefficient with noise",

col = cols)

12

5 10 15 20

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

co
ef

fic
ie

nt
 w

ith
 n

oi
se

We are now able to estimate the model as follows:

Estimate model

fit_expression <- expression({

fit <- ddhazard(Surv(tstart, tstop, dies) ~ -1 + x1 + x2 + x3 + x4 + x5,

data = sim_list$sims, id = sim_list$sims$id, max_T = tmax,

by = 1, Q_0 = diag(1e4, 5), Q = diag(1, 5),

a_0 = rep(0, 5), control = list(

denom_term = 1e-3, eps = .01, criteria = "delta_likeli"))

})

eval(fit_expression)

Plot estimates with pointwise confidence bounds from smoothed covariance

matrix

for(i in 1:5){

plot(fit, cov_index = i)

points(sim_list$beta_w_err[, i], pch = 16, col = "red")

}

13

0 5 10 15 20

−
2.

6
−

2.
2

−
1.

8

Time

x1

0 5 10 15 20

−
1.

5
−

0.
5

0.
5

1.
5

Time

x2

0 5 10 15 20

−
1.

5
−

0.
5

0.
5

1.
5

Time
x3

0 5 10 15 20

−
1.

5
−

0.
5

0.
5

Time

x4

0 5 10 15 20

−
1.

5
−

0.
5

0.
5

1.
5

Time

x5

The plots shows the estimated coefficient with 95% pointwise confidence intervals from the smoothed covariance
matrix. The dots are the actual values (i.e. those with noise added to them). A bootstrap estimate of the
confidence bounds is made below:

Bootstrap with resampling individuals

boot_out <- ddhazard_boot(fit,

do_sample_weights = F, R = 999,

do_stratify_with_event = F)

Plot estimated confidence bounds

for(i in 1:5){

plot(fit, cov_index = i, ddhazard_boot = boot_out)

points(sim_list$beta_w_err[, i], pch = 16, col = "red")

}

Only plotting 500 of the boot sample estimates

Only plotting 500 of the boot sample estimates

Only plotting 500 of the boot sample estimates

Only plotting 500 of the boot sample estimates

Only plotting 500 of the boot sample estimates

14

0 5 10 15 20

−
2.

2
−

1.
8

Time

x1

0 5 10 15 20

−
1.

0
0.

0
1.

0

Time

x2

0 5 10 15 20

−
1.

0
0.

0
1.

0

Time
x3

0 5 10 15 20

−
1.

5
−

0.
5

0.
5

Time

x4

0 5 10 15 20

−
1.

5
−

0.
5

0.
5

1.
5

Time

x5

We can now pose the question how the pointwise coverage is for each coefficient. For this reason, we have
defined the function compute_coverage which is not included but can be found in the markdown for this
vignette on the github site:

compute_coverage(fit, boot_out, sim_list$beta_w_err)

$smooth

x1 x2 x3 x4 x5

0.9090909 1.0000000 1.0000000 1.0000000 0.9545455

##

$boot

x1 x2 x3 x4 x5

0.8181818 0.9090909 0.9545455 0.9545455 1.0000000

compute_coverage outputs a list of the true coverage of the 95% confidence intervals from the smoothed
covariance matrix and the percentile method from the bootstrap. That is, the fractions of red dots from
the previous plot that are within the 95% confidence interval. The two elements of the list is for the the
percentile method from the bootstrap. These are respectively the smooth and boot elements of the list. We
can now repeat the above M times (defined below) as follows:

set.seed(520920)

R <- 999 # Number of bootstrap estimates in each trials

M <- 100 # Number of trials

Define matrix for output

15

coverage_boot <- coverage_smooth <- matrix(

NA_real_, nrow = M, ncol = ncol(fit$state_vecs))

Sometimes estimations fails. We use this counter to keep track of the number

of times

n_fails <- 0

LRs <- 1.1^(0:(-6)) # Learning rates to try in order to get a fit

We save this as an epxression as we will re-run it later

boot_exp <- expression({

#*******

Progress bar for inpatient people (me)

pb <- winProgressBar(

"Running simulation", "", 0, M, 50)

#*******

for(i in 1:M){

#*******

info <- sprintf("%.2f%% done", 100 * (i - 1) / M)

setWinProgressBar(pb, i - 1, "Running simulation", info)

#*******

Simulate data set

sim_list <- sim_func()

Fit on whole data set

did_succed <- F

try({

eval(fit_expression)

did_succed <- T

})

if(!did_succed){

n_fails <- n_fails + 1

next

}

Bootstrap fits

boot_out <- ddhazard_boot(fit,

strata = as.factor(sim_list$sims$tstart),

do_stratify_with_event = F,

do_sample_weights = F, R = R,

LRs = LRs)

Compute coverage and add to output

coverage <- compute_coverage(fit, boot_out, sim_list$beta_w_err)

coverage_smooth[i,] <- coverage$smooth

coverage_boot[i,] <- coverage$boot

}

#*******

close(pb)

#*******

16

})

eval(boot_exp)

NULL

n_fails # number of failed estimations

[1] 0

The mean of the fraction of the overages for the two methods are printed below. That is, the mean of the
fraction for each coefficient from each run that did not fail:

colMeans(coverage_smooth, na.rm = T)

[1] 0.9090909 0.9695455 0.9681818 0.9613636 0.9622727

colMeans(coverage_boot, na.rm = T)

[1] 0.8390909 0.9277273 0.9340909 0.9313636 0.9354545

Finally, we can make a boxplot of the fraction of coverage in each trail as follows:

boxplot(coverage_smooth, ylim = c(.6, 1), main = "Smoothed covariance")

abline(h = .95, lty = 1)

1 2 3 4 5

0.
6

0.
7

0.
8

0.
9

1.
0

Smoothed covariance

boxplot(coverage_boot, ylim = c(.6, 1), main = "Bootstrap")

abline(h = .95, lty = 1)

17

1 2 3 4 5

0.
6

0.
7

0.
8

0.
9

1.
0

Bootstrap

We do alter the learning rate in the previous simulation in order to get a fit when we bootstrap. An alternative
could be not to allow for this as done below where failed fits are excluded:

n_fails <- 0

LRs <- 1 # Changed to one value only

eval(boot_exp)

NULL

n_fails # number of failed estimations

[1] 0

The means and box plot are given below:

colMeans(coverage_smooth, na.rm = T)

[1] 0.9054545 0.9668182 0.9636364 0.9536364 0.9577273

colMeans(coverage_boot, na.rm = T)

[1] 0.8336364 0.9290909 0.9145455 0.9272727 0.9272727

boxplot(coverage_smooth, ylim = c(.6, 1), main = "Smoothed covariance")

abline(h = .95, lty = 1)

18

1 2 3 4 5

0.
6

0.
7

0.
8

0.
9

1.
0

Smoothed covariance

boxplot(coverage_boot, ylim = c(.6, 1), main = "Bootstrap")

abline(h = .95, lty = 1)

19

1 2 3 4 5

0.
6

0.
7

0.
8

0.
9

1.
0

Bootstrap

References

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Vol. 1). Cambridge
university press.

20

	Introduction
	PBC data set
	Sampling individuals
	Strata
	Sampling weights
	Fixed effects
	Boot envelope

	How good is the coverage
	References

