
Simulation study with logit model
Benjamin Christoffersen

2017-05-23

Intro

This note has four objectives. The first objective is to test how the ddhazard fits compare with a Generalized
Additive models (GAM) and a “static” logistic model with simulated data. We will look at the following
models/estimation methods from ddhazard function in the dynamichazard package:

• Fits with the Extended Kalman Filters (EKF) with and without extra iterations in the scoring step
• Second order random walks with the EKF estimation method
• Mixture of fixed and time varying effects with the EKF estimation method. Fixed effects are both

estimated with the E-step and M-step method described in ddhazard vignette
• Fits using the Unscented Kalman filter (UKF)

The second objective is to show how to estimate various models with the function ddhazard. For this reason,
the note contains intermediate R code which is not needed to understand the simulation results. Thus, we will
use * in the headers of section to distinguish the content. The headers marked with no * indicates sections
with results of simulation or contains important comments. Headers with an * and ** shows increasingly less
important code to understand the simulation. Consequently, you can skip to the headers with no * if you are
only interested in the results.

The third objective is to illustrate how the various methods performs for out-of-time prediction (forecasting).
By out-of-time we mean that we only observe outcomes up to given time, d, and then predict the outcome
for future observations at time d + 1.

The fourth objective is to show that both the EKF and UKF scales linearly with the number individuals
(series).

All method use the logistic link function. We will do three runs of experiments in the following order:

1. A Model where all effects are time varying and we use the correct binning intervals
2. A model where only one parameter is time varying and we use the correct binning intervals
3. A Model where all effects are time varying but we use incorrect binning intervals

where correct or incorrect binning intervals refers to whether or not we bin at the same time where the
coefficient are simulated to change. For example, we bin correctly where we simulate the coefficients to change
at time 1, 2, . . . , d and we estimate the coefficient at time 1, 2, . . . , d. The models will be compared in terms
of Brier score, median absolute residuals and standard deviation of the absolute residuals. All metrics will
be reported on out-sample data or out-of-time data. All plots will have true coefficients as continuous lines
while dashed lines are estimates.

You can install the version of the library used to make this vignettes from github with the devtools library
as follows:

current_version # The string to pass devtools::install_github

[1] "boennecd/dynamichazard@8ad8c0701479c79a581e0143a1b01cc12e01d01a"

devtools::install_github(current_version)

You can also get the latest version on CRAN by calling:

install.packages("dynamichazard")

1

Moreover, you will also find the source code for the vignette at the github page. The note is not meant to be
self contained. It is recommend to see ddhazard vignette for an introduction to the models and methods in
the dynamichazard package.

Notions

For clarity, here is a list of used notions:

• Run: An experiment with one of the three previously specified settings where we make k simulations
with n series in each

• Simulation: One simulation within a run with one set of coefficients ~β0, . . . , ~βd and given number n of
series

• Series/individuals: A person/individual either making it to the end of the time of the given simulation
or dying at some time during the period

• Coefficients: the entries of the vectors ~βt in a given simulation
• Covariates: vectors ~xit for a given individual at a given time in simulation

Findings

The findings are:

• The UKF method seems to perform well for both small and larger number of series
• Taking multiple iterations in the correction step of the EKF seems to be beneficial
• Specifying a fixed effect as time varying or setting the binning number incorrectly has little effect on

the results

You will see that the the estimation sometimes fails. It is worth stressing that it is my experience that
you can always do “trail-and-error” with the initial covariance matrix in the state equation, the covariance
matrix at time zero and tuning parameters in order to get a model to fit a given dataset. Of course, it is
a disadvantage that any given data set may require some tuning by the user. Although as will be shown,
tuning by the user is not often needed with data sets like those presented here.

Setup

The following values will be used in the simulation:

ns <- c(200, 2000) # Number of series

n_beta <- 5 # Number of covariates

T_max <- 20 # The last time we observe

n_sims <- 100 # Number of simulation in each run

gsub("(^.+)(/dynamichazard.+$)", "...\\2", getwd())

[1] ".../dynamichazard/vignettes/Prebuild"

source("../../R/test_utils.R")

ns is the number of series (individuals) we will estimate in each of the simulation in each of the runs. Thus,
we will perform simulations with a total of 200 and 2000 series in each. Each simulation will have n_beta = 5
covariates plus an intercept. Each run will simulate n_sims = 100 times. Finally, we source the test.utils.R

file to define the simulation function. You can find this script on the github site. T_max is the number
of bins/intervals we observe. Thus, we have 1, 2, . . . , T_max + 1 covariate vectors (+1 for the time zero
coefficient vector).

2

Fitting true model

We will make runs for various number of individuals in this section where we estimate a model where all
effects are time varying and we use the correct binning intervals. Thus, the only models that are miss specified
are the model with one time varying effect (which will be x2) and the model were we use a second order
random walk.

do.call function

We will use do.call in this vignette. To my knowledge, do.call is not standard so this section is included
to give a brief introduction to do.call for users who are not familiar with do.call. We can take an example
with the mean function. We will make the following call where we set na.rm to TRUE:

mean(x = c(1, 2, NA, 6), na.rm = T)

[1] 3

This call can also be made as follows do.call:

arg_ex <- list(x = c(1, 2, NA, 6), na.rm = T)

do.call(mean, arg_ex)

[1] 3

Hence, do.call is useful in situation where we make calls where almost all the arguments are the same.
For example, in the setting where we have arguments a1, a2, ..., up to a1000 and we only want to change
argument a101 say. This can then be done as follows:

Not runable

arg_ex <- list(a1 = x,

a2 = y,

..., # enter all the other values

a1000 = z)

do.call(some_func, arg_ex)

change only a101 argument and keep the rest as the arguments as is

arg_ex$a101 <- some_specific_value

do.call(some_func, arg_ex)

Definition of simulation function

Below, we define a list of default_args (default arguments) to our simulation function which we can later
use using do.call.

Default arguments for simulation

default_args <- list(

n_vars = n_beta, # Number of betas not including intercept

beta_start = c(-1, -.5, 0, 1.5, 2), # start value of coeffecients

intercept_start = -5, # start value of intercept

sds = c(.1, rep(.5, n_beta)), # std. deviations in state equation

t_max = T_max, # Largest time we observe

x_range = 1, # range of covariates

x_mean = .5, # mean of covariates

tstart_sampl_func = # we randomly draw the start time of each serie

3

function(...) max(runif(1, min = -10, max = 18), 0)

)

Let ~βt denote the time varying covariates at time t. Then the beta_start is the time 0 values of the
coefficients and intercept_start is the starting value of the intercept. The sds are the standard deviations,
σi, in the state equation. Hence,

βj,t = βj,t−1 + ǫj,t, ǫj,t ∼ N(0, σ2

j)

where each margin is independent of the others. The x_mean and x_range defines how the covariate values are
simulated. The above setting implies that xitj = Unif(0.5 − 1/2, 0.5 + 1/2) where xitj is the i’th individuals
covariate j at time t. The covariate vector ~xit is updated at time differences of 1 + η where η ∼ Exp(1) and
ηs are drawn separately for each individual for each covariate vector. The motivation for this behavior is that
we can have different covariate update times than our binning time in a given study. For instance, say we
are looking at a medical study and the covariates are laboratory values. The time of laboratory values from
an individual’s visit the doctor can differ from whatever binning periods we use in the state-space model.
Further, the time when laboratory values are updated can differ between patients. One might see his doctor
every week or so while another only sees his doctor every year.

Below we illustrate how the coefficients vectors from a simulation can look:

We can simulate by

set.seed(51231)

sims <- do.call(test_sim_func_logit, c(list(n_series = max(ns)), default_args))

This is how the state vectors look

We define a function so we can re-use it later

plot_func <- function(ylim = c()){ # we define a function here so we can use it later

matplot(sims$betas, type = "l", lty = 1, ylab = expression(beta), xlab = "t",

ylim = range(sims$betas, ylim), col = 1:(n_beta + 1))

Add rug plot to illustrate when people die

rug(jitter(simsreststop[simsresevent==1], amount = .25) + 1,

col = rgb(0, 0, 0, .05))

}

plot_func()

4

5 10 15 20

−
4

−
2

0
2

t

β

The black line is the intercept while the colored lines are the coefficients for the covariates. The lines on the
x-axis illustrate when we observe that individuals die. There is one line for each death. Next, we can look at
the number of failures in each simulation:

We get a "decent" amount of failures and survivers in some of the simulations

We use do.call to avoid repeating the above argument list

set.seed(468249)

n_fails_in_sim <- rep(NA_real_, 15)

for(i in seq_along(n_fails_in_sim)){

sims <- do.call(test_sim_func_logit, c(

default_args, c(list(n_series = max(ns))))) # Take largest amount of series

n_fails_in_sim[i] <- sum(simsresevent)

}

n_fails_in_sim # number of failures in each simulation

[1] 1132 1822 349 759 1062 91 1321 707 1635 466 1548 83 1596 1577

[15] 1151

* Definition of fit functions

We will define functions to estimate the different models with a data frame as the first argument where the
data frame is from a test_sim_func_logit call. This will reduce the amount of code later.

5

** Definition of static fit

Below, we define function to fit a model where the coefficients are fixed (~βt = ~β). It is estimated using
glm.fit:

library(survival); library(dynamichazard)

Set up function for static fit

fit_funcs = list()

fit_funcs$static <- function(s = sims$res)

static_glm(formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,

data = s, max_T = T_max, by = 1, id = s$id, speedglm = FALSE)

fit <- fit_funcs$static()

class(fit) # returns a glm object

[1] "glm" "lm"

Estimates seems plausible

plot_func(ylim = fit$coefficients)

abline(h = fit$coefficients, col = 1:(n_beta + 1), lty = 2)

5 10 15 20

−
6

−
4

−
2

0
2

4
6

8

t

β

* Definition of ddhazard fit functions

Below, we define a function to fit a first order random walk model with a given learning rate and potential
extra iterations in the scoring step (see the ddhazard vignette for details):

6

library(survival); library(dynamichazard)

We will use glm.fit for the starting value

options(ddhazard_use_speedglm = FALSE)

Set up function ddhazard fit function for convenience

LR: learning rate in correction step

NR_eps: tolerance in correction step. NULL yields no extra iterations

fit_funcs$dd <- function(s = sims$res, LR = 1, NR_eps = NULL)

tryCatch({

ddhazard(

formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,

data = s, max_T = T_max, by = 1, id = s$id,

Q_0 = diag(

We set the Q_0 argument lower when we take multiple iterations

See the ddhazard vignette under the GMA model for arguments herefor

if(is.null(NR_eps)) 1000000 else 1,

n_beta + 1),

Q = diag(.01, n_beta + 1),

control = list(LR = LR, NR_eps = NR_eps, eps = 0.01))

}, error = function(...) NA) # Return NA if fails

fit <- fit_funcs$dd()

Plot estimates and actual coffecients

plot_func(ylim = fit$state_vecs)

matplot(fit$state_vecs, col = 1:(n_beta + 1), lty = 2,

type = "l", add = T)

7

5 10 15 20

−
6

−
4

−
2

0
2

4
6

8

t

β

Same call with extra iterations

fit <- fit_funcs$dd(LR = .5, NR_eps = .01)

Look at new plot

plot_func(ylim = fit$state_vecs)

matplot(fit$state_vecs, col = 1:(n_beta + 1), lty = 2,

type = "l", add = T)

8

5 10 15 20

−
6

−
4

−
2

0
2

4
6

8

t

β

Below, we define a function to fit a first order random walk model with the UKF method:

Fitting with UKF

fit_funcs$dd_UKF <- function(s = sims$res, alpha = 1, beta = 0){

tryCatch({

ddhazard(

formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,

data = s, max_T = T_max, by = 1, id = s$id,

Q_0 = diag(1, n_beta + 1), Q = diag(.01, n_beta + 1),

control = list(

eps = 0.1,

alpha = alpha, # Set tuning parameter

beta = beta, # Set tuning parameter

method = "UKF")) # Set estimation method (EKF is default)

}, error = function(...) NA) # Return NA if fails

}

fit <- fit_funcs$dd_UKF()

Look at new plot

plot_func(ylim = fit$state_vecs)

matplot(fit$state_vecs, col = 1:(n_beta + 1), lty = 2,

type = "l", add = T)

9

5 10 15 20

−
6

−
4

−
2

0
2

4
6

8

t

β

Below, we define a function to estimate a first order random walk model where only one parameter (x2) is
time varying:

Fitting with fixed effects

fit_funcs$dd_fixed <- function(

s = sims$res, LR = 1, NR_eps = NULL,

fixed_terms_method = "M_step"){ # The method to use to estimate the fixed

fixed effects

tryCatch({

ddhazard(

formula = Surv(tstart, tstop, event) ~

ddFixed(1) + # Fix intercept

ddFixed(x1) + x2 + # Note x2 is time varying

ddFixed(x3) + ddFixed(x4) + ddFixed(x5),

data = s, max_T = T_max, by = 1, id = s$id,

Q_0 = diag(1, 1), Q = diag(.01, 1),

control = list(LR = LR, NR_eps = NR_eps, eps = 0.1,

fixed_terms_method = fixed_terms_method))

}, error = function(...) NA) # Return NA if fails

}

fit <- fit_funcs$dd_fixed()

Look at new plot

plot_func(ylim = range(fit$state_vecs, fit$fixed_effects))

matplot(fit$state_vecs, col = 3, lty = 2, type = "l", add = T)

abline(h = fit$fixed_effects, col = c(1:2, 4:6), lty = 2)

10

5 10 15 20

−
6

−
4

−
2

0
2

4
6

8

t

β

Next, we define a function to fit the model with a second order random walk:

Fitting with second order

fit_funcs$dd_2_order <- function(s = sims$res, LR = 1, NR_eps = NULL){

tryCatch({

ddhazard(

formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,

data = s, max_T = T_max, by = 1, id = s$id,

Q_0 and Q needs more elements

Q_0 = diag(c(rep(1, n_beta + 1), rep(0.5, n_beta + 1))),

Q = diag(c(rep(.01, n_beta + 1))),

order = 2, # specify the order

control = list(LR = LR, NR_eps = NR_eps, eps = 0.1))

}, error = function(...) NA) # Return NA if fails

}

fit <- fit_funcs$dd_2_order()

Look at new plot

plot_func(ylim = fit$state_vecs)

matplot(fit$state_vecs[, 1:6], col = 1:(n_beta + 1), lty = 2,

type = "l", add = T)

11

5 10 15 20

−
6

−
4

−
2

0
2

4
6

8

t

β

** Definition of GAM fit function

We define the estimation method for the Generalized additive model in the next code snippet. We use bam

function from the mgcv package which corresponds to gam but for large datasets.

library(mgcv)

fit_funcs$gam <- function(s = sims$res){

get data frame for fitting

dat_frame <- get_survival_case_weights_and_data(

formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,

data = s, max_T = T_max, by = 1, id = s$id, use_weights = F)$X

fit model

bam(

formula = Y ~

cr is cubic basis with k knots

s(t, bs = "cr", k = 10, by = x1) +

s(t, bs = "cr", k = 10, by = x2) +

s(t, bs = "cr", k = 10, by = x3) +

s(t, bs = "cr", k = 10, by = x4) +

s(t, bs = "cr", k = 10, by = x5),

family = binomial, data = dat_frame,

method = "GCV.Cp",

control =

gam.control(nthreads = parallel::detectCores() - 1)) # Use parallel

}

12

fit model

fit <- fit_funcs$gam()

Compare plot

layout(matrix(1:6, nrow = 2))

for(i in 1:n_beta){

plot(fit, pages = 0, rug = F, col = i + 1, select = i, lty = 2,

main = paste0("(", i, ")"))

lines(sims$betas[-1, i + 1], col = i + 1)

}

5 10 15 20

−
4

0
2

4
6

8

(1)

t

s(
t,3

.8
2)

:x
1

5 10 15 20

−
4

0
2

4
6

8

(2)

t

s(
t,2

):
x2

5 10 15 20

−
4

0
2

4
6

8

(3)

t

s(
t,9

.7
5)

:x
3

5 10 15 20

−
4

0
2

4
6

8

(4)

t

s(
t,8

.5
8)

:x
4

5 10 15 20

−
4

0
2

4
6

8

(5)

t

s(
t,2

):
x5

** Definition of prediction functions

The following code snippets define predictions methods for each of the estimation methods. We start off by
defining a split function such that we can sample individuals (series) into a test set and a training test:

split_func <- function(s = sims$res){

Sample ids

test_ids <- sample(

unique(s$id), floor(length(unique(s$id)) / 2), replace = F)

Return seperate data frames

return(list(test_dat = s[s$id %in% test_ids,],

fit_dat = s[!s$id %in% test_ids,]))

}

13

Illustrate use

tmp <- split_func()

No ids intersect in the two sets

length(intersect(tmp$test_dat$id, tmpfit_datid))

[1] 0

The union is exactly the number of ids we simulated

length(union(tmp$test_dat$id, tmpfit_datid))

[1] 2000

Having defined the splitting method, we turn to the prediction functions. The idea is to define the
brier_funcs$general function which takes in a prediction function, a fit and a data frame. Next, we then
define individual prediction functions for each of the models which will be passed to brier_funcs$general:

Define general prediction function

brier_funcs <- list()

brier_funcs$general <- function(brier_func, fit, eval_data_frame){

d_frame <- get_survival_case_weights_and_data(

formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,

data = eval_data_frame, max_T = T_max, by = 1, id = eval_data_frame$id,

use_weights = F)$X

Change start and stop times

d_frame$tstart <- d_frame$t - 1

d_frame$tstop <- d_frame$t

Compute residuals

resids <- brier_func(fit, d_frame)

Return estimates

with(

resids,

list(brier = mean(response^2),

median_abs_res = median(abs(response)),

sd_res = sd(response),

median_deviance = median(deviance),

sd_deviance = sd(deviance)))

}

Prediction method for static model

brier_funcs$static <- function(fit, d_frame){

preds <- predict(fit, newdata = d_frame, type = "response")

list(

response = d_frame$Y - preds,

deviance =

d_frame$Y * log(preds) + (1 - d_frame$Y) * log(1 - preds))

}

Test function

fit <- fit_funcs$static(tmp$fit_dat)

cols <-

c("brier", "median_abs_res", "sd_res", "median_deviance", "sd_deviance")

unlist(# in sample stats

14

brier_funcs$general(brier_funcs$static, fit, tmp$fit_dat)[cols])

brier median_abs_res sd_res median_deviance

0.04258 0.01763 0.20636 -0.01779

sd_deviance

0.52205

unlist(# out sample stats

brier_funcs$general(brier_funcs$static, fit, tmp$test_dat)[cols])

brier median_abs_res sd_res median_deviance

0.04741 0.01720 0.21768 -0.01735

sd_deviance

0.57509

Define prediction function for ddhazard model

brier_funcs$dd <- function(fit, d_frame){

preds <- predict(fit, new_data = d_frame, tstart = "tstart", tstop = "tstop")

We truncate as we can get zero-one outcome if the model diverges

preds$fits <- pmax(pmin(preds$fits, 1 - 1e-14), 1e-14)

list(

response = d_frame$Y - preds$fits,

deviance =

d_frame$Y * log(preds$fits) + (1 - d_frame$Y) * log(1 - preds$fits))

}

fit <- fit_funcs$dd(tmp$fit_dat)

unlist(# in sample stats

brier_funcs$general(brier_funcs$dd, fit, tmp$fit_dat)[cols])

brier median_abs_res sd_res median_deviance

0.03816 0.01664 0.19531 -0.01678

sd_deviance

0.48595

unlist(# out sample stats

brier_funcs$general(brier_funcs$dd, fit, tmp$test_dat)[cols])

brier median_abs_res sd_res median_deviance

0.04298 0.01645 0.20731 -0.01659

sd_deviance

0.53966

Define prediction function for gam model

brier_funcs$gam <- function(fit, d_frame){

preds <- predict(fit, newdata = d_frame, type = "response")

list(

response = d_frame$Y - preds,

deviance =

d_frame$Y * log(preds) + (1 - d_frame$Y) * log(1 - preds))

}

fit <- fit_funcs$gam(tmp$fit_dat)

15

unlist(# in sample stats

brier_funcs$general(brier_funcs$gam, fit, tmp$fit_dat)[cols])

brier median_abs_res sd_res median_deviance

0.03845 0.01472 0.19610 -0.01483

sd_deviance

0.50914

unlist(# out sample stats

brier_funcs$general(brier_funcs$gam, fit, tmp$test_dat)[cols])

brier median_abs_res sd_res median_deviance

0.04308 0.01445 0.20748 -0.01456

sd_deviance

0.56195

** Definition of multiple simulations function

To make things easier, we define a function that takes in a function to simulate from. Given a function to
simulate with, the new function perform n_sims = 100 simulations for each of values ns (200 and 2000):

simulate_n_print_res <- function(

sim_func, # Function that takes one argment which is number of series

NR_eps = c(.0001, NA), # Tolerance in scoring step

file_prefix) # file_prefix for output

{

for(n in ns){

file_name <- paste0(file_prefix, "_", n, ".RDS")

do_compute <- !file.exists(file_name)

if(do_compute){

out <- array(NA_real_, dim = c(n_sims, 8, 5),

dimnames = list(

NULL,

c("static", "Extra correction", "Single correction",

"2 order EKF", "Fixed E-step", "Fixed M-step", "UKF", "gam"),

c("Brier", "Abs res", "Sd res", "Dev", "Sd dev")))

n_failures_and_surviers <- array(

NA_integer_, dim = c(2, n_sims),

dimnames = list(c("# failures", "# survivers"), NULL))

#*******

Progress bar for inpatient people (me)

pb <- winProgressBar(

paste("Estimating with n =", n), "", 0, n_sims, 50)

#*******

for(i in 1:n_sims){

#*******

info <- sprintf("%.2f%% done", 100 * (i - 1) / n_sims)

setWinProgressBar(pb, i - 1, paste("Estimating with n =", n), info)

#*******

16

Sample until we get an outcome have sufficient amount of deaths and

survivers

repeat{

sims <- sim_func(n)

We want some survivers and some deaths

if(sum(simsresevent) > 25 && n - sum(simsresevent) > 25)

break

}

n_failures_and_surviers["# failures", i] <- sum(simsresevent)

n_failures_and_surviers["# survivers", i] <- n - sum(simsresevent)

Split data

sim_split <- split_func(sims$res)

Fit static model

static_fit <- fit_funcs$static(sim_split$fit_dat)

Fit dd model

dd_fits <- list(rep(NA, length(NR_eps)))

for(k in seq_along(NR_eps)){

dd_fits[[k]] <- fit_funcs$dd(

sim_split$fit_dat,

NR_eps = if(is.na(NR_eps[k])) NULL else NR_eps[k])

}

Fit second order

dd_2_order <- fit_funcs$dd_2_order(sim_split$fit_dat)

Fit fixed effect

dd_fixed_E_step <- fit_funcs$dd_fixed(sim_split$fit_dat,

fixed_terms_method = "E_step")

dd_fixed_M_step <- fit_funcs$dd_fixed(sim_split$fit_dat,

fixed_terms_method = "M_step")

UKF fit

dd_UKF <- fit_funcs$dd_UKF(sim_split$fit_dat)

Fit gam model

gam_fit <- fit_funcs$gam(sim_split$fit_dat)

Evalute on test data

models <- c(list(static_fit), dd_fits,

list(dd_2_order, dd_fixed_E_step, dd_fixed_M_step,

dd_UKF, gam_fit))

eval_funcs = c(brier_funcs$static,

replicate(length(dd_fits) + 4, brier_funcs$dd),

brier_funcs$gam)

for(j in seq_along(models)){

if(length(models[[j]]) == 1 && is.na(models[[j]]))

17

next # We have to skip model fits that failed

metrics <- brier_funcs$general(

eval_funcs[[j]], models[[j]], sim_split$test_dat)

out[i, j, "Brier"] <- metrics$brier

out[i, j, "Abs res"] <- metrics$median_abs_res

out[i, j, "Sd res"] <- metrics$sd_res

out[i, j, "Dev"] <- metrics$median_deviance

out[i, j, "Sd dev"] <- metrics$sd_deviance

}

}

#*******

close(pb)

#*******

Save results

saveRDS(out, file = file_name)

}

Load results

out <- readRDS(file = file_name)

Print results

did_fit <- apply(out[, , 1], 2, function(x) n_sims - sum(is.na(x)))

n_cases_all_success <- sum(complete.cases(out[, , 1]))

metric_where_all_fit <-

t(apply(out[complete.cases(out[, , 1]), , , drop = F], 3, colMeans))

metric_where_all_fit <- formatC(metric_where_all_fit ,format="f", digits=3)

n_cases_all_success <- formatC(n_cases_all_success, format="d")

print(knitr::kable(cbind(

t(metric_where_all_fit), "# succesful fits" = did_fit),

caption = paste(

"Mean of metrics with", n/2, "series in test and fit data. 'Abs res' is the median of the absolute residuals,

align = "r"))

cat("\n")

Make boxplot of std deviance residuals

par(mar = c(5, 8, 4, 2))

boxplot(

out[complete.cases(out[, , 1]), , "Sd dev"],

main = paste0("Std of deviance residuals w/ ", n/2 ," series"),

cex.axis = .75, horizontal = TRUE, las = 2,

ylim = c(min(out[,, "Sd dev"], na.rm = T),

min(max(out[,, "Sd dev"], na.rm = T), 2)))

}

}

18

Simulating

We are now able to simulate from the model where all effects are time varying and we use the correct binning
intervals with the code below:

set.seed(1243)

Use simulation function

simulate_n_print_res(

sim_func = function(n)

do.call(test_sim_func_logit, c(default_args, c(list(n_series = n)))),

file_prefix = "logit_sim_all_varying")

Table 1: Mean of metrics with 100 series in test and fit data. ‘Abs
res’ is the median of the absolute residuals, ‘Sd res’ is the standard
deviation of the residuals, ‘Dev’ is median of the deviance residuals
and ‘Sd dev’ is the standard deviation of deviance residuals. Only
simulations that succeeds for all setups are included. There are
100 of these simulations. The last column shows the number of
successful fits for each setup.

Brier Abs res Sd res Dev Sd dev # succesful fits

static 0.043 0.033 0.199 -0.033 0.559 100
Extra correction 0.041 0.030 0.193 -0.030 0.522 100
Single correction 0.042 0.038 0.195 -0.039 0.489 100
2 order EKF 0.042 0.038 0.196 -0.039 0.900 100
Fixed E-step 0.043 0.043 0.198 -0.044 0.499 100
Fixed M-step 0.042 0.030 0.196 -0.031 0.549 100
UKF 0.041 0.029 0.194 -0.030 0.535 100
gam 0.042 0.020 0.196 -0.020 0.634 100

19

static

Extra correction

Single correction

2 order EKF

Fixed E−step

Fixed M−step

UKF

gam

0.
5

1.
0

1.
5

2.
0

Std of deviance residuals w/ 100 series

Table 2: Mean of metrics with 1000 series in test and fit data. ‘Abs
res’ is the median of the absolute residuals, ‘Sd res’ is the standard
deviation of the residuals, ‘Dev’ is median of the deviance residuals
and ‘Sd dev’ is the standard deviation of deviance residuals. Only
simulations that succeeds for all setups are included. There are
100 of these simulations. The last column shows the number of
successful fits for each setup.

Brier Abs res Sd res Dev Sd dev # succesful fits

static 0.053 0.050 0.211 -0.053 0.534 100
Extra correction 0.045 0.032 0.198 -0.033 0.510 100
Single correction 0.047 0.038 0.200 -0.039 0.488 100
2 order EKF 0.046 0.042 0.199 -0.043 0.474 100
Fixed E-step 0.048 0.047 0.203 -0.049 0.494 100
Fixed M-step 0.049 0.037 0.205 -0.038 0.536 100
UKF 0.046 0.036 0.199 -0.037 0.503 100
gam 0.046 0.030 0.199 -0.031 0.520 100

20

static

Extra correction

Single correction

2 order EKF

Fixed E−step

Fixed M−step

UKF

gam

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Std of deviance residuals w/ 1000 series

Notice that we only compare across methods with mean metrics where all succeeded to fit.

Conclussion on run

All models perform better than the static model in terms of Brier score. The UKF and EKF with extra
iterations also does well on the Brier score compared with the GAM model. The finding is slight different if
we look at the box plot of the standard deviations of the deviance residuals. The GAM model does worse
here compared to the other methods.

Single time varying parameter

In this part, we will look at the performs when only singe coefficient (x2) varies. Thus, we can see if the
models where only (x2) is modeled as varying performs performs better.

** Definition of simulation function

We start by defining the simulation function. The main change here is that we only set a single standard
deviation and that we set it larger than before:

Use simulation function

set.seed(9999)

sim_one_varying <- function(n){

test_sim_func_logit(

21

n_series = n,

sds = c(sqrt(3)), # Large variance

is_fixed = c(1:2, 4:6), # All but param three (x2) is fixed

Same values as before

n_vars = n_beta,

beta_start = c(-1, -.5, 0, 1.5, 2),

intercept_start = -4,

t_max = T_max,

x_range = 1,

x_mean = .5)

}

* Illustration of single simulation

We get a more variable number of failures and survivers (we simulate 200

series)

replicate(10, sum(sim_one_varying(200)resevent)) # print number of failures

[1] 197 200 104 187 129 49 200 37 200 62

Here is an example of a series

tmp <- sim_one_varying(200)

matplot(tmp$betas, type = "l", lty = 1, ylab = "Beta", xlab = "Time")

5 10 15 20

−
15

−
10

−
5

0

Time

B
et

a

22

Simulating

We can simulate with the following call:

Use simulation function

set.seed(8080)

simulate_n_print_res(

sim_func = sim_one_varying,

file_prefix = "logit_sim_one_variying")

Table 3: Mean of metrics with 100 series in test and fit data. ‘Abs
res’ is the median of the absolute residuals, ‘Sd res’ is the standard
deviation of the residuals, ‘Dev’ is median of the deviance residuals
and ‘Sd dev’ is the standard deviation of deviance residuals. Only
simulations that succeeds for all setups are included. There are
100 of these simulations. The last column shows the number of
successful fits for each setup.

Brier Abs res Sd res Dev Sd dev # succesful fits

static 0.036 0.030 0.182 -0.031 0.559 100
Extra correction 0.035 0.026 0.179 -0.026 0.523 100
Single correction 0.040 0.030 0.183 -0.031 0.703 100
2 order EKF 0.036 0.035 0.181 -0.036 0.662 100
Fixed E-step 0.036 0.035 0.181 -0.037 0.514 100
Fixed M-step 0.036 0.024 0.181 -0.025 0.561 100
UKF 0.035 0.026 0.180 -0.027 0.547 100
gam 0.035 0.019 0.180 -0.020 0.573 100

23

static

Extra correction

Single correction

2 order EKF

Fixed E−step

Fixed M−step

UKF

gam

0.
5

1.
0

1.
5

2.
0

Std of deviance residuals w/ 100 series

Table 4: Mean of metrics with 1000 series in test and fit data. ‘Abs
res’ is the median of the absolute residuals, ‘Sd res’ is the standard
deviation of the residuals, ‘Dev’ is median of the deviance residuals
and ‘Sd dev’ is the standard deviation of deviance residuals. Only
simulations that succeeds for all setups are included. There are 92 of
these simulations. The last column shows the number of successful
fits for each setup.

Brier Abs res Sd res Dev Sd dev # succesful fits

static 0.054 0.055 0.218 -0.058 0.564 100
Extra correction 0.047 0.035 0.205 -0.037 0.519 94
Single correction 0.052 0.043 0.215 -0.045 0.569 99
2 order EKF 0.049 0.047 0.209 -0.049 0.605 98
Fixed E-step 0.053 0.044 0.214 -0.046 0.696 100
Fixed M-step 0.051 0.028 0.212 -0.029 0.600 100
UKF 0.049 0.038 0.209 -0.040 0.535 100
gam 0.048 0.036 0.207 -0.037 0.525 100

24

static

Extra correction

Single correction

2 order EKF

Fixed E−step

Fixed M−step

UKF

gam

0.
5

1.
0

1.
5

2.
0

Std of deviance residuals w/ 1000 series

Conclussion on run

The main interest here is how the models labeled Fixed ... The results though are similar to what we saw
before.

Incorrect binning time

Now, what happens if we get the binning (intervals lengths) wrong? This is the next experiment we will
perform. Specifically, we will set the bin length to 0.1 instead 1 when we simulate. Thus, coefficients are
updated at time 0, 0.1, 0.2, . . . and whether an individual dies is evaluated at the same times when we simulate.
However, the fitted model will still be based on bins of length 1.

** Definition of simulation function

set.seed(9001)

sim_finer_binning <- function(n){

time_denom = 10 # how much finer do we want to bin?

res <- test_sim_func_logit(

n_series = n,

We multiply through appropiately

25

beta_start = c(-1, -.5, 0, 1.5, 2),

intercept_start = - 8, # Note, we changed the intercept

sds = c(.1, rep(1, n_beta)) / sqrt(time_denom),

t_max = T_max * time_denom,

lambda = 1 / time_denom, # We change the time when covariates are updated

(the lambda parem in the rate ~ Exp(.) in the

time increaments)

n_vars = n_beta,

x_range = 1,

x_mean = .5)

Change time denominator

resreststart <- resreststart / time_denom

resreststop <- resreststop / time_denom

res

}

* Illustration of single simulation

We get more variable outcomes (we simulate 200 series)

replicate(10, sum(sim_finer_binning(200)resevent)) # Number of failures

[1] 186 131 7 200 162 104 187 37 90 113

Here is an example of the series

tmp <- sim_finer_binning(200)

matplot((1:nrow(tmp$betas) - 1) / 10,

tmp$betas, type = "l", lty = 1, ylab = "Beta", xlab = "Time")

26

0 5 10 15 20

−
5

0
5

Time

B
et

a

Simulating

We are now able to simulate with the following call:

Use simulation function

set.seed(747)

simulate_n_print_res(

sim_func = sim_finer_binning,

file_prefix = "logit_sim_diff_binning")

Table 5: Mean of metrics with 100 series in test and fit data. ‘Abs
res’ is the median of the absolute residuals, ‘Sd res’ is the standard
deviation of the residuals, ‘Dev’ is median of the deviance residuals
and ‘Sd dev’ is the standard deviation of deviance residuals. Only
simulations that succeeds for all setups are included. There are 85 of
these simulations. The last column shows the number of successful
fits for each setup.

Brier Abs res Sd res Dev Sd dev # succesful fits

static 0.031 0.027 0.170 -0.027 0.574 100
Extra correction 0.029 0.019 0.163 -0.020 0.509 85
Single correction 0.031 0.026 0.167 -0.026 0.478 100
2 order EKF 0.031 0.027 0.167 -0.027 1.262 99
Fixed E-step 0.031 0.033 0.168 -0.034 0.514 100
Fixed M-step 0.031 0.020 0.167 -0.020 0.563 100

27

Brier Abs res Sd res Dev Sd dev # succesful fits

UKF 0.029 0.023 0.165 -0.023 0.518 100
gam 0.030 0.012 0.165 -0.012 0.733 100

static

Extra correction

Single correction

2 order EKF

Fixed E−step

Fixed M−step

UKF

gam

0.
5

1.
0

1.
5

2.
0

Std of deviance residuals w/ 100 series

Table 6: Mean of metrics with 1000 series in test and fit data. ‘Abs
res’ is the median of the absolute residuals, ‘Sd res’ is the standard
deviation of the residuals, ‘Dev’ is median of the deviance residuals
and ‘Sd dev’ is the standard deviation of deviance residuals. Only
simulations that succeeds for all setups are included. There are 90 of
these simulations. The last column shows the number of successful
fits for each setup.

Brier Abs res Sd res Dev Sd dev # succesful fits

static 0.030 0.029 0.151 -0.030 0.494 100
Extra correction 0.026 0.015 0.142 -0.016 0.436 92
Single correction 0.030 0.022 0.151 -0.023 0.414 100
2 order EKF 0.028 0.023 0.146 -0.024 0.678 97
Fixed E-step 0.030 0.025 0.151 -0.026 0.620 100
Fixed M-step 0.030 0.015 0.152 -0.015 0.578 99
UKF 0.027 0.019 0.145 -0.020 0.427 100
gam 0.026 0.015 0.143 -0.016 0.456 100

28

static

Extra correction

Single correction

2 order EKF

Fixed E−step

Fixed M−step

UKF

gam

0.
5

1.
0

1.
5

2.
0

Std of deviance residuals w/ 1000 series

Conclussion on run

The UKF and extra iteration seems to perform well in both settings in terms of Brier score.

Out-of-time prediction

In the following paragraphs, we will investigate how the different estimation method performs when the
following period have to be predicted. Thus, we cannot use the GAM model because it uses in-sample splines.
Though, we can still use the state-space models as we can predict the following state vector given the previous.
Further, we can use the static model to compare with.

** Define simulation and data splitting function

We start by defining a simulation function and a function to split the data into the first time period which
we will use for estimation and the later time period which we will use for the test:

Define simulation function

out_sample_args <- default_args

out_sample_args$t_max <- 21

sim_func <- function(n_series = 200)

do.call(test_sim_func_logit, c(list(n_series = n_series), out_sample_args))

29

Define split function

split_data_func <- function(d_frame, split_time = 20){

Find data before split_time and set event flag and stop time

in_sample <- d_frame[d_frame$tstart < split_time,]

in_sample$event <- in_sample$event & in_sample$tstop <= split_time

in_sample$tstop <- pmin(in_sample$tstop, split_time)

Find data that ends after split_time and set start time

out_sample <- d_frame[split_time < d_frame$tstop,]

out_sample$tstart <- pmax(out_sample$tstart, split_time)

Return

list(in_sample = in_sample, out_sample = out_sample)

}

We extend the period (t_max) by one which is the only difference in the simulation. Notice that individuals
can be in both estimation data and test data. Any failure beyond time 20 will only count as a failure in the
test data. Thus, we need to change the event flag for these in the in_sample data if the stop time is beyond
time 20. Below, we illustrate how this looks for an individual who do die beyond time 20:

Illustrate with example

set.seed(1119)

tmp <- sim_func()

Illustrate for individual 25

tmp$res[tmp$res$id == 25,]

id tstart tstop event x1 x2 x3 x4 x5

146 25 0.00 1.31 0 0.6627 0.98270 0.5245 0.86038 0.04009

147 25 1.31 4.33 0 0.8070 0.20333 0.8489 0.23904 0.14597

148 25 4.33 6.06 0 0.2007 0.88774 0.8260 0.96500 0.62327

149 25 6.06 7.29 0 0.1358 0.46823 0.1891 0.01255 0.04520

150 25 7.29 9.24 0 0.3609 0.74557 0.8190 0.67799 0.04683

151 25 9.24 12.00 0 0.2015 0.69450 0.5960 0.07063 0.08570

152 25 12.00 13.66 0 0.9212 0.09218 0.5132 0.54526 0.90543

153 25 13.66 15.59 0 0.6043 0.69848 0.4787 0.92423 0.84058

154 25 15.59 16.61 0 0.1504 0.14431 0.9336 0.10567 0.98583

155 25 16.61 19.48 0 0.6359 0.04438 0.6532 0.85826 0.17005

156 25 19.48 21.00 1 0.6404 0.52934 0.3124 0.70302 0.72475

Split data

d_split <- split_data_func(tmp$res)

In sample data (notice event flag is changed and last tstop)

d_split$in_sample[d_split$in_sample$id == 25,]

id tstart tstop event x1 x2 x3 x4 x5

146 25 0.00 1.31 FALSE 0.6627 0.98270 0.5245 0.86038 0.04009

147 25 1.31 4.33 FALSE 0.8070 0.20333 0.8489 0.23904 0.14597

148 25 4.33 6.06 FALSE 0.2007 0.88774 0.8260 0.96500 0.62327

149 25 6.06 7.29 FALSE 0.1358 0.46823 0.1891 0.01255 0.04520

150 25 7.29 9.24 FALSE 0.3609 0.74557 0.8190 0.67799 0.04683

151 25 9.24 12.00 FALSE 0.2015 0.69450 0.5960 0.07063 0.08570

152 25 12.00 13.66 FALSE 0.9212 0.09218 0.5132 0.54526 0.90543

153 25 13.66 15.59 FALSE 0.6043 0.69848 0.4787 0.92423 0.84058

30

154 25 15.59 16.61 FALSE 0.1504 0.14431 0.9336 0.10567 0.98583

155 25 16.61 19.48 FALSE 0.6359 0.04438 0.6532 0.85826 0.17005

156 25 19.48 20.00 FALSE 0.6404 0.52934 0.3124 0.70302 0.72475

Out sample data (notice tstart is changed)

d_split$out_sample[d_split$out_sample$id == 25,]

id tstart tstop event x1 x2 x3 x4 x5

156 25 20 21 1 0.6404 0.5293 0.3124 0.703 0.7247

Simulation

We can now run the simulation with the following code. We end the code by printing the mean Brier score
for the test data:

Setup

N <- 100 # number of simulations

n <- 1000 # number of series

out <- matrix(NA_real_, nrow = N, ncol = 4) # matrix for output

Run simulation

set.seed(42)

for(i in 1:N){

Simulate data and split

repeat{

sims <- sim_func(n)

We want some survivers and some deaths

if(sum(simsresevent) > 50 && n - sum(simsresevent) > 50)

break

}

d_split <- split_data_func(sims$res)

Estimate models

static_fit <- fit_funcs$static(d_split$in_sample)

ekf_fit <- fit_funcs$dd(d_split$in_sample)

ekf_extra_fit <- fit_funcs$dd(d_split$in_sample, NR_eps = .01)

ukf_fit <- fit_funcs$dd_UKF(d_split$in_sample)

Predict outcome

error <- list(

static =

predict(static_fit, d_split$out_sample, type = "response"),

ekf = if(is.na(ekf_fit)) NA else

predict(ekf_fit, new_data = d_split$out_sample,

tstart = "tstart", tstop = "tstop")$fits,

ekf_extra = if(is.na(ekf_extra_fit)) NA else

predict(ekf_extra_fit, new_data = d_split$out_sample,

tstart = "tstart", tstop = "tstop")$fits,

ukf = if(is.na(ukf_fit)) NA else

predict(ukf_fit, new_data = d_split$out_sample,

31

tstart = "tstart", tstop = "tstop")$fits)

Compute Brier score

error <- unlist(lapply(

error, function(x) if(is.na(x)) NA else

mean.default((x - d_splitout_sampleevent)^2)))

Save results

out[i,] <- error

}

Print mean for cases where all could fit

colnames(out) <- c("Static", "EKF", "EKF with extra correction", "UKF")

colMeans(out[complete.cases(out),])

Static EKF

0.05389 0.04472

EKF with extra correction UKF

0.04484 0.04510

Print median

apply(out[complete.cases(out),], 2, median)

Static EKF

0.02496 0.02463

EKF with extra correction UKF

0.02465 0.02493

Print number of cases where all methods succeed to estimate

sum(complete.cases(out))

[1] 100

Above, we do 100 simulations with 1000 series in each simulation. It seems to that the different EKF methods
and the UKF performs comparably. Another question is how often the various method got a given rank
within a simulation in terms of their Brier score. We answer this question below (the rank are given as the
first printed value such that one implies being the lowest Brier score in a given simulation):

Look at number of cases where each method got each rank

knitr::kable(apply(t(apply(out[complete.cases(out),], 1, rank)),

2, function(x) xtabs(~x)),

caption = "Number of times each set got a given rank in terms of Brier Score",

row.names = T)

Table 7: Number of times each set got a given rank in terms of
Brier Score

Static EKF EKF with extra correction UKF

1 17 34 29 20
2 5 31 42 22
3 5 22 26 47
4 73 13 3 11

The EKF method does better with these specification in terms of getting the lowest mean out-sample Brier
score and getting the lowest Brier score in most of the simulation.

32

Linear Time complexity

We will illustrate that the EKF and UKF have linear time complexity in the number of observation. This
is particularly easy because the simulation function start of by simulating the coefficients as shown below
(hence, variation will not be due to different coefficients vectors and only the number of series):

some_seed <- 69284

set.seed(some_seed)

res_1 <- test_sim_func_logit(100)

set.seed(some_seed)

res_2 <- test_sim_func_logit(1000) # different number of series

all.equal(res_1$betas, res_2$betas) # Coeffecients are equal

[1] TRUE

Next, we plot the computation time versus the number of simulation for the EKF and UKF method. Further,
we print the linear regression slope for the log-log regression. The slope is close to one implying that the
linear time complexity is linear in the number of observations

Define function to record run time for a given number of series

run_time_func <- function(n, sim_args = default_args){

set.seed(7851348) # Use the same seed

sim_args$n_series <- n

sims <- do.call(test_sim_func_logit, sim_args)

time_EKF <- system.time(fit_EKF <- fit_funcs$dd(sims$res))

time_UKF <- system.time(

fit_UKF <- ddhazard(

formula = Surv(tstart, tstop, event) ~ x1 + x2 + x3 + x4 + x5,

data = sims$res, max_T = T_max, by = 1, id = simsresid,

Q_0 = diag(.1, n_beta + 1), Q = diag(.1, n_beta + 1),

control = list(

eps = 0.1,

alpha = 1,

beta = 0,

method = "UKF")))

Check that both succed to fit

if(is.na(fit_EKF) || is.na(fit_UKF))

stop()

list(time_EKF = time_EKF, time_UKF = time_UKF)

}

n_for_test <- 2^(10:19)

run_time <- sapply(n_for_test, run_time_func)

Plot EKF and print log-log regression slope

ekf_time <- sapply(run_time["time_EKF",], function(x) x[["user.self"]])

plot(n_for_test, ekf_time, type = "p", log = "xy",

xlab = "Number of series", ylab = "Computation time for EKF")

33

1e+03 5e+03 2e+04 5e+04 2e+05 5e+05

0.
05

0.
20

1.
00

5.
00

20
.0

0

Number of series

C
om

pu
ta

tio
n

tim
e

fo
r

E
K

F

coef(lm(log(ekf_time) ~ log(n_for_test))) # log-log slope is roughly one

(Intercept) log(n_for_test)

-10.09 1.03

Plot UKF and print log-log regression slope

ukf_time <- sapply(run_time["time_UKF",], function(x) x[["user.self"]])

plot(n_for_test, ukf_time, type = "p", log = "xy",

xlab = "Number of series", ylab = "Computation time for UKF")

34

1e+03 5e+03 2e+04 5e+04 2e+05 5e+05

0.
1

0.
5

2.
0

5.
0

20
.0

Number of series

C
om

pu
ta

tio
n

tim
e

fo
r

U
K

F

coef(lm(log(ukf_time) ~ log(n_for_test))) # log-log slope is roughly one

(Intercept) log(n_for_test)

-9.4258 0.9714

35

	Intro
	Notions
	Findings
	Setup

	Fitting true model
	do.call function
	Definition of simulation function
	* Definition of fit functions
	** Definition of static fit
	* Definition of ddhazard fit functions

	** Definition of GAM fit function
	** Definition of prediction functions
	** Definition of multiple simulations function
	Simulating
	Conclussion on run

	Single time varying parameter
	** Definition of simulation function
	* Illustration of single simulation
	Simulating
	Conclussion on run

	Incorrect binning time
	** Definition of simulation function
	* Illustration of single simulation
	Simulating
	Conclussion on run

	Out-of-time prediction
	** Define simulation and data splitting function
	Simulation

	Linear Time complexity

