1 Cookbook for Monitoring Models

In R, the functions in this package are made available with
> library("monitor")

As of R-2.1.0 the code from the vignette that generates this guide can be
loaded into an editor with edit(vignette(”monitor”)). This uses the default edi-
tor, which can be changed using options(). Also, it should be possible to view
the pdf version of the guide for this package with print(vignette(”monitor”)) and
the guide for the dse bundle with print(vignette(”dse-guide”)).

This section gives a brief recipe for building short term forecasting models.
It is intended to be self-contained although there are references to other sections
for additional information.

The term “monitoring” comes from the fact that one is often trying to mon-
itor the current state of the economy based on data from prior periods, since
there is typically some lag before statistical agencies release data for the current
period. The steps, explained in more detail below, are:

1/ specify the data series to use in the model

2/ estimate a model and confirm that it is reasonable

3/ repeat 1 and 2 if other series are to be considered for competing models
(beware that fishing can be dangerous)

4/ run the monitoring program to produce forecasts

and optionally

5/ set up an automatic program to run the monitoring program and dis-
tribute results

This library use the TS PADI interface explained in more detail in an ap-
pendix. For example purposes it is assumed that the data can be retrieved
from an "economic time series” (ets) server. The examples use names of series
which are used internally at the Bank of Canada and are probably not available
elsewhere. Start S/R and open a graphics window with

> x11()

If running remotely it may be necessary to use an argument like "-display
YourWorkstation:0.0” to display on your workstation. A few more details on
running S/R are given in Section 2 of this guide.

1.1 Step 1- specify the data

The data is specified in an variable which indicates the name of the series, the
source, any transformations which should be applied, and possibly some other
options. For more details see the section on T'Sdata in the guide for dsel. An
example of a model which contains two outputs and no inputs is

> if (require("dsepadi")) cbps.manuf.data2.ids <- TSPADIdata2(output = list(c("ets",
me, "i37013", "percentChange", '"cbps.prod."), c("ets", "',

"i37005", "percentChange", "manuf.prod.")), pad.start = FALSE,
pad.end = TRUE, end = c(1997, 9))

With the above, the data will be converted to percent change when it is
read from the database. The default behaviour for data retrieval is to trim all
series to the same length. The length is such that there are no missing values
on the ends. pad.start and pad.end can be used to modify this behaviour. With
pad.end=TRUE all series are padded on the end with NAs to give a length
which will include the most recent data value from any series. This is preferred
for forecasting but the NAs have to be trimmed with trimNA for estimation
procedures. The data is actually retrieved from the database with

> if (require("padi") && checkPADIserver("ets'")) cbps.manuf.data2 <- freeze(cbps.manuf.dataZ

This example and others below will not work without a database server that
provides the indicated data. The if in the above allows automatic example
checking to work (at the Bank of Canada).

The following example specifies one input series and one output series. It
uses an alternate constructor (TSPADIdata vs. TSPADIdata2) which takes
arguments in a different format. (The result is the same but different styles
sometimes seem more convenient.)

> manuf.data.ids <- TSPADIdata(input = "lfsa455", input.transforms = "percentChange",
input.names = "manuf.emp.", output = "V141828975", output.transforms = "percentChange'
output.names = "manuf.prod.", server = "ets", pad.start = FALSE,
pad.end = TRUE)

> if (require("padi") && checkPADIserver("ets")) manuf.data <- freeze (manuf.data.ids)

The data can be plotted with
> if (require("padi") && checkPADIserver("ets")) tfplot(manuf.data)

In this example the plot shows missing data in the middle. In this somewhat
unusual case it is necessary to trim the beginning of the data set to remove the
portion up to the end of the missing data. This could be done with

> if (require("padi") && checkPADIserver("ets")) manuf.data <- tfwindow(manuf.data,
start = c¢(1976, 2), warn = FALSE)

However, the trimming would have to be repeated each time the data is
updated from the database, which is especially inconvenient for automatic pro-
cedures described further below. A better way is to set the starting period for
retrieved data with

> manuf.data.ids <- modify(manuf.data.ids, start = c(1976, 2))
then when data is retrieved with

> if (require("padi') && checkPADIserver("ets")) manuf.data <- freeze(manuf.data.ids)

it will start after the missing data. The start can also be specified with the
argument start for the function TSPADIdata.
A more detailed plot of the last portion of the data can be produced with

> if (require("padi") && checkPADIserver("ets")) tfplot(manuf.data,
start = ¢(1995, 11))

Note the ”.” after start is part of the name of the argument. It is often
not necessary since truncated arguments usually match without problem, but
is required in the case of tfplot so that the argument is not confused with the
function start. To specify and retrieve data with two input series and one output
series

> cbps.manuf.data.ids <- TSPADIdata(input = c("lfsa462", "lfsa455"),

input.transforms = "percentChange", input.names = c("cbps.emp.",
"manuf.emp"), output = "i37013", output.transforms = "percentChange",

output.names = '"cbps.prod.", start = c(1976, 2), server = "ets",

db = "", pad.start = FALSE, pad.end = TRUE)

> if (require("padi") && checkPADIserver("ets")) cbps.manuf.data <- freeze(cbps.manuf.data.:
To specify and retrieve data with one input variable and two output variable

> cbps.manuf.data3.ids <- TSPADIdata(input = "lfsa462", input.transforms = "percentChange",
input.names = "cbps.emp.", output = c("i37013", "i37005"),

output.transforms = c("percentChange", "percentChange"),
output.names = c("cbps.prod.", "manuf.prod."), start = c(1976,
2), server = "ets", db = "", pad.start = FALSE, pad.end = TRUE)

> if (require("padi") && checkPADIserver("ets")) cbps.manuf.data3 <- freeze(cbps.manuf.data:

Setting start is only necessary because of this rather unusual case were there
are missing values in the middle of one series

1.2 Step 2 - estimate model

At this point it may be useful to make S/R prompt for a return before each new
graph is produced. This is done with

> par(ask = TRUE)

A model can be estimated with various estimation techniques, some of which
are described in Section 6. For example:

> if (require("padi") && checkPADIserver("ets")) manuf.model <- bft(trimNA(manuf.data))

This uses a "brute force technique” described in Gilbert (1995). It might
take some time to run. It uses a default maximum number of lags of 12. The
estimation is faster if a smaller number of lags is specified using

> if (require("padi') && checkPADIserver("ets")) manuf.model <- bft(trimNA(manuf.data),
max.lag = 5)

By default the bft procedure prints information as it proceeds. This can be
stopped using

> if (require("padi") && checkPADIserver("ets")) manuf.model <- bft(trimNA(manuf.data),
verbose = FALSE, max.lag = 5)

To display the parameters of the estimated model just type the name of the
variable in which it was stored:

> if (require("padi') && checkPADIserver("ets")) manuf.model
and to plot it:

> if (require("padi') && checkPADIserver("ets")) {
tfplot (manuf.model)
tfplot (manuf.model, start
tfplot (manuf.model, start

c(1990, 1))
c(1995, 1))

}

Models for the other specified data sets can be estimated in the same way:

> if (require("padi") && checkPADIserver("ets")) {
cbps.manuf.model <- bft(trimlNA(cbps.manuf.data), verbose = FALSE)
tfplot (cbps.manuf.model)
tfplot (cbps.manuf.model, start = c(1995, 1))
}

To forecast with the model using all available data (This example is artifi-
cially truncated with tfwindow because some of the data has been discontinued.)

> if (require("padi") && checkPADIserver("ets")) {
z <- forecast (TSmodel (manuf.model), tfwindow(manuf.data,
end = c(1995, 1), warn = FALSE), conditioning.inputs = tfwindow(inputData (manuf.d:
end = c(1996, 12), warn = FALSE))
tfplot(z, start = c(1995, 1))
}

To see the forecast use

> if (require("padi') && checkPADIserver("ets")) {
forecasts(z) [[1]]
tfwindow(forecasts(z)[[1]], start = c(1996, 3), warn = FALSE)
}

Forecasting is discussed in the dse2 Guide.
To evaluate how well the model does at forecasting, look at the covariance
of the forecast error at different horizons with

> if (require("padi') && checkPADIserver("ets")) {
fc <- forecastCov(manuf.model)
tfplot(fc)
}

It is also good to consider how well the forecast does relative to a zero and
a trend forecast:

> if (require("padi") && checkPADIserver("ets")) {
fc <- forecastCov(manuf.model, zero = TRUE, trend = TRUE)
tfplot (fc)
}

The above forecast error analysis is done within the sample which was used
for estimating the model. An out-of-sample forecast error analysis is typically
a better indication of how well the model will really do. This can be done by
using tfwindow to truncate the data to a subset for estimation and then evaluate
the forecast error on the remainder. Another compromise, which is attractive
when short data sets are involved, is to do an out-of-sample evaluation of the
performance of an estimation procedure, and then hope that the procedure will
continue to estimate good models when the whole data set is used.

> if (require("padi") && checkPADIserver("ets")) {
outfc <- outOfSample.forecastCovEstimatorsWRTdata (trimNA (manuf.data),
estimation.sample = 0.5, estimation.methods = list(bft = list(verbose = FALSE),
estVARX1ls = NULL), trend = TRUE, zero = TRUE)
tfplot (outfc)
}

The bft procedure is generally fairly good but it can sometimes be out per-
formed by a simple least squares estimation, especially for univariate models.
Its real strength is for multivariate models:

> if (require("padi') && checkPADIserver("ets")) {
outfc <- outOfSample.forecastCovEstimatorsWRTdata (trimNA (cbps.manuf.data3),
estimation.sample = 0.5, estimation.methods = list(bft = list(verbose = FALSE),
estVARX1s = NULL), trend = TRUE, zero = TRUE)
tfplot (outfc)
}

More details are given in Section 8.

Once a model has been chosen it can be re-used, rather than re-estimating
each time there is a new data point. This is done by extracting the model from
the object returned by the estimation procedure. This object is a model with
data and some estimation information. If you want to use different data then the
data needs to be retrieved again using the variable which indicates the source.
For example

> if (require("padi') && checkPADIserver("ets")) new.data <- freeze(manuf.data.ids)
To run the model and get one-step-ahead predictions with the new data use

> if (require("padi") && checkPADIserver("ets")) z <- 1(TSmodel (manuf.model),
trimNA (new.data))

Or the data retrieval can be done in the same step with

> if (require("padi') && checkPADIserver("ets")) {
z <- 1(TSmodel (manuf.model), trimNA(tfwindow(freeze (manuf.data.ids),
start = ¢(1976, 2), warn = FALSE)))
tfplot (z)
tfplot(z, start = c(1995, 8))
}

Forecasts more than one-step-ahead require input series up to the horizon
for which the forecast is to be produced. To run the model and get forecasts
when more input than output data is available [tfwindow(..., end=c(1996,1))
is used in this example to simulate the situation. The data series have been
terminated, so this example needs to be redone.]:

> if (require("padi") && checkPADIserver("ets")) {
z <- forecast (TSmodel (manuf.model), tfwindow(trimNA (new.data),
end = c(1996, 1), warn = FALSE), conditioning.inputs = trimNA(inputData(new.data),
tfplot(z, start = c(1995, 6))
}

The effect of this is to trim NAs from input separately from output so that
input will not be truncated to the same ending period as output. If you actually
want the numbers rather than plots of the data use

> if (require("padi") && checkPADIserver("ets")) forecasts(z)[[1]]
or

> if (require("padi") && checkPADIserver("ets")) tfwindow(forecasts(z)[[1]],
start = c(1996, 2), warn = FALSE)

will print values starting in the second period of 1996.

The horizon for a model with no inputs is determined by the argument
horizon, which has a default value of 36. For a model which requires input
(conditioning) data, the horizon for the forecast is determined by the input
data, conditioning.inputs or conditioning.inputs.forecasts. If none of these are
supplied then the argument horizon is used to replicate the last period of input
data to the indicated horizon.

At the Bank of Canada PADI is an interface to a Fame server. The forecast
data can be put into a Fame database with

> if (require("padi") && ("fame.server" == PADIserverProcess())) putpadi(forecasts(z)[[1]],
dbname = "nameofdatabase.db", series = seriesNamesOutput (z))

In the above
> if (require("padi'") && ("fame.server" == PADIserverProcess())) seriesNamesOutput (z)

extracts a character vector of the series names.

1.3 Step 3 - reconsider the data and model

The performance of alternative models on a given data set can be compared by
looking at the forecast error covariance from forecastCov. Repeat the required
parts of steps one and two and choose the model which does best at the horizons
of interest. Sometimes the real purpose of a monitoring model is just to forecast
one series (the series of primary interest). Other series are included only because
they provide additional information for forecasting the series of primary interest.
One disadvantage of including additional series is that it increases the number
of parameters which must be estimated, and thus reduces the quality of the
estimates. At this step you should reconsider what series are included for the
model. Choose the model which does best on the series of primary interest (but
see also "Juice Functions”).

1.4 Step 4 - run the monitoring

During the S session, variables (e.g. models and data) are saved in a subdirectory
.Data below the directory where you started S. (In R they are in the file .RData.)
The variables will be available the next time S/R is started from the same
subdirectory. One danger is that you can overwrite an existing variable just by
assigning a new value to the name. Once you have a model to use for forecasting
it is a good idea to save it in a separate file so it will not be lost by accident.
The model manuf.model and the corresponding data identifiers can be saved in
the file "manuf.model.definition” with

> if (require("padi') && ("fame.server" == PADIserverProcess())) dump(c("manuf.model",
"manuf.data.ids"), file = "manuf.model.definition")

If necessary they can then be retrieved with
> if (require("padi") && ("fame.server" == PADIserverProcess())) source("manuf.model.definit

The model can be run to produce a forecast and mail the results to a list
of recipients. The function to do this compares the current data to a previous
copy of the data in order to determine if an updated forecast should be run.
The comparison data is first initialized with

> if (require("padi") && checkPADIserver("ets")) manuf.previous.data <- freeze(manuf.data.ic

then in order to make the data look like it has changed

> if (require("padi') && checkPADIserver("ets")) outputData(manuf.previous.data)[1,
1] <- NA

and to run the forecast and E-mail the results

> if (FALSE) {
r <- simpleMonitoring(manuf.model, manuf.data.ids, manuf.previous.data,

mail.list = "pgilbert@bank-banque-canada.ca", message.title = " Manufacturing Mon:
message.subject = "Manufacturing Monitoring", show.start = c(0,

-3), report.variables = seriesNames(manuf.data.ids),
data.sub.heading = " J)chg Jchg", message.footnote = " f - forecast value",
data.tag = " ", forecast.tag = "f")

}
The status of the result can be checked with
> if (FALSE) r$status
and the comparison data should also be updated with
> if (FALSE) manuf.previous.data <- r$data

Especially for debugging purposes it is often useful to keep a more complete
record of the data and model used to produce the forecast This can be done with
the simpleMonitoring argument save.as which can be set to specify a file name.
Setting save.as=paste("Manufacturing.monitoring.”, make.names(date()), sep="")
in the above would make a file name which includes a time stamp. Also, setting
the argument run.again=TRUE will run the forecast without checking to see if
the data has been updated.

The argument mail.list allows the output to be mailed to a list of recipients,
but it may be more convenient to mail the result to a list server which can be
used for distribution purposes. This may be easier to maintain, as the list server
list of recipients can be changed at any time (and in automatic mode described
next the program does not have to be restarted.)

1.5 Step 5 - automatic program to run the monitoring

To run the above and e-mail forecast directly from the Unix command prompt
a shell script can be set up as follows:

Below it is assumed this is in a file called manufacturing. To run this auto-
matically every 20 minutes from 7am to 10am the script

could be put in a file monitoring.daemon and then this can be started at the
Unix prompt with the command

unix prompt: monitoring.daemon manufacturing

The disadvantage of this approach is that the overhead for starting Splus is
fairly heavy and it may be difficult to use your computer for much else from 7am

to 10am. (R may be better in this respect.) If you have direct access to the files
used for the database then the script could be modified to check time stamps on
the files and only run if the file date has changed. If database files are used to
store many series, and not all are updated at the same time, then the savings will
not be much. At the Bank of Canada another script called Data.trigger.daemon
can be used to run a Fame procedure to check if the particular series have been
updated, and then run manufacturing only in that case.

