Using the doRNG package

doRNG package — Version 1.2.1

Renaud Gaujoux

March 9, 2012

Research reproducibility is an issue of concern, in particular in bioinformatics [3, 6, 1]. Some
analyses require multiple independent runs to be performed, or are amenable to a split-and-reduce
scheme. For example, some optimisation algorithms are run multiple times from different random
starting points, and the result that achieves the least approximation error is selected. The foreach
package! [1] provides a very convenient way to perform parallel computations, with different
parallel environments such as MPI or Redis, using a transparent loop-like syntax:

load and register parallel backend for multicore computations
library(doParallel)

Loading required package: foreach
Loading required package: iterators
Loading required package: codetools
Loading required package: parallel
registerDoParallel(2)

perform 5 tasks in parallel

x <- foreach(i = 1:5) Ydopar’ {
i + runif(1)

}

unlist (x)

[1] 1.887 2.662 3.943 4.019 5.487

For each parallel environment a backend is implemented as a specialised %dopar’ operator,
which performs the setup and pre/post-processing specifically required by the environment (e.g.
export of variable to each worker). The foreach function and the %dopar’% handle the generic
parameter dispatch and reducing step — when the results are returned to the master worker.

When stochastic computations are involved, special random number generators must be used
to ensure that the separate computations are indeed statistically independent — unless otherwise
wanted — and that the loop is reproducible. A random number generator commonly used to achieve
this is the combined multiple-recursive generator from L’Ecuyer [5]. This generator can generate
independent random streams, from a 6-length numeric seed.

The doRNG package® [2] provides a convenient way to implement reproducible parallel foreach
loops, independently of the parallel backend used to perform the computation. We illustrate its
use, showing how non-reproducible loops can be made reproducible, even when rerun with the

lhttp://cran.r-project.org/package=foreach
2http://cran.r-project.org/package=doRNG

http://cran.r-project.org/package=foreach
http://cran.r-project.org/package=doRNG
http://cran.r-project.org/package=foreach
http://cran.r-project.org/package=doRNG

tasks not scheduled in the same way in two separate set of runs, e.g. when the workers do not get
to compute the same number of tasks or the number of workers is different.

load the doRNG package
library(doRNG)

Loading required package: methods

with standard %dopar’: loops are not reproducible
set.seed(123)
res <- foreach(i = 1:5) %dopar’% {
runif (3)
}
set.seed(123)
res2 <- foreach(i = 1:5) Ydopar’ {
runif (3)
}

identical(res, res2)

[1] FALSE

using /dorngl: reproducible
res <- foreach(i = 1:5, .options.RNG = 123) %dorng% {

runif(3)

}

res2 <- foreach(i = 1:5, .options.RNG = 123) Y%dorng}, {
runif(3)

}

identical(res, res2)

[1] TRUE

even when the tasks are not scheduled in the same way
res <- foreach(i = 1:5, .combine = rbind, .options.RNG = 123) Ydorngh

{

c(pid = Sys.getpid(), val = runif(1))

}

cl <- makeCluster(3)

registerDoParallel(cl)

res2 <- foreach(i = 1:5, .combine = rbind, .options.RNG = 123) %dorng%
{

c(pid = Sys.getpid(), val = runif(1))

3

stopCluster(cl)

task schedule is different
pid <- rbind(resl = res[, 1], res2 = res2[, 1])
storage.mode(pid) <-

pid

result.l result.2 result.3 result.4 result.b
resl 8163 8164 8163 8164 8163
res2 8166 8175 8184 8166 8166

results are identical
identical(res[, 2], res2[, 2])

[1] TRUE

Session information

R version 2.14.2 (2012-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_ZA.UTF-8 LC_NUMERIC=C LC_TIME=en_ZA.UTF-8
[4] LC_COLLATE=en_ZA.UTF-8 LC_MONETARY=en_ZA.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=C LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_ZA.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] methods parallel stats graphics grDevices utils datasets Dbase

other attached packages:
[1] doRNG_1.2.1 doParallel_1.0.0 foreach_1.3.2 codetools_0.2-8 iterators_1.0.5
[6] knitr_0.3.5

loaded via a namespace (and not attached):
[1] compiler_2.14.2 digest_0.5.1 evaluate_0.4.1 formatR_0.3-4 highlight 0.3.1
[6] parser_0.0-14 plyr_1.7.1 Rcpp_0.9.9 stringr_0.6 tools_2.14.2

References

[1] Revolution Analytics. foreach: Foreach looping construct for R, 2011. R package version 1.3.2.

[2] Renaud Gaujoux. doRNG: Generic Reproducible Parallel Backend for foreach Loops, 2010. R
package version 1.2.1.

[3] Torsten Hothorn and Friedrich Leisch. Case studies in reproducibility. Briefings in bioinfor-
matics, January 2011.

[4] John P A Toannidis, David B Allison, Catherine A Ball, Issa Coulibaly, Xianggin Cui, Aedin C
Culhane, Mario Falchi, Cesare Furlanello, Laurence Game, Giuseppe Jurman, Jon Mangion,
Tapan Mehta, Michael Nitzberg, Grier P Page, Enrico Petretto, and Vera Van Noort. The

reproducibility of lists of differentially expressed genes in microarray studies. Nature Genetics,
41(2):149-155, 2008.

[5] Pierre L’Ecuyer. Good parameters and implementations for combined multiple recursive ran-
dom number generators. Operations Research, 47(1), 1999.

[6] Victoria C Stodden. The Digitization of Science: Reproducibility and Interdisciplinary Knowl-
edge Transfer, 2011.

