Introduction to the doBy package

Sgren Hgjsgaard

October 10, 2006

Contents
1 Introductionl 1
2_Datal 2
2.1 CO2datal 2
2.2 Airquality data]o oo 2
[3 The summaryBy function| 2
[4 The orderBy function| 5
[> The splitBy function| 6
[6 The sampleBy function| 6
[7 The subsetBy function| 6
[8 The transformBy function| 6
9_The esticon function| 7

1 Introduction

The doBy package grew out of a need to calculate groupwise summary statistics
in a simple way, much in the spirit of PROC SUMMARY of the SAS system.

> library(doBy)

Hmisc library by Frank E Harrell Jr

Type library(help='Hmisc'), ?0verview, or ?Hmisc.Overview')
to see overall documentation.

NOTE:Hmisc no longer redefines [.factor to drop unused levels when
subsetting. To get the old behavior of Hmisc type dropUnusedLevels().

2 Data

2.1 CO2 data

The C02 data frame has 84 rows and 5 columns of data from an experiment
on the cold tolerance of the grass species Echinochloa crus-galli. To limit the
amount of output we modify names and levels of variables as follows

> data(C02)
> C02 <- transform(C02, Treat = Treatment, Treatment = NULL)
> levels(C02$Treat) <- c("nchil", "chil")
> levels(C028Type) <- c("Que", "Mis")
> C02 <- subset(C02, Plant %inY c("Qn1", "Qcl", "Mni", "Mci"))
whereby the data becomes
> C02
Plant Type conc uptake Treat
1 Qnl Que 95 16.0 nchil
2 Qnl Que 175 30.4 nchil
3 Qnli Que 250 34.8 nchil
4 Qni Que 350 37.2 nchil
5 Qnl Que 500 35.3 nchil
6 Qni Que 675 39.2 nchil
7 Qnl Que 1000 39.7 nchil
22 Qcl Que 95 14.2 chil
23 Qcl Que 175 24.1 chil
24 Qcl Que 250 30.3 chil
25 Qcl Que 350 34.6 chil
26 Qcl Que 500 32.5 chil
27 Qcl Que 675 35.4 chil
28 Qcl Que 1000 38.7 chil
43 Mnl Mis 95 10.6 nchil
44 Mnl Mis 175 19.2 nchil
45 Mnl Mis 250 26.2 nchil
46 Mnl Mis 350 30.0 nchil
a7 Mnl Mis 500 30.9 nchil
48 Mnl Mis 675 32.4 nchil
49 Mnli Mis 1000 35.5 nchil
64 Mcl Mis 95 10.5 chil
65 Mcli Mis 175 14.9 chil
66 Mcl Mis 250 18.1 chil
67 Mcl Mis 350 18.9 chil
68 Mcl Mis 500 19.5 chil
69 Mcl Mis 675 22.2 chil
70 Mc1l Mis 1000 21.9 chil

2.2 Airquality data

The airquality dataset contains air quality measurements in New York, May
to September 1973. The months are coded as 5,...,9. To limit the output we
only consider data for two months:

3 The summaryBy function

The summaryByfunction is used for calculating quantities like “the mean and
variance of x and y for each combination of two factors A and B”.

Basic usage: For example, the mean, median and variance of uptake and
conc for each value of Plant is obtained by:

> summaryBy(conc + uptake ~ Plant, data = C02, FUN = function(x) {
+ c(m = mean(x), v = var(x))

+ 3

Plant conc.m conc.v uptake.m uptake.v

1 Mcl 435 100950 18.00 16.96
2 Mal 435 100950 26.40 75.59
3 Qcl 435 100950 29.97 69.47
4 Qul 435 100950 33.23 67.48

Alternatively,

> myfun <- function(x) {
+ c(m = mean(x), v =
+}

> summaryBy (conc + uptake ~ Plant, data = C02, FUN = myfun)

var(x))

Plant conc.m conc.v uptake.m uptake.v
1 Mcl 435 100950 18.00 16.96
2 Mnil 435 100950 26.40 75.59
3 Qci 435 100950 29.97 69.47
4 Qnil 435 100950 33.23 67.48

Defining the function to return named values as above is the recommended
use of summaryBy. If the result of the function(s) are not named, then the
names in the output data in general become less intuitive:

> summaryBy(conc + uptake ~ Plant, data = C02, FUN = function(x) {
+ c(mean(x), var(x))

+ 3

Plant conc.statl conc.stat2 uptake.statl uptake.stat2

1 Mcil 435 100950 18.00 16.96
2 Mnil 435 100950 26.40 75.59
3 Qct 435 100950 29.97 69.47
4 (Qni 435 100950 33.23 67.48

> myfun <- function(x) {

+ c(mean(x), var(x))

+}

> summaryBy(conc + uptake ~ Plant, data = C02, FUN = myfun)

Plant concl conc2 uptakel uptake2
Mcli 435 100950 18.00 16.96
Mnl 435 100950 26.40 75.59
Qcl 435 100950 29.97 69.47
Qnl 435 100950 33.23 67.48

W N -

Using a list of functions: It is possible to apply a list of functions (but note
the difference in naming the output variables depending on whether the
output of the functions are named or not):

> mymed <- function(x) c(med = median(x))

> foo <- function(x) c(median(x))

> summaryBy (uptake ~ Plant, data = C02, FUN = c(mean, var, mymed,
+ foo))

Plant uptake.mean uptake.var uptake.med uptake.foo

1 Mcl 18.00 16.96 18.9 18.9
2 Mnil 26.40 75.59 30.0 30.0
3 Qct 29.97 69.47 32.5 32.5
4 Qni 33.23 67.48 35.3 35.3

Copying variables out with the id argument: To get the value of the Type
and Treat in the first row of the groups (defined by the values of Plant)
copied to the output dataframe we use the id argument: as:

> summaryBy (conc + uptake ~ Plant, data = C02, FUN = function(x) {
+ c(m = mean(x), med = median(x), v = var(x))
+ }, id = “Type + Treat)

Plant conc.m conc.med conc.v uptake.m uptake.med uptake.v Type Treat

1 Mci 435 350 100950 18.00 18.9 16.96 Mis chil
2 Mnil 435 350 100950 26.40 30.0 75.59 Mis nchil
3 Qct 435 350 100950 29.97 32.5 69.47 Que chil
4 (Qni 435 350 100950 33.23 35.3 67.48 Que nchil

Statistics on functions of data: We may want to calculate the mean and
variance for the logarithm of uptake, for uptake+conc (not likely to be
a useful statistic) as well as for uptake and conc. This can be achieved
as

> summaryBy (log(uptake) + I(conc + uptake) + conc + uptake ~ Plant,
+ data = C02, FUN = function(x) {

+ c(m = mean(x), v = var(x))

+ P

The dot (”.”) on the left hand side of a formula: However it is simpler
to use the dot (”.”) on the left hand side of the formula. The dot means
“all numerical variables which do not appear elsewhere” (i.e. on the right
hand side of the formula and in the id statement):

> summaryBy(log(uptake) + I(conc + uptake) + . ~ Plant, data = C02,
+ FUN = function(x) {
+ c(m = mean(x), v = var(x))
+ »
Plant log(uptake).m log(uptake).v conc + uptake.m conc + uptake.v conc.m
1 Mcl 2.864 0.06874 453.0 103157 435
2 Mnil 3.209 0.17928 461.4 105642 435
3 Qct 3.356 0.11873 465.0 105297 435
4 Qni 3.467 0.10168 468.2 104747 435
conc.v uptake.m uptake.v
1 100950 18.00 16.96
2 100950 26.40 75.59
3 100950 29.97 69.47
4 100950 33.23 67.48

The dot (”.”) on the right hand side of a formula: The dot (”.”) can also
be used on the right hand side of the formula where it refers to “all non—
numerical variables which are not specified elsewhere”:

> summaryBy (log(uptake) ~ Plant + ., data = C02, FUN = function(x) {
+ c(m = mean(x), v = var(x))

+ 1

Plant Type Treat log(uptake).m log(uptake).v

1 Mcl Mis chil 2.864 0.06874
2 Mnl Mis nchil 3.209 0.17928
3 Qcl Que chil 3.356 0.11873
4 Qnl Que nchil 3.467 0.10168

Using “1” on the right hand side of the formula: Using 1 on the right
hand side means no grouping:

> summaryBy (log(uptake) ~ 1, data = C02, FUN = function(x) {
+ c(m = mean(x), v = var(x))

+ 3

log(uptake) .m log(uptake).v
1 3.224 0.1577

Preserving names of variables: If the function applied to data only returns
one value, it is possible to force that the summary variables retain the
original names by setting keep.names=TRUE. A typical use of this could
be

> summaryBy(conc + uptake + log(uptake) ~ Plant, data = C02, FUN = mean,
+ id = “Type + Treat, keep.names = TRUE)

Plant conc uptake log(uptake) Type Treat

1 Mcl 435 18.00 2.864 Mis chil
2 Mnl 435 26.40 3.209 Mis nchil
3 Qcl 435 29.97 3.356 Que chil
4 Qn1 435 33.23 3.467 Que nchil

4 The orderBy function

Ordering (or sorting) a data frame is possible with the orderBy function. Sup-
pose we want to order the rows of the the airquality data by Temp and by
Month (within Temp) and that the ordering should be decreasing. This can be
achieved by:

’> x <- orderBy("Temp + Month, data = aq, decreasing = T) ‘

The first lines of the result are:

> head(x)

Ozone Solar.R Wind Temp Month Day

42 NA 259 10.9 93 6 11
43 NA 250 9.2 92 6 12
40 71 291 13.8 90 6 9
39 NA 273 6.9 87 6 8
41 39 323 11.5 87 6 10
36 NA 220 8.6 85 6 5

5 The splitBy function

Suppose we want to split the airquality data into a list of dataframes, e.g.
one dataframe for each month. This can be achieved by:

’> x <- splitBy(“Month, data = ag) ‘

Information about the grouping is stored as a dataframe in an attribute
called groupid:

> attr(x, "groupid")

Month
1 5
2 6

6 The sampleBy function

Suppose we want a random sample of 50 % of the observations from a dataframe.
This can be achieved with:

’> sampleBy ("1, frac = 0.5, data = aq) ‘

Suppose instead that we want a systematic sample of every fifth observation
within each month. This is achieved with:

’> sampleBy("Month, frac = 0.2, data = aq, systematic = T) ‘

7 The subsetBy function

Suppose we want to take out those rows within each month for which the the
wind speed is larger than the mean wind speed (within the month). This is
achieved by:

’> subsetBy(~“Month, subset = "Wind>mean(Wind)", data = airquality) ‘

Note that the statement "Wind>mean(Wind)" is evaluated within each month.

8 The transformBy function

The transformBy function is analogous to the transform function except that
it works within groups. For example:

> transformBy("Month, data = airquality, minW = min(Wind), maxW = max(Wind),
+ chg = sum(range(Wind) * c(-1, 1)))

9 The esticon function

Consider a linear model which explains Ozone as a linear function of Month and
Wind:

> airquality <- transform(airquality, Month = factor (Month))
> m <- 1m(Ozone ~ Month * Wind, data = airquality)
> coefficients(m)

(Intercept) Month6 Month7 Month8 Month9 Wind
50.748 -41.793 68.296 82.211 23.439 -2.368
Month6:Wind Month7:Wind Month8:Wind Month9:Wind
4.051 -4.663 -6.154 -1.874

When a parameter vector § of (systematic) effects have been estimated,
interest is often in a particular estimable function, i.e. linear combination A" 3
and/or testing the hypothesis Hy : AT 3 = 3y where) is a specific vector defined
by the user.

Suppose for example we want to calculate the expected difference in ozone
between consequtive months at wind speed 10 mph (which is about the average
wind speed over the whole period).

The esticon function provides a way of doing so. We can specify several A
vectors at the same time. For example

> Lambda

[,11 [,2]1 [,3]1 [,4] [,5] [,6] [,71 [,8] [,9] [,10]

[1,] 0o -1 0 0 0 0 -10 0 0 0
[2,] 0 1 -1 0 0 0 10 -10 0 0
[3,] 0 0 1 -1 0 0 0 10 -10 0
[4,] 0 0 0 1 -1 0 0 0 10 -10

> esticon(m, Lambda)

Confidence interval (WALD) level = 0.95
beta0 Estimate Std.Error t.value DF Pr(>|t|) Lower.CI Upper.CI

1 0 1.2871 10.238 0.1257 106 0.90019 -19.010 21.585
2 0 -22.9503 10.310 -2.2259 106 0.02814 -43.392 -2.509
3 0 0.9954 7.094 0.1403 106 0.88867 -13.069 15.060
4 0 15.9651 6.560 2.4337 106 0.01662 2.959 28.971

In other cases, interest is in testing a hypothesis of a contrast Hy : AG = Gy
where A is a matrix. For example a test of no interaction between Month and
Wind can be made by testing jointly that the last four parameters in m are zero
(observe that the test is a Wald test):

> Lambda

[,11 ,21 [,31 [,41 [,5] [,e1 C,7]1 [,8] [,9]1 [,10]
[1,] 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0
[3,] 0 0 0 0 0 0 0 0 1 0
[4,] 0 0 0 0 0 0 0 0 0 1
> esticon(m, Lambda, joint.test = T)

X2.stat DF Pr(>|X"2])
1 22.11 4 0.0001906

For a linear normal model, one would typically prefer to do a likelihood
ratio test instead. However, for generalized estimating equations of glm—type
(as dealt with in the packages geepack and gee) there is no likelihood. In this
case esticon function provides an operational alternative.

Observe that another function for calculating contrasts as above is the con-
trast function in the Design package but it applies to a narrower range of
models than esticon does.

	Introduction
	Data
	CO2 data
	Airquality data

	The summaryBy function
	The orderBy function
	The splitBy function
	The sampleBy function
	The subsetBy function
	The transformBy function
	The esticon function

