
dlm: an R package for Bayesian analysis of

Dynamic Linear Models

Giovanni Petris

University of Arkansas, Fayetteville AR

2006-06-15

1 Introduction

The package dlm focuses on Bayesian analysis of Dynamic Linear Models
(DLM), also known as linear state space models. The package also includes
functions for maximum likelihood estimation of the parameters of a DLM
and for Kalman filtering. The algorithms used for Kalman filtering, like-
lihood evaluation, and sampling from the state vectors are based on the
singular value decomposition (SVD) of the relevant variance matrices (see
[ZL]), which improves numerical stability over other algorithms.

The notation used for the model follows closely that used in [WH], and
is as follows.

{

yt = Ftθt + vt vt ∼ N (0, Vt)

θt = Gtθt−1 + wt wt ∼ N (0,Wt)

for t = 1, . . . , n. The initial distribution (prior) is specified by

θ0 ∼ N (m0, C0).

So (θt) is a sequence of unobservable state vectors and (yt) is a sequence
of (vector-valued) observations; (vt) and (wt) are independent sequences
(within and between). We will denote by Yt the observations up to time t,
with Y0 = ∅.

The package introduces a class dlm to represent DLMs and provides
functions to create several standard types of DLMs, such as polynomial,
ARMA, regression, and seasonal models. Components of a model (e.g.,
trend and seasonal) can be created using those functions and added together
to produce a model for the data. A class dlmFiltered is also defined, and
method functions for residuals and tsdiag are available for computing
one-step forecast errors and drawing standard diagnostic plots.

1



2 Class dlm and creator functions

2.1 Constant models

Many interesting DLMs are time invariant, that is, Ft, Vt, Gt, and Wt do
not change over time. An object of class dlm representing a time-invariant
DLM is essentially a list containing named components FF, V, GG, W, m0, C0,
with the class attribute "dlm". While m0 can be a vector or a matrix, all the
remaining components must be matrices. The function dlm can be used to
create an object of class dlm from a list. It includes some basic consistency
checks on the dimensions of the involved matrices.

A polynomial model of order two, sometimes called a local linear trend
model, is defined by the following matrices:

F =
[

1 0
]

, V =
[

σ2
]

,

G =

[

1 1
0 1

]

, W =

[

0 0
0 τ

]

.

In R, taking σ2 = 1.4 and τ = 0.2, an object representing this model can be
created as follows.

> FF <- matrix(c(1, 0), 1)

> V <- matrix(1.4)

> GG <- matrix(c(1, 0, 1, 1), 2)

> W <- matrix(c(0, 0, 0, 0.2), 2)

> mod <- dlm(list(FF = FF, V = V, GG = GG, W = W, m0 = rep(0, 2),

+ C0 = 1e+07 * diag(2)))

> mod

$FF

[,1] [,2]

[1,] 1 0

$V

[,1]

[1,] 1.4

$GG

[,1] [,2]

[1,] 1 1

[2,] 0 1

2



$W

[,1] [,2]

[1,] 0 0.0

[2,] 0 0.2

$m0

[1] 0 0

$C0

[,1] [,2]

[1,] 1e+07 0e+00

[2,] 0e+00 1e+07

The same model could have been created more simply as dlmModPoly(dV=1.4,
dW=c(0,0.2)). The arguments dV and dW are used to provide the diagonals
of the matrices V and W . If a more general, i.e., non-diagonal variance
matrix, is desired, then one need to use dlm. The default for dlmModPoly is
to create a second-order polynomial model, but the order of the model can
be specified via the first argument order.

A seasonal DLM with s seasons can be obtained with the function dlm-

ModSeas, which produces the dummy variable version of the seasonal DLM
(see [H]). For quarterly data, for example, one would use something like the
following:

> dlmModSeas(4, dV = 1.4, dW = c(0.2, 0, 0))

$FF

[,1] [,2] [,3]

[1,] 1 0 0

$V

[,1]

[1,] 1.4

$GG

[,1] [,2] [,3]

[1,] -1 -1 -1

3



[2,] 1 0 0

[3,] 0 1 0

$W

[,1] [,2] [,3]

[1,] 0.2 0 0

[2,] 0.0 0 0

[3,] 0.0 0 0

$m0

[1] 0 0 0

$C0

[,1] [,2] [,3]

[1,] 1e+07 0e+00 0e+00

[2,] 0e+00 1e+07 0e+00

[3,] 0e+00 0e+00 1e+07

In many applications, for example in business and economics, a model
including both a local linear trend and a seasonal component is often used.
Combining component models is easily achieved via the method dlm of the
function "+":

> dlmModPoly(dV = 1.4, dW = c(0, 0.2)) + dlmModSeas(4, dV = 0,

+ dW = c(0.1, 0, 0))

An alternative representation of seasonal components is the one based on
trigonometric functions, see [WH] for details. Trigonometric functions may
also be employed to describe a periodic function with a generic period1,
such as those used to explain the business cycle. There is a subtle difference
between the two concepts. We think of a seasonal component as a periodic
function defined on the integers and having period s; its Fourier represen-
tation as a sum of harmonics has only a finite number of terms, namely
⌊s/2⌋. On the other hand, a periodic function with noninteger period is
periodic only when viewed as a function on the real line and, in this case,
its Fourier representation contains an infinite number of harmonics. Pack-
age dlm provides the creator function dlmModTrig to deal with both cases,

1By this we mean that the period in not an integer multiple of the sampling interval

4



using different sets of arguments. To create a seasonal component DLM,
one specifies the integer period s (number of seasons) via the argument s.
Optionally, the argument q can be used to set the number of harmonics to
retain in the model (the default value is all, i.e., ⌊s/2⌋). For a cycle-type pe-
riodic DLM, on the other hand, one specifies the noninteger period τ via the
argument tau. Since in this case the Fourier reresentation is an infinite sum,
the argument q for the number of harmonics to retain has to be specified.
Instead of the period, one may alternatively specify the frequency ω = 2π/τ
via the argument om. The following example illustrates the creation of a
seasonal model for quarterly data, and of a model for a cycle having period
τ = 8.4. In both cases we retain only the first two harmonics. Note the
structure of the system variance W .

> dlmModTrig(s = 4, q = 2, dV = 1.4, dW = 0.2)

> dlmModTrig(tau = 8.4, q = 2, dV = 1.4, dW = 0.2)

Autoregressive moving average (ARMA) models can be represented in
many different ways as DLMs. The representation used by the creator func-
tion dlmModARMA is the one described below. Consider a zero-mean ARMA
model described by the equation

yt =

p
∑

i=1

φiyt−i +

q
∑

i=1

ψiǫt−i + ǫt, ǫt
iid
∼ N (0, σ2).

Let r = max{p, q+1}, and set φj = 0 for j > p and ψj = 0 for j > q. Define
the matrices

F =
[

1 0 . . . 0
]

,

G =















φ1 1 0 . . . 0
φ2 0 1 . . . 0
...

...
. . .

φr−1 0 . . . 0 1
φr 0 . . . 0 0















,

R =
[

1 ψ1 . . . ψr−2 ψr−1

]

′

.

(1)

If one introduces an r-dimensional state vector θt, whose components are
defined by

θt1 = yt,

θt,j+1 =

r
∑

i=j+1

φiyt+j−i +

r−1
∑

i=j

ψiǫt+j−i, j = 1, 2, . . . , r − 1,
(2)

5



then the given ARMA model has the following DLM representation:

{

yt = Fθt,

θt = Gθt−1 +Rǫt.
(3)

This is a DLM with V = 0 and W = RR′σ2. For example, consider the
ARMA(2,1) model expressed by

yt = 0.8yt−1 − 0.2yt−2 + 0.3ǫt−1 + ǫt, ǫt
iid
∼ N (0, 3.2).

Its DLM representation can be obtained with the command:

> dlmModARMA(ar = c(0.8, -0.2), ma = 0.3, sigma2 = 3.2)

ARMA models for multivariate, m-dimensional, observations, are for-
mally defined as in the univariate case, through the recursive relation

yt =

p
∑

j=1

Φjyt−j + ǫt +

q
∑

j=1

Ψjǫt−j , (4)

where (ǫt) is an m-variate Gaussian white noise sequence with variance Σ
and the Φj and Ψj are m by m matrices. Here, without loss of generality,
we have taken the mean of the process to be zero. A DLM representation of
a multivariate ARMA process can be formally obtained by a simple general-
ization of the representation given for univariate ARMA processes. Namely,
in the G matrix each φj needs to be replaced by a block containing the
matrix Φj; similarly for the ψj in the matrix R, that have to be replaced
by Ψj blocks. Finally, all the occurrences of a “one” in F , G, and R must
be replaced by the identity matrix of order m, and all the occurrences of a
“zero” with a block of zeroes of order m by m. For example, let us consider
the bivariate ARMA(1,1) process

yt = Φ1yt−1 + +ǫt + Ψ1ǫt−1, ǫt ∼ N (0,Σ), (5)

with

Φ1 =

[

1.2 −0.5
0.6 0.3

]

, Ψ1 =

[

−0.6 0.3
0.2 0.5

]

, Σ =

[

1.00 0.50
0.50 1.25

]

. (6)

6



Then the system and observation matrices needed to define the DLM rep-
resentation of (5) are the following:

F =

[

1 0 0 0
0 1 0 0

]

,

G =









1.2 −0.5 1 0
0.6 0.3 0 1
0 0 0 0
0 0 0 0









,

R =









1 0
0 1

−0.6 0.3
0.2 0.5









, W = RΣR′.

(7)

In R, the DLM representation would be obtained with the command

> dlmModARMA(ar = list(matrix(c(1.2, 0.6, -0.5, 0.3), 2)),

+ ma = list(matrix(c(-0.6, 0.2, 0.3, 0.5), 2)),

+ sigma2 = matrix(c(1, 0.5, 0.5, 1.25), 2))

$FF

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

$V

[,1] [,2]

[1,] 0 0

[2,] 0 0

$GG

[,1] [,2] [,3] [,4]

[1,] 1.2 -0.5 1 0

[2,] 0.6 0.3 0 1

[3,] 0.0 0.0 0 0

[4,] 0.0 0.0 0 0

$W

[,1] [,2] [,3] [,4]

[1,] 1.00 0.500 -0.4500 0.4500

7



[2,] 0.50 1.250 0.0750 0.7250

[3,] -0.45 0.075 0.2925 -0.0525

[4,] 0.45 0.725 -0.0525 0.4525

$m0

[1] 0 0 0 0

$C0

[,1] [,2] [,3] [,4]

[1,] 1e+07 0e+00 0e+00 0e+00

[2,] 0e+00 1e+07 0e+00 0e+00

[3,] 0e+00 0e+00 1e+07 0e+00

[4,] 0e+00 0e+00 0e+00 1e+07

2.2 Time-varying models

For time-varying DLM, the structure of an object of class "dlm" is more
complicated. The components FF, V, GG, W are still part of the structure:
they serve the two-fold purpose of implicitely specifying the dimensions of
the system and observation matrices, and to set the value of the elements
that stay constant over time. The time-varying elements are specified via an
additional data matrix X, and auxiliary indicator matrices JFF, JV, JGG,

JW. Any one of the auxiliary matrices may be substituted by a NULL compo-
nent of the same name in case the corresponding matrix is time invariant.
For example, a component JFF which is either NULL or nonexistent signals
that the matrix FF does not vary over time. Otherwise, the matrix JFF must
have integer entries and be of the same dimensions as FF. A zero entry in
JFF signals that the corresponding entry of FF is constant, while an entry
j signals that the jth column of X contains the values of the corresponding
entry of FF:

JFF[i,j] == 0 =⇒ FF[i,j] is constant in time,
JFF[i,j] == r =⇒ FF[i,j] == X[n,r] at time n.

Similarly for the other matrices and their indicator matrices. The prior
mean, m0, and variance, C0, retain their meaning.

Regression models (static or dynamic) can be cast into the DLM frame-
work. The state vector θt has the role of the vector of regression parameters

8



at time t, while the matrix Ft contains the covariates for case/time t. The
creator function dlmModReg is used to set up univariate regression models:

> z <- rnorm(30)

> mod <- dlmModReg(z)

> mod

$FF

[,1] [,2]

[1,] 1 1

$V

[,1]

[1,] 1

$GG

[,1] [,2]

[1,] 1 0

[2,] 0 1

$W

[,1] [,2]

[1,] 0 0

[2,] 0 0

$JFF

[,1] [,2]

[1,] 0 1

$X

[,1]

[1,] 0.6387

[2,] 0.9474

[3,] ...

$m0

[1] 0 0

$C0

[,1] [,2]

9



[1,] 1e+07 0e+00

[2,] 0e+00 1e+07

The default for dlmModReg is to add an intercept and to set up a static
regression model. Note that the dlm method of print does not show the
entire data matrix. In case one wants to see the whole thing, mod$X or
print.default(mod) will do.

3 Maximum Likelihood estimation

This function evaluates the MLE of any unknown parameters in the ma-
trices defining the DLM - except for m0 and C0, which must be specified
completely. Strictly speaking, since we are including the prior information
about the initial state vector, summarized by m0 and C0, the model, and so
the MLE, is slightly different from the usual frequentist formulation, which
typically assumes for θ0 a diffuse prior (see [H]); however, by specifying a
very large C0, there is no noticeable difference in the MLE.

The main arguments of dlmMLE are the data, y, a vector, matrix, or
a time series, the initial value of the unknown (vector) parameter for the
optimization routine, parm, and a function, build, that from a vector of
the same length as parm outputs a "dlm" object (or a list that can be
coherced to "dlm"). The use of the argument build makes the function
very flexible in finding MLE for very general DLM. dlmMLE calls optim

internally and returns its output. In evaluating the log likelihood of the
given model, dlmMLE uses a robust algorithm based on SVD of the relevant
variance matrices. This algorithm needs the observation matrix V to be
nonsingular, while there is no such restriction on W . Due to the stability
of SVD, a very small diagonal matrix can be added to a singular V to
approximate a model with singular observation variance.

Example

The data set NelPlo is a bivariate time series containing the first differ-
ence of the log of industrial production and stock prices, in percent, for a
number of years. It is a subset of the data set with the same name in pack-
age tseries. The model we consider is a seemingly unrelated time series
model, specified by the matrices

F = G = diag(1, 1).

10



The variances V and W need to be estimated from the data. Since we
are not assuming the two are diagonal, and three parameters are nedeed to
specify each of them, we need to set up a function that “builds” V and W
from a vector of length 6. One possibility is to parametrize the variances
(diagonal elements) in V and W in terms of the log of their square root,
and express the correlations in term of tanh of other two parameters. This
results in the following function definition:

> buildSu <- function(x) {

+ a <- diag(exp(0.5 * x[1:2]), nr = 2)

+ a[1, 2] <- x[3]

+ V <- crossprod(a)

+ a <- diag(exp(0.5 * x[4:5]), nr = 2)

+ a[1, 2] <- x[6]

+ W <- crossprod(a)

+ return(dlm(m0 = rep(0, 2), C0 = 1e+07 * diag(2), FF = diag(2),

+ GG = diag(2), V = V, W = W))

+ }

One can the call dlmMLE. It is always advisable to check the convergence
component of the returned value: a nonzero value signals that something
went wrong in the optimization process. The estimated variance matrices
can be recovered using the same build function used in the optimization
process (actually, in order to avoid errors, this is the recommended way of
proceeding!).

> data(NelPlo)

> suMLE <- dlmMLE(NelPlo, rep(0, 6), buildSu)

> suMLE$convergence

[1] 0

> buildSu(suMLE$par)[c("V", "W")]

$V

[,1] [,2]

[1,] 2.391 0.638

[2,] 0.638 9.028

$W

11



[,1] [,2]

[1,] 0.00049 0.0040

[2,] 0.00400 0.0327

The function stats::StructTS can be used to fit a model with the same
type of dynamics, but only for univariate observations. Doing this for the
two series separately amounts to fitting a seemingly unrelated time series
model with the additional contraint that V and W are diagonal. We try, for
comparison purposes.

> StructTS(NelPlo[, 1], type = "level")

Call:

StructTS(x = NelPlo[, 1], type = "level")

Variances:

level epsilon

0.00 2.39

> StructTS(NelPlo[, 2], type = "level")

Call:

StructTS(x = NelPlo[, 2], type = "level")

Variances:

level epsilon

0.0324 9.0308

The estimates are in fairly good agreement, which also shows that using
the value specified above for C0 probably did not affect much the MLE.

We try now, for the same data set, to fit the same model with the
additional constraint W = qV , where q is a nonnegative scalar, the so-called
signal-to-noise ratio. This results in a local level model with a homogeneity
restriction. A different build function has to be defined, but otherwise the
constant matrices remain the same as before.

12



> buildHo <- function(x) {

+ a <- diag(exp(0.5 * x[1:2]), nr = 2)

+ a[1, 2] <- x[3]

+ V <- crossprod(a)

+ return(dlm(m0 = rep(0, 2), C0 = 1e+07 * diag(2), FF = diag(2),

+ GG = diag(2), V = V, W = x[4]^2 * V))

+ }

> hoMLE <- dlmMLE(NelPlo, rep(0, 4), buildHo)

> hoMLE$convergence

[1] 0

> buildHo(hoMLE$par)[c("V", "W")]

$V

[,1] [,2]

[1,] 2.394 0.667

[2,] 0.667 9.260

$W

[,1] [,2]

[1,] 0 0

[2,] 0 0

> hoMLE$par[4]

[1] 0

A word of caution about MLE with DLM is in order. For general DLM
containing unknown parameters, the likelihood function may be relatively
flat, suggesting a scarcely identifiable parametrization, or/and it may have
several local maxima. We suggest, especially for highly complex models, to
repeat the optimization process several times, starting from different initial
values.

13



4 Filtering

The function dlmFilter computes and returns the posterior mean and vari-
ance (mt and Ct in [WH]) of θt given Yt (t = 0, . . . , n), and the mean and
variance (at and Rt in [WH]) of θt given Yt−1 (t = 1, . . . , n). The main
arguments are y and mod. The first one is the matrix or time series of the
observations, the second is a dlm object. The function returnes a list. The
components m and a contain the time series or matrices/vectors correspond-
ing to the mt and at, respectively. The variances Ct and Rt are returned in
terms of their SVD. If S is a symmetric nonnegative definite matrix, we write
the singular value decomposition as S = UD2U ′, where U is an orthogonal
matrix and D diagonal. The U matrices of the SVD of the Ct are returned
in the list U.C, while the diagonal elements of the D matrices are the rows
of the matrix D.C. Similarly for the SVD of the Rt, returned in list U.R and
matrix D.R. If needed, the variance matrices can be reconstructed using the
function dlmSvd2var. This is the output when the argument simplify is
TRUE, and is typically used when the function is called repeatedly within
a Gibbs sampler. The default value for simplify is FALSE, in which case
the output list has the additional components y and mod, which are essen-
tially copies of the corresponding input arguments. Moreover, the output
has a "dlmFiltered" class attribute, which is used for calculating residuals
(one-step-ahead forecast errors) and drawing diagnostic plots.

Example

Consider the data set used in the example for dlmMLE above and the
seemingly unrelated time series model discussed in the same example. The
variance matrices V and W are generally considered parameters that need
to be estimated, but to illustrate the filtering procedure, we cansider them
known, using the parameter estimates obtained with dlmMLE.

> mod <- buildSu(suMLE$par)

> modFilt <- dlmFilter(NelPlo, mod)

> names(modFilt)

[1] "y" "mod" "m" "U.C" "D.C" "a" "U.R" "D.R" "f"

The m component of modFilt is a bivariate time series representing the
filtered hypothetical “true levels” of the observed series. One can plot them
together with the data.

14



> plot(NelPlo, plot.type = "single", lty = 2:3, type = "b")

> for (i in 1:2) lines(seq(start(NelPlo)[1] - 1, end(NelPlo)[1]),

+ modFilt$m[, i], col = "red", lty = i + 1, type = "b", pch = 5)

> leg <- as.vector(t(outer(dimnames(NelPlo)[[2]], c("observed",

+ "filtered"), paste)))

> legend(1965, 8, legend = leg, lty = rep(2:3, each = 2), col = c("black",

+ "red"), pch = c(1, 5), bty = "n")

Time

N
el

P
lo

1950 1960 1970 1980

−
5

0
5

ip observed
ip filtered
stock.prices observed
stock.prices filtered

Figure 1: Observed and filtered levels for NelPlo data

If the model is correct for the given data, the standardized one-step fore-
cast errors, for each series, should be independent identically distributed
according to a standard normal distribution. Method dlmFiltered of func-
tion residuals can be used to compute the standardized one-step forecast
errors as well as their standard deviation. Method dlmFiltered of function
tsdiag, which is modeled after tsdiag.Arima, calls residuals internally
and draws standard diagnostic plots for the standardized errors.

5 Smoothing

To find the conditional mean and variance of θt (t = 0, . . . , n) given Yn, one
can use the function dlmSmooth. The returned value is a list: the component
s is the vector or matrix of smoothed values, while U.S and D.S provide the
SVD of the variance matrices. The variance matrices can be reconstructed
from their SVD using the funcion dlmSvd2var. The code below shows how
90% probability intervals can be obtained for the (unobservable)“true”stock
price level in the NelPlo data set.

15



> modSmooth <- dlmSmooth(modFilt)

> v <- dlmSvd2var(modSmooth$U.S, modSmooth$D.S)

> se <- sapply(seq(along = v), function(i) sqrt(v[[i]][2, 2]))

> x <- ts(se %o% (c(-1, 1, 0) * qnorm(0.05, lower = F)) + as.vector(modSmooth$s[,

+ 2]), start = start(NelPlo)[1] - 1)

> plot(NelPlo[, "stock.prices"], type = "b", lty = 3, ylab = "Stock price")

> for (i in 1:2) lines(x[, i], col = "blue", lty = 2)

> lines(x[, 3], col = "red", type = "b", pch = 5, cex = 0.75)

> leg <- c("observed", "smoothed", "90% probability limit")

> legend(1963, 8, legend = leg, lty = c(3, 1, 2), col = c("black",

+ "red", "blue"), pch = c(1, 5, NA), bty = "n")

Time

S
to

ck
 p

ric
e

1950 1960 1970 1980

−
5

0
5

observed
smoothed
90% probability limit

Figure 2: 90% probability interval for stock price level

16



6 Gibbs sampling: Forward filtering backward sam-

pling

Taking a simulation-based Bayesian approach to the estimation of unknown
parameters occurring in the specification of a DLM, it is usually convenient
to simulate the states θ0, θ1, . . . , θn from their full conditional distribution
at each sweep of the sampler. The function dlmBSample generates a real-
ization from the posterior distribution of the state vectors θ0, . . . , θn. The
algorithm used is the so-called forward filtering backward sampling algo-
rithm, described in [WH], with an implementation based on SVD. Strictly
speaking, the function dlmBSample only performs the “backward sampling”
part, starting from the “forward filtering”provided in the output of dlmFil-
ter. The argument of dlmBSample is the output returned by dlmFilter.
Since the data are not needed, to avoid copying possibly long vectors at
each call of dlmFilter, one can specify the argument simplify = TRUE.
The output of dlmBSample can be used within a Gibbs sampler, thinking of
the θt as latent variables, to generate the state vectors for a given value of
the parameters specifying the DLM.

Example

Consider once again Nelson-Plotter data and the seemingly unrelated
time series model described above. Taking a Bayesian approach, we put
independent inverse Wishart priors with parameter Λ−1

0 and ν0 degrees of
freedom on V and W . Those are the only unknown parameters of the model,
and we generate them within a Gibbs sampler which include also the state
vectors as latent variables. The likelihood for V is proportional to

|V |−
n

2 exp{−
1

2
tr(V −1S)},

where S is the multivariate sum of squares
∑n

t=1
(yt−Fθt)(yt−Fθt)

′. There-
fore the full conditional distribution is again inverse Wishart with parameter
Λ−1

0 +S and ν0 +n degrees of freedom. Similarly, it can be seen that the full
conditional distribution of W is inverse Wishart with parameter Λ−1

0 + Sθ

and ν0 + n degrees of freedom, with Sθ =
∑n

t=1
(θt − Gθt−1)(θt − Gθt−1)

′.
Before running the actual sampler we specify the hyperparameters of the
prior, create objects that will be used to store the variables generated by
the sampler, and perform some initializations.

> MC <- 1000

> n <- NROW(NelPlo)

17



> mod <- buildSu(suMLE$par)

> gibbsTheta <- array(0, dim = c(MC, NROW(NelPlo) + 1, 2))

> gibbsV <- array(0, dim = c(MC + 1, 2, 2))

> gibbsW <- array(0, dim = c(MC + 1, 2, 2))

> nu <- 2

> L0inv <- var(NelPlo)/2

> gibbsV[1, , ] <- mod$V

> gibbsW[1, , ] <- mod$W

> set.seed(6324)

The code below gives the actual Gibbs sampler, generating in turn the
state vectors θt, V , and W . Since the code is not optimized for speed and
it may take several seconds to run, we set the number of MCMC samples to
1000.

> for (i in 1:MC) {

+ mod$V[] <- gibbsV[i, , ]

+ mod$W[] <- gibbsW[i, , ]

+ modFilt <- dlmFilter(NelPlo, mod, simplify = TRUE)

+ gibbsTheta[i, , ] <- dlmBSample(modFilt)

+ Linv <- crossprod(NelPlo - gibbsTheta[i, -1, ] %*% mod$FF) +

+ L0inv

+ tmp <- La.svd(Linv, nu = 0)

+ if (any(is.infinite(q <- 1/sqrt(tmp$d))))

+ stop("singular Linv in 'sample V'")
+ sqrtL <- q * tmp$vt

+ gibbsV[i + 1, , ] <- solve(rwishart(df = nu + n, SqrtSigma = sqrtL))

+ Linv <- crossprod(gibbsTheta[i, -1, ] - gibbsTheta[i, -(n +

+ 1), ] %*% mod$GG) + L0inv

+ tmp <- La.svd(Linv, nu = 0)

+ if (any(is.infinite(q <- 1/sqrt(tmp$d))))

+ stop("singular Linv in 'sample W'")
+ sqrtL <- q * tmp$vt

+ gibbsW[i + 1, , ] <- solve(rwishart(df = nu + n, SqrtSigma = sqrtL))

+ }

It is straightforward to compute posterior means from the output and
to plot the posterior mean of the true level of the two series. We remove
the first 100 iterations as burn-in. A graphical summary of the Bayesian
estimate of the “true” level of the two series is shown in Figure 3.

18



> apply(gibbsV[-(1:100), , ], c(2, 3), mean)

[,1] [,2]

[1,] 2.325 0.435

[2,] 0.435 8.009

> apply(gibbsW[-(1:100), , ], c(2, 3), mean)

[,1] [,2]

[1,] 0.4673 0.0248

[2,] 0.0248 1.8418

> meanGibbsTheta <- apply(gibbsTheta[-(1:100), , ], c(2, 3), mean)

> plot(NelPlo, plot.type = "single", lty = 2:3, col = "blue", type = "o")

> lines(seq(start(NelPlo)[1] - 1, end(NelPlo)[1]), meanGibbsTheta[,

+ 1], lty = 2, col = "red", type = "o", pch = 5)

> lines(seq(start(NelPlo)[1] - 1, end(NelPlo)[1]), meanGibbsTheta[,

+ 2], lty = 3, col = "red", type = "o", pch = 5)

> leg <- as.vector(t(outer(dimnames(NelPlo)[[2]], c("- observed",

+ "- Bayes estimate of level"), paste)))

> legend(1965, 8, legend = leg, lty = rep(2:3, each = 2), col = c("blue",

+ "red"), pch = c(1, 5), bty = "n")

Time

N
el

P
lo

1950 1960 1970 1980

−
5

0
5

ip − observed
ip − Bayes estimate of level
stock.prices − observed
stock.prices − Bayes estimate of level

Figure 3: Bayesian estimate of level for NelPlo data

19



7 Adaptive rejection Metropolis Sampling

The package also contains the function arms, which allows to use adaptive
rejection sampling (see [GBT]) to generate an observation from a given den-
sity. The function is based on a C function written by W. Gilks, that works
for univariate distributions. Our R interface can be used also with multi-
varate densities, in which case the univariate C function is called on the
given density along a randomly selected straight line through the current
point. The help page contains several examples unrelated to DLM. In the
DLM framework, arms can be used within a Gibbs sampler for parameters
whose full conditional distribution is nonstandard.

Example

Consider the US macroeconomic data in the data set USecon, and con-
sider again a seemingly unrelated time series model with homogeneity con-
straints like the one fitted above for the Nelson-Plosser data. Here W = qV
and the unknown parameters are V and q. We take an inverse Wishart
distribution prior for V and a uniform prior on a reasonably large interval
(ǫ, E) for q. In the code below we use arms to generate q.

> data(USecon)

> FF <- GG <- diag(2)

> MC <- 1000

> n <- NROW(USecon)

> gibbsTheta <- array(0, dim = c(MC, NROW(USecon) + 1, 2))

> gibbsV <- array(0, dim = c(MC + 1, 2, 2))

> gibbsQ <- rep(0, MC + 1)

> m0 <- rep(0, 2)

> C0 <- 1e+08 * diag(2)

> nu <- 2

> L0inv <- var(USecon)/2

> gibbsV[1, , ] <- V <- matrix(c(1.65, 0.1, 0.1, 0.7), 2, 2)

> gibbsQ[1] <- 0.25

> W <- gibbsQ[1] * V

> mod <- list(m0 = rep(0, 2), C0 = 1e+07 * diag(2), FF = FF, V = V,

+ GG = GG, W = W)

> ind <- function(x) x > .Machine$double.eps && x < 400

> ldens <- function(q) -0.5 * sum(diag(solve(V, SStheta)))/q -

+ n * log(q)

> for (i in 1:MC) {

20



+ mod$V[] <- V

+ mod$W[] <- W

+ modFilt <- dlmFilter(USecon, mod, simplify = TRUE)

+ gibbsTheta[i, , ] <- dlmBSample(modFilt)

+ SStheta <- crossprod(gibbsTheta[i, -1, ] - gibbsTheta[i,

+ -(n + 1), ] %*% GG)

+ Linv <- crossprod(USecon - gibbsTheta[i, -1, ] %*% FF) +

+ SStheta/gibbsQ[i] + L0inv

+ tmp <- La.svd(Linv, nu = 0)

+ sqrtL <- (1/sqrt(tmp$d)) * t(tmp$v)

+ gibbsV[i + 1, , ] <- V <- solve(rwishart(df = nu + 2 * n,

+ SqrtSigma = sqrtL))

+ gibbsQ[i + 1] <- arms(gibbsQ[i], ldens, ind, 5)[5]

+ W <- V * gibbsQ[i + 1]

+ }

The argument 5 in the call to arms asks the function to generate five
draws from the target distribution. Of the five, we use the last one; this is
just a way to speed up the sampler. Posterior summaries can be computed
and plotted (Figure 4) in the usual way.

> apply(gibbsV[-(1:100), , ], c(2, 3), mean)

[,1] [,2]

[1,] 1.4214 0.0936

[2,] 0.0936 0.6085

> mean(gibbsQ[-(1:100)])

[1] 0.707

> meanGibbsTheta <- apply(gibbsTheta[-(1:100), , ], c(2, 3), mean)

> plot(USecon, plot.type = "single", lty = 2:3, col = "blue", type = "o")

> lines(as.numeric(time(USecon)), meanGibbsTheta[-1, 1], lty = 2,

+ col = "red", type = "o", pch = 5)

> lines(as.numeric(time(USecon)), meanGibbsTheta[-1, 2], lty = 3,

+ col = "red", type = "o", pch = 5)

> leg <- as.vector(t(outer(dimnames(USecon)[[2]], c("- observed",

+ "- Bayes estimate of level"), paste)))

> legend(1984, -2, legend = leg, lty = rep(2:3, each = 2), col = c("blue",

+ "red"), pch = c(1, 5), bty = "n")

21



Time

U
S

ec
on

1978 1980 1982 1984 1986 1988

−
4

−
2

0
2

4

M1 − observed
M1 − Bayes estimate of level
GNP − observed
GNP − Bayes estimate of level

Figure 4: US macroeconomic data: Bayesian analysis

8 Downloading

The current version of the package can be downloaded from the following
URL.

http://definetti.uark.edu/̃ gpetris/DLM

22



References

[GBT] Gilks, W.R., Best, N.G. and Tan, K.K.C. (1995). Adaptive rejec-
tion Metropolis sampling within Gibbs sampling. Applied Statistics

44, 455–472.

[H] Harvey, A.C. (1989). Forecasting, Structural Time Series Models, and

the Kalman Filter. Cambridge University Press.

[WH] West, M. and Harrison, J. (1997). Bayesian forecasting and dynamic

models. (Second edition. First edition: 1989), Springer, N.Y.

[ZL] Zhang, Y. and Li, R. (1996). Fixed-interval smoothing algorithm based
on singular value decomposition. Proceedings of the 1996 IEEE Inter-

national Conference on Control Applications, Dearborn, 916–921.

23


