
Deductive imputation with the deducorrect package

Mark van der Loo and Edwin de Jonge
Package version 1.1.0

November 16, 2011

Abstract

Numerical and categorical data used for statistical analyses is often
plagued with missing values and inconsistencies. In many cases, a num-
ber of missing values may be derived, based on the consistency rules
imposed on the data and the observed values in a record. The methods
used for such derivations are called deductive imputation. In this paper,
we describe the newly developed deductive imputation functionality of
R package deducorrect. The package gained methods to deductively im-
pute numerical as well as categorical data and integrates closely with
the editrules package. Methods on setting up a partial data editing
system are discussed as well.

1

Contents

1 Introduction 3

2 Deductive imputation 4
2.1 Overview . 4
2.2 Imputation with deduImpute 6

3 Deductive imputation of numerical data 8
3.1 Imputation with solSpace and imputess 10

3.1.1 Area of application . 10
3.1.2 How it works . 10
3.1.3 An example . 11

3.2 Imputation with deductiveZeros 13
3.2.1 Area of application . 13
3.2.2 How it works . 13
3.2.3 An example . 13

4 Deductive Imputation of categorical data 14
4.1 Imputation with deductiveLevels 14

4.1.1 Area of application . 14
4.1.2 How it works . 15
4.1.3 An example . 16

5 Conclusions 17

References 18

2

1 Introduction

The quality of raw survey data is only rarely sufficient to allow for imme-
diate statistical analysis. The presence of missing values (nonresponse) and
inconsistencies impedes straightforward application of standard statistical
estimation methods, and statisticians often have to spend considerable ef-
fort to counterbalance the effect of such errors.

There are basically two ways to take the effect of data quality issues into
account. The first is to adapt the statistical analysis such that the effects of
these issues are taken into account. One well-documented example is to use
weighting methods which take the effect of (selective) item nonresponse into
account (Kalton and Kasprzyk, 1986; Bethlehem et al., 2011). The second
way is to clean up the dataset so that missing values are completed and
inconsistencies have been repaired. The latter method has the advantage
that statistical analyses of the data becomes to a degree independent of
the models used in data cleaning. Whichever way is chosen, in most cases
additional assumtions are necessary to clean data or interpret the results of
data analyses.

Recently, a number of of near assumption-free data-cleaning methods
have been reported which rely almost purely on record consistency rules im-
posed em a priori the data. Examples of such rules include account balances,
positivity demands on variables or forbidden value combinations in categor-
ical data. In a previous paper (Van der Loo et al., 2011) we reported on
methods which use data consistency rules and information in inconsistent
records to track down and repair typing errors, rounding errors and sign
errors. The theory behind these methods was first published by Scholtus
(2008, 2009) and were implemented by us in R package deducorrect. Since
these so-called deductive correction methods are based on adapting values,
they are not suited for completing missing values.

In this paper, we report on an extension of the deducorrect package which
allows for deductive imputation of missing values in either numerical or
categorical data. By deductive imputation we mean methods which use
the observed values in a record together with consistency rules imposed
on the record to uniquely derive values where possible. The values may
be missing because of nonresponse, or they may be deemed missing by an
error localization algorithm such as implemented in the editrules package
(De Jonge and Van der Loo, 2011; Van der Loo and de Jonge, 2011).

In section 2, we further introduce the concept of deductive correction
and show the easyest way of imputing values with the deducorrect package.
In sections 3 and 4 we expand a bit on the theory and demonstrate the use
of lower-level functionality of the package. Examples in R code are given
throughout to help new users getting started.

3

2 Deductive imputation

2.1 Overview

Deductive imputation relies on in-record consistency rules to derive the value
of variables which have not been completed from variables which have been
completed. These methods therefore rely on the assumption that the values
used in the derivation have been completed correctly. For example, suppose
we have a numerical record x = (x1, x2, x3), subject to the rules

x1 + x2 = x3 (1)

x ≥ 0. (2)

Suppose we are given two values of x, for example (NA, x2, x3), where NA
stands for Not Available. In principle, the third value is easily derived from
rule (1). However, if either for example x2 < 0, the derived value for x1 is
most likely not the true value, since at least one of the values used to derive
x1 is invalid. Moreover, if x2 > x3, the derived value for x1 will be negative,
and therefore violate rule (2). For categorical data, analogous situations
may arise.

The deductive imputation routines of the deducorrect package offer two
mechanisms to avoid inconsitencies. The first is to explicitly check if consis-
tent deductive imputation is possible based on the observed values. This is
turned on by default for the functions deduImpute, deductiveZeros, the edit-
matrix method of solSpace and deductiveLevels. All these functions which will
be discussed in the coming sections. The second mechanism is the ability
to point out variables besides the missing ones, which should be considered
as if they are missing. A typical example would be to use the result of an
error localization algorithm which points out erroneous fields in a record.

In the context of a complete automated data editing system, there are a
number of places where deductive imputation can be applied. Typically, one
will apply such methods before the data is treated with more complicated
imputation models. Figure 1 shows a general flowchart for the first step
in automated data cleaning. After these steps are performed, all (near)
assumption-free corrections offered by deducorrect have been performed. For
further imputations and corrections one has to resort to other methods,
making new model assumptions. It should be noted that a common step
such as detecting and repairing unit measure errors is not included here.
However, such methods are easily implemented in R, and we refer to De
Waal et al. (2011) for an overview.

Deductive imputation appears twice in the the process flow chart of Fig-
ure 1. The reason is that in the presence of missing data, it is possible that
not all rules can be checked. For this reason the process stats with deduc-
tively imputing as many values as possible. After this deductive corrections,
can be applied which in turn can yield a higher data quality, opening up

4

read data

read rules

deductive
imputation

deductive
correction

data has
changed

error
localization

deductive
imputation

other
imputation

methods

no

yes

editarray, editmatrix

deduImpute

correctTypos
correctSigns

correctRounding

localizeErrors

deduImpute

editrules

deducorrect

editrules

deducorrect

Figure 1: Flow diagram showing how functionality of the deducorrect and
editrules can be combined to perform the deductive corrections, deductive
imputations and error localization. All steps except deductive correction
are available for numerical as well as categorical data. The ellipses indicate
some of the R functions from the packages noted on the right.

5

the possibility for more deductive imputations. This process can be iterated
untill no data quality is gained anymore. After this, the smallest (weighted)
number of variables to adapt or impute can be determined using error local-
ization functionality of the editrules package. The resulting error locations
can serve as extra input to another run of the deduImpute function. After
these steps have been performed, no imputations based on the rules and
observed values can be derived anymore.

2.2 Imputation with deduImpute

The simplest way to do deductive imputations with the deducorrect package
is to use the deduImpute function. It can be used for both numerical and
categorical data. The function accepts an editmatrix or editarray containing
the editrules and a data.frame containing the records. The return value is
an object of class deducorrect, similar to the values returned by the correct-
functions of deducorrect [see Van der Loo et al. (2011)].

For numerical data it uses two methods (described sections 3.1 and 3.2)
to impute as many empty values as possible. It uses the functions solSpace
and deductiveZeros iteratively for each record untill no deductive improve-
ments can be made. Here, we will use the example from De Waal et al.
(2011), Chapter 9.2. This example uses the following edits, based on a part
of the Dutch Structural Business Survey balance account.

x1 + x2 = x3
x2 = x4

x5 + x6 + x7 = x8
x3 + x8 = x9
x9 − x10 = x11

x6 ≥ 0
x7 ≥ 0

(3)

The rule x2 = x4 may seem odd for readers not familiar to survey statistics.
However, these rules correspond to cases where respondents have to copy a
figure from one page on a paper form to another1. In Figure 1 we give an
example where the following record subject to the edits in Eq. (3) is treated.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 NA 155 NA NA NA NA 86 NA 217 NA

The record contains missing values. However, by assuming that all non-
missing values are correct, values can be derived for x2, x4, x9 and x11 just
by considering the equality- and nonnegativity rules in the edit set.

The assumption that all missing values can be imputed consistently may
not alway be valid: the nonmissing values may be filled in erroneously,

1In spite of the availability of web-based forms, many respondents prefer paper forms.

6

> E <- editmatrix(c(

+ "x1 + x2 == x3",

+ "x2 == x4",

+ "x5 + x6 + x7 == x8",

+ "x3 + x8 == x9",

+ "x9 - x10 == x11",

+ "x6 >= 0",

+ "x7 >= 0"

+))

> dat <- data.frame(

+ x1=c(145,145),

+ x2=c(NA,NA),

+ x3=c(155,155),

+ x4=c(NA,NA),

+ x5=c(NA, 86),

+ x6=c(NA,NA),

+ x7=c(NA,NA),

+ x8=c(86,86),

+ x9=c(NA,NA),

+ x10=c(217,217),

+ x11=c(NA,NA)

+)

> dat

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 NA 155 NA NA NA NA 86 NA 217 NA

2 145 NA 155 NA 86 NA NA 86 NA 217 NA

> d <- deduImpute(E,dat)

> d$corrected

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 10 155 10 NA NA NA 86 241 217 24

2 145 10 155 10 86 0 0 86 241 217 24

Figure 1: A simple example with deduImpute. The return value is an object
of class deducorrect.

yielding faulty derived values to impute. The reason is that deduImpute
does not take into account all edit rules: only nonnnegativity rules and
equality rules are used to derive imputed values.

The deduImpute function has two mechanisms to get around this. The
first is to set the option checkFeasibility=TRUE. This causes solutions causing
new inconsistencies to be rejected. The second mechanism is to provide a
user-specified adapt array to increase the number of variables which may be
imputed, missing or not. The adapt array is a boolean array, stating which
variable may be changed in which record. A convenient example is to use

7

the adapt array as generated by the localizeErrors function from the editrules
package. By specifying an adapt array, deduImpute will try to fix records by
imputing values which are either missing or may be adapted according to
adapt.

For categorical data, deduImpute uses the deductiveLevels function, dis-
cussed in section 4. The function accepts an editarray holding the categorical
edits and a data.frame holding records to be imputed.

Before introducing our example, we note that in general, an edit e can
be written as a subset of D:

e = A1 ×A2 × · · · ×An, (4)

where each Ak ⊂ Dk. The interpretation is that if a record v ∈ e, then that
record is invalid.

Here, we reproduce example 9.3 of De Waal et al. (2011) [first published
by (Kartika, 2001)]. Consider four categorical variables with domains D1 =
{a, b, c, d}, D2 = D3 = {a, b, c} and D4 = {a, b}. We define the edit rules

e1 = D1 × {c} × {a, b} × {a} (5)

e2 = D1 × {b, c} ×D3 × {b} (6)

e3 = {a, b, d} × {a, c} × {b, c} ×D4 (7)

e4 = {c} ×D2 × {b, c} × {a}. (8)

Out of 72 possible records, only the following 20 are valid:

(a, a, a, a) (b, a, a, a) (c, a, a, a) (d, a, a, a)
(a, a, a,b) (b, a, a,b) (c, a, a,b) (d, a, a, b)
(a,b, a, a) (b,b, a, a) (c, a,b, b) (d, b, a, a)
(a,b,b, a) (b,b,b, a) (c, a, c, b) (d, b,b, a)
(a,b, c, a) (b, b, c, a) (c, b, a, a) (d, b, c, a).

Figure 2 shows how these rules can be defined in R using the editarray func-
tion of the editrules package. Consider the record (c,b,NA,NA). By simply
considering the list of valid records above it is clear that if v1 and v2 are
assumed correct, the only possible valid imputation is v3 = v4 = a. Indeed
this is returned by deduImpute in Figure 2. The record (NA,NA,NA,b) can-
not be imputed completely, since there are six possible records with v4 = b.
However, all of them have v2 = a, so this may be imputed with certaintly.
Finally, the record (b, c, a,NA) cannot be imputed since there is no valid
record with these values for v1, v2 and v3.

3 Deductive imputation of numerical data

The valid value combinations of numerical data records with n variables are
usually limited to some subset of Rn. Common cases include balance ac-
counts (linear restrictions) combined with linear inequality rules (positivity

8

> M <- editarray(c(

+ "v1 %in% letters[1:4]",

+ "v2 %in% letters[1:3]",

+ "v3 %in% letters[1:3]",

+ "v4 %in% letters[1:2]",

+ "if (v2 == 'c' & v3 != 'c' & v4 == 'a') FALSE",

+ "if (v2 != 'a' & v4 == 'b') FALSE",

+ "if (v1 != 'c' & v2 != 'b' & v3 != 'a') FALSE",

+ "if (v1 == 'c' & v3 != 'a' & v4 == 'a') FALSE"

+))

> Mdat <- data.frame(

+ v1 = c('c', NA,'b'),

+ v2 = c('b', NA,'c'),

+ v3 = c(NA, NA,'a'),

+ v4 = c(NA,'b', NA),

+ stringsAsFactors=FALSE

+)

> s <- deduImpute(M, Mdat)

> s$corrected

v1 v2 v3 v4

1 c b a a

2 <NA> a <NA> b

3 b c a <NA>

> s$status

status imputations

1 corrected 2

2 partial 1

3 invalid 0

> s$corrections

row variable old new

v3 1 v3 NA a

v4 1 v4 NA a

v2 2 v2 NA a

Figure 2: Deductive imputations for categorical data using deduImpute.

rules for example). In such cases the set of valid records is a convex poly-
tope or polyhedral cone. In certain cases, when the values for a number
of variables have been fixed, the set of possible values for a number of the
remaining variables reduces to a point. In such cases deductive imputation
is posible.

9

3.1 Imputation with solSpace and imputess

3.1.1 Area of application

The combination of functions solSpace and imputess can be used to impute
numerical data under linear equality restrictions:

Ax = b, with A ∈ Rm×n, x ∈ Rn and b ∈ Rm. (9)

If x has missing values, then solSpace returns a representation of the linear
space of imputations valid under Eqn. (9). The function imputess performs
the actual imputation. It is important to note that these functions do not
take into account the presence of any inequality restrictions.

3.1.2 How it works

Consider a numerical record x with nmiss values missing. The values may
be missing because of nonresponse, or they may be deemed missing by
an error localization procedure (see the next subsection). We will write
x = (xobs,xmiss), with xobs the observed values and xmiss the missing ones.
Supposing further that x must obey a set of equality restrictions as in Eqn.
(9), we may write A = [Aobs,Amiss]. Consequently we have (De Waal et al.,
2011)

Amissxmiss = b−Aobsxobs. (10)

This gives

xmiss = x0 + Cz, (11)

with z an arbitrary real vector of dimension nmiss and x0 and C constant.
The purpose of solSpace is to compute x0 and C. Together they deter-

mine the vector space of values available for xmiss. Deductive imputation can
be realized by observing that if any rows of C are filled with zeros, then the
sole value for the corresponding values of xmiss are given the corresponding
values in x0. The values of x0 and C are given by

x0 = A+
miss(b−Aobsxobs) (12)

C = A+
missAmiss − 1. (13)

Here, 1 is the identity matrix and A+
miss is the generalized inverse of A,

obeying

AmissA
+
missAmiss = Amiss. (14)

See De Waal et al. (2011) for details on the imputation method or Greville
(1959) for an excellent discussion on the pseudoinverse.

10

3.1.3 An example

The solSpace function returns the x0 and C as a list. For example consider
the first record from Figure 1:

> (x <- dat[1,])

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 NA 155 NA NA NA NA 86 NA 217 NA

Using the editmatrix defined in the same figure, we get:

> (s <- solSpace(E,x))

$x0

[,1]

x2 10.00000

x4 10.00000

x5 28.66667

x6 28.66667

x7 28.66667

x9 241.00000

x11 24.00000

$C

x2 x4 x5 x6 x7 x9 x11

x2 0 0 0.0000000 0.0000000 0.0000000 0 0

x4 0 0 0.0000000 0.0000000 0.0000000 0 0

x5 0 0 -0.6666667 0.3333333 0.3333333 0 0

x6 0 0 0.3333333 -0.6666667 0.3333333 0 0

x7 0 0 0.3333333 0.3333333 -0.6666667 0 0

x9 0 0 0.0000000 0.0000000 0.0000000 0 0

x11 0 0 0.0000000 0.0000000 0.0000000 0 0

solSpace has an extra argument adapt which allows extra fields of x to be
considered missing. An example of its use would be to determine erroneous
fields with errorLocalizer (of the editrules package) and to determine the im-
putation space with solSpace.

The top two and bottom two rows of C in the example have zero coeffi-
cients, yielding a unique solution for x2, x3, x9 and x11. The unique values
may be imputed with imputess:

> imputess(x, s$x0, s$C)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 10 155 10 NA NA NA 86 241 217 24

If a z-vector is provided as well, all values may be imputed. Here, we choose
z = 0 (arbitrarily).

11

> (y <- imputess(x, s$x0, s$C, z=rep(0,ncol(s$C))))

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 10 155 10 28.66667 28.66667 28.66667 86 241 217 24

Using violatedEdits from the editrules package, we may verify that this record
satisfies every inequality rule as well (E as in figure 1).

> any(violatedEdits(E,y,tol=1e-8))

[1] FALSE

To demonstrate the use of the adapt argument, consider the following
case.

> Ey <- editmatrix(c(

+ "yt == y1 + y2 + y3",

+ "y4 == 0"))

> y <- c(yt=10, y1=NA, y2=3, y3=7,y4=12)

> (s <- solSpace(Ey,y))

NULL

> #imputess(y,x0=s$x0,C=s$C)

However, using the adapt argument, which is a logical indicator stating which
entries may be adapted, we get the following.

> (s <- solSpace(Ey, y, adapt=c(FALSE,FALSE,FALSE,FALSE,TRUE)))

$x0

[,1]

y1 0

y4 0

$C

y1 y4

y1 0 0

y4 0 0

> imputess(y,x0=s$x0,C=s$C)

yt y1 y2 y3 y4

10 0 3 7 0

12

3.2 Imputation with deductiveZeros

3.2.1 Area of application

This method can be used to impute missing values in numerical records
subject to

Ax = b, with A ∈ Rm×n, x ∈ Rn and b ∈ Rm (15)

xj ≥ 0 for at least one j ∈ {1, 2, . . . , n}. (16)

Economic survey data are often subject to account balances of the xt =
x1 + x2 + · · ·xk. For example, xt might be the total personell cost and the
xi are costs related to permanent staff, temporary staff, externals, etc.. It
is not uncommon for respondents to leave fields open which are not relevant
to them. For example, if a company has not hired any temorary staff, the
corresponding field might be left empty while a 0 would have been appro-
priate.

In such cases, missing values are bounded from above by the sum rules
while they are bounded from below by the nonnegativity constraint. If the
missing values are ignored, and the completed values add up to the required
totals, then missing values may be uniquely imputed with 0. The function
deductiveZeros detects such cases.

3.2.2 How it works

Consider again the notation of Section 3.1.2. We write (following notation
of De Waal et al. (2011)).

b∗ = b−Aobsxobs. (17)

If any b∗l = 0, this means that the sum rule al · x = bl is obeyed if missing
values are ignored. For those cases, the following properties are checked.

� Each amiss,lj 6= has the same sign.

� Each amiss,lj 6= 0 corresponds to a variable xj that is constrained to be
nonnegative.

If these demands are obeyed, the corresponding value xmiss,j may be imputed
with 0.

3.2.3 An example

The function deductiveZeros does not perform imputation itself but com-
putes an indicator stating which values may be imputed. As a first example
consider the following.

13

> Ey <- editmatrix(c(

+ "yt == y1 + y2 + y3",

+ "y1 >= 0", "y2 >= 0 ","y3 >= 0"))

> y <- c(yt=10, y1=NA, y2=3, y3=7)

> (I<-deductiveZeros(Ey,y))

yt y1 y2 y3

FALSE TRUE FALSE FALSE

The record y can be imputed in one statement.

> y[I] <- 0

> y

yt y1 y2 y3

10 0 3 7

4 Deductive Imputation of categorical data

A categorical data records is a member of the cartesian product

D = D1 ×D2 × · · · ×Dn, (18)

where each Dk is the set of categories for a variable. In practice not every
record in D may be acceptable. For example if

D = {child, adult} × {married,unmarried}, (19)

then the record (child,married) may be excluded from the set of valid
records. Therefore, if we have a record with (NA,married), and assume
that the marital status is correct, there is only one possible value for the age
class, namely “adult”. So just like for numerical data, if the known values
limit the number of options for the unknowns to a unique value, deductive
imputation is possible.

4.1 Imputation with deductiveLevels

4.1.1 Area of application

The function deductiveLevels works on purely categorical data where the
number of categories for each variable is known and fixed, as in Eq. (18). It
determines which missing values in a record are determined uniquely by the
known values, and these unique values are returned.

14

Algorithm 1 deductiveLevels(E,v)

Input: An editarray E, a partially complete record v
Determine the index I ⊂ {1, 2, . . . n} in v of observed values.
E ← substValue(E, I,vI)
if ¬isFeasible(E) then

return ∅
end if
M ← {1, 2, . . . , n}\I . Index of missing values in v
T ← ∅
S ← ∅
while M\T 6= ∅ do

m←M1

F ← E
for k ∈M\m do . Eliminate all but k from F

F ← eliminate(F, k)
end for
if There is one possible value ṽ for variable m in F then

E ← substValue(E,m, ṽ)
M ←M\m
S ← S ∪ (m, ṽ)

else
T ← T ∪m

end if
end while

Output: Unique imputations S.

4.1.2 How it works

The algorithm behind deductiveLevels has been described by De Waal et al.
(2011) and is reproduced here in Algorithm 1. The Algorithm is described
in terms of the functions eliminate and substValue, both of which are im-
plemented in the editrules package and have been described extensively by
Van der Loo and de Jonge (2011). In short, deductiveLevels derives deduc-
tive imputations by first substituting all observed values in the edit rules.
Subsequently, all variables but one are eliminated from the remaining edits.
If only one possible value remains for the remaining variable, it may be used
as a deductive imputation and substituted in the set of edits. This process
is repeated untill all missing values are treated.

15

4.1.3 An example

Consider the variables v1 =gender, v2 =pregnant and v3 =chromosome. The
value domain and edit rules are given by

D1 = {male, female} (20)

D2 = {true, false} (21)

D3 = {xx, xy} (22)

e1 = {male} × {true} ×D3 (23)

e2 = {male} ×D2 × {xx}. (24)

The corresponding editarray can be defined as follows.

> E <- editarray(c(

+ "gender %in% c('male','female')",

+ "pregnant %in% c(TRUE,FALSE)",

+ "chromosome %in% c('XX','XY')",

+ "if (gender == 'male') !pregnant",

+ "if (gender == 'male') chromosome == 'XY'"))

Now, consider the record (male, false,NA). Using deductiveLevels we find:

> v <- c(gender='male',pregnant=FALSE,chromosome=NA)

> (s <- deductiveLevels(E,v))

chromosome

"XY"

And imputation can be performed as follows:

> v[names(s)] <- s

> v

gender pregnant chromosome

"male" "FALSE" "XY"

The deductiveLevels function has an optional argument, allowing to switch off
the feasibility check. To illustrate this, consider the record (male,true,NA).
Clearly, there is no way to impute this record consistently by just imuting
the chromosome variable. If we choose v3 = XX, this conflicts with the
gender (male) if we choose XY this conflicts with the gender implied by v2
(pregnant). In this case deductiveLevels returns NULL.

> v <- c(gender='male',pregnant=TRUE,chromosome=NA)

> deductiveLevels(E,v)

NULL

16

The reason is that deductiveLevels checks if feasible imputations are possible
after substituting all observed values into the edits. This check can be time-
consuming since it potentially involves many variable elimination steps. It
may be turned off by passing checkFeasibility=FALSE:

> deductiveLevels(E,v,checkFeasibility=FALSE)

chromosome

"XY"

However, one must be carefull since, as shown above, the result may be an
inconsistent imputation. The reason to include this option is that users may
provide an additional parameter, called adapt allowing deductiveLevels to
impute more variables. If the adapt parameter is chosen such that missing
values plus adaptable values can lead to consistent imputation, the consis-
tency check may be turned off. For example, we may choose to adapt the
pregancy status.

> adapt <- c(gender=FALSE,pregnant=TRUE,chromosome=TRUE)

> (s <- deductiveLevels(E,v,adapt=adapt,checkFeasibility=FALSE))

pregnant chromosome

"FALSE" "XY"

So that the imputed value becomes

> v[names(s)] <- s

> v

gender pregnant chromosome

"male" "FALSE" "XY"

which is indeed a valid record. In general, the adapt parameter should be
derived via a consistent error localization mechanism, such as implemented
in the editrules package. Only those cases it is safe to gain some performance
by switching the feasibility check off.

5 Conclusions

In this paper we demonstrated the newly developed deductive imputation
facilities offered by the deducorrect package. From version 1.1, deducorrect
offers a toolbox for automated deductive correction of numerical data and
deductive imputation of numerical and categorical data, integrating closely
with the editrules package of the same authors.

17

References

Bethlehem, J., F. Cobben, and B. Schouten (2011). Handbook of Nonre-
sponse in Household Surveys, Volume 562 of Wiley handbooks in survey
methodology. John Wiley & Sons.

De Jonge, E. and M. Van der Loo (2011). Manipulation of linear edits and
error localization with the editrules package. Technical Report 2011020,
Statistics Netherlands, The Hague/Heerlen.

De Waal, T., J. Pannekoek, and S. Scholtus (2011). Handbook of statistical
data editing. Wiley handbooks in survey methodology. Hoboken, New
Jersey: John Wiley & Sons.

Greville, T. N. E. (1959). The pseudoinverse of a rectangular or singular
matrix and its application to the solution of systems of linear equations.
SIAM Review 1, 38–43.

Kalton, G. and D. Kasprzyk (1986). The treatment of missing survey data.
Survey methodology 12, 1–16.

Kartika, W. (2001). Consistent imputation of categorical and numerical
data. Technical report, Statistics Netherlands, Den Haag.

Scholtus, S. (2008). Algorithms for correcting some obvious inconsistencies
and rounding errors in business survey data. Technical Report 08015,
Statistics Netherlands, Den Haag. The papers are available in the inst/doc
directory of the R package or via the website of Statistics Netherlands.

Scholtus, S. (2009). Automatic correction of simple typing error in numerical
data with balance edits. Technical Report 09046, Statistics Netherlands,
Den Haag. The papers are available in the inst/doc directory of the R
package or via the website of Statistics Netherlands.

Van der Loo, M. and E. de Jonge (2011). Manipulation of categorical ed-
its and error localization with the editrules package. Technical Report
2011XXXX, Statistics Netherlands, The Hague/Heerlen. to be published.

Van der Loo, M., E. de Jonge, and S. Scholtus (2011). Correction of round-
ing, typing and sign errors with the deducorrect package. Technical
Report 201119, Statistics Netherlands, Den Haag. This paper is included
with the package.

18

