
Why the package declared

The problem

The R ecosystem already has some very good packages that deal with labelled objects. In
particular, the inter-connected packages haven and labelled provide all the functionality
most users would ever need.

As nice and useful as these packages are, it has become apparent they have some fundamental
design features that run, in some situations, against users’ expectations. This has a lot
to do with the treatment of declared missing values, that are instrumental for the social
sciences.

The following minimal example (adapted from the vignette in package haven) illustrates
the situation:

> library(haven)
> x1 <- labelled_spss(

x = c(1:5, -91),
labels = c(Missing = -91),
na_value = -91

)

The printed objects from this package nicely display some properties:

> x1
<labelled_spss<double>[6]>
[1] 1 2 3 4 5 -91
Missing values: -91

Labels:
value label

-91 Missing

There are 5 normal (non-missing) values (supposedly they represent the number of children),
and one declared missing value coded -91 This value acts as a missing value, but it is
different from a regular missing value in R, coded NA. The latter stands for any missing
information (something like an empty cell) regardless of the reason.

Here, on the other hand, the cell is not empty, but the value -91 is not a valid value either.

1

It cannot possibly represent -91 children in the household, but for instance it could have
meant the respondent did not want to respond. It is properly identified as missing, with:

> is.na(x1)
[1] FALSE FALSE FALSE FALSE FALSE TRUE

But when calculating a mean, for instance, the normal expectation is that value 99 would
not play any role in the calculations (since it should be missing). However:

> mean(x1)
[1] -12.66667

This means the value 99 did play an active role despite being identified as “missing”. In an
ideal world, the expected mean would be 3, or at best employ the argument na.rm = TRUE
if the result is NA because of the declared missing value.

A solution to this problem is offered by package labelled, which has a function called
user_na_to_na():

> library(labelled)
> mean(

user_na_to_na(x1),
na.rm = TRUE

)
[1] 3

The declared solution

While solving the problem, this above solution forces two additional operations:

• converting the (already) declared user missing values, and

• employing the na.rm argument.

This should not be necessary, especially if (and it is extremely likely that) users may forget
the declared missing values are not actually missing values. This scenario is quite possible,
as many users previously using other software like SPSS or Stata where nothing else should
be done after declaring the missing values, may not realize more is needed.

To solve this situation, package declared creates a very similar object, where declared
missing values are actually stored (hence interpreted as) regular NA missing values in R.

> library(declared)
> x2 <- declared(

x = c(1:5, -91),
labels = c(Missing = -91),
na_value = -91

)

2

> x2
<declared<integer>[6]>
[1] 1 2 3 4 5 NA(-91)
Missing values: -91

Labels:
value label

-91 Missing

The print method makes it obvious the value -91 is not a regular number, but an actual
missing value. More importantly, this type of storage circumvents the need to convert user
missing values to regular NAs since they are already stored as regular NA values. The average
value is calculated simply as:

> mean(x2)
[1] 3

Notice that neither user_na_to_na(), nor employing na.rm = TRUE are necessary and,
despite being stored as an NA value, the value 99 is not equivalent to an empty cell. The
information still exists, but it is simply ignored in the calculations.

At a first glance, providing a class method for this function seems unnecessary because
activating the argument na.rm will return the correct result, anyways. Explaining the
importance of the class method requires a discussion about the base R decision to have this
argument deactivated by default. This is most likely to alert users about possible problems
in the data, since a default value of TRUE would obscure such problems, the mean being
calculated irrespective of potentially problematic NA values.

This is where differentiating between empty and declared missing values proves valuable.
The declared missing values are neither problematic, nor do they signal potential problems
in the data, given that once declaring a reason, it is already known why a particular value
is missing.

The truly problematic values are the empty NAs, and the custom class method still allows
identifying such values if they exist:

> mean(c(x2, NA))
[1] NA
> mean(c(x2, NA), na.rm = TRUE)
[1] 3

Since all declared values are stored as regular NA values, the base function is.na(), as well
as all related functions such as anyNA() etc., are unaware and can not differentiate between
empty and declared missing values:

3

> is.na(c(x2, NA))
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE

To overcome this situation, package declared complementary provides an additional
function to account for the difference:

> is.empty(c(x2, NA))
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE

All missing values, empty and declared, play natively with the NA oriented, base functions
such as na.omit() or na.exclude():

> na.omit(x2)
<declared<integer>[5]>
[1] 1 2 3 4 5
Missing values: -91

Labels:
value label

-91 Missing

It should be made obvious the excellent packages haven and labelled are not inherently
doing a bad thing: the very same result is obtained, just via a different route. Package
declared was created as an alternative to the design philosophy of these packages, with a
fundamental difference: instead of treating existing values as missing, package declared
interprets missing values as existing.

It does so by storing an additional attribute containing the positions (indexes) of the
regular NA values in the object which should be treated as missing, and even more so to
be interpreted as a particular missing response category, as specified in the value labels
attribute.

Similarities and added value

The proposed method to declare missing values is unique in the R ecosystem. Differentiating
between empty and declared missing values opens the door to a new set of challenges for
which base the R does not have built in functionality.

For instance, the declared missing values can be compared against both the original values
and their labels:

> x2 == -91
[1] FALSE FALSE FALSE FALSE FALSE TRUE
> x2 == "Missing"
[1] FALSE FALSE FALSE FALSE FALSE TRUE

4

Similar methods have been added to the primitive functions "<", ">" and "!=" etc., to
allow a fully functional collection of subsetting possibilities.

Combining on this type of vector creates an object of the same class:

> x2 <- c(x2, -91)
> x2
<declared<integer>[7]>
[1] 1 2 3 4 5 NA(-91) NA(-91)
Missing values: -91

Labels:
value label

-91 Missing

Most functions are designed to be as similar as possible, for instance value_labels() to
add / change value labels:

> value_labels(x2) <- c("Does not know" = -92, "Not responded" = -91)
> x2
<declared<integer>[7]>
[1] 1 2 3 4 5 NA(-91) NA(-91)
Missing values: -91

Labels:
value label

-92 Does not know
-91 Not responded

The value -92 is now properly labelled, and it can further be declared as missing. Such
declarations do not necessarily have to use the main function declared(), due to the
separate functions missing_values() and missing_range():

> missing_values(x2) <- c(-91, -92)
> missing_range(x2) <- c(-91, -95)
> x2
<declared<integer>[7]>
[1] 1 2 3 4 5 NA(-91) NA(-91)
Missing values: -91, -92
Missing range: [-95, -91]

Labels:
value label

-92 Does not know
-91 Not responded

5

To ease the smooth inter-operation with packages haven and labelled, the following
functions are of interest: undeclare(), as.haven() and as.declared().

The function undeclare() replaces the NAs with their declared missing values. The result
is still an object of class declared, but all missing values (and missing range) are stripped
off the vector and values are presented as they have been collected. All other attributes of
interest (variable and value labels) are retained and printed accordingly.

Activating the argument drop eliminates all classes and attributes, returning a regular R
object:

> undeclare(x2, drop = TRUE)
[1] 1 2 3 4 5 -91 -91

The function as.haven() coerces the resulting object to the class haven_labelled_spss,
and the function as.declared() reverses the process:

> xh <- as.haven(x2)

> xh
<labelled_spss<double>[7]>
[1] 1 2 3 4 5 -91 -91
Missing values: -91, -92
Missing range: [-95, -91]

Labels:
value label

-92 Does not know
-91 Not responded

> as.declared(xh)
<declared<integer>[7]>
[1] 1 2 3 4 5 NA(-91) NA(-91)
Missing values: -91, -92
Missing range: [-95, -91]

Labels:
value label

-92 Does not know
-91 Not responded

6

The missing values are properly formatted, even inside the base data frame:

> dfm <- data.frame(x1 = letters[1:7], x2)

> dfm
x1 x2

1 a 1
2 b 2
3 c 3
4 d 4
5 e 5
6 f NA(-91)
7 g NA(-91)

If users prefer a tibble instead of a data frame, the objects of class declared are properly
formatted in a similar way to those from package haven:

> library(tibble)

> as_tibble(dfm)
A tibble: 7 x 2

x1 x2
<chr> <int+lbl>

1 a 1
2 b 2
3 c 3
4 d 4
5 e 5
6 f -91 (NA) [Not responded]
7 g -91 (NA) [Not responded]

Special challenges are associated with sorting and ordering the declared objects, where not
all missing values are treated the same.

> x3 <- declared(
x = c(1:5, -91, NA, -92, -91),
na_value = c(-92, -91)

)

> sort(x3, na.last = TRUE)
<declared<integer>[9]>
[1] 1 2 3 4 5 NA(-92) NA(-91) NA(-91) NA
Missing values: -92, -91

7

Sorting in decreasing order applies the same order to the missing values:

> sort(x3, na.last = TRUE, decreasing = TRUE)
<declared<integer>[9]>
[1] 5 4 3 2 1 NA(-91) NA(-91) NA(-92) NA
Missing values: -92, -91

This custom function benefits from an additional argument empty.last (internally passed
to the ordering function), to allow sorting within the missing values:

> sort(x3, na.last = TRUE, decreasing = TRUE,
empty.last = FALSE

)
<declared<integer>[9]>
[1] 5 4 3 2 1 NA NA(-91) NA(-91) NA(-92)
Missing values: -92, -91

All types of variables (categorical and numerical) can have declared missing values. There
are always situations values are not missing randomly, but with a specific reason. In social
research, respondents often can not, or do not want to provide an answer for a certain
question, be it categories of opinions of pure numerical answers like age, income etc.

In base R there is a clear distinction between numerical and categorical variables. For the
later, R provides a special type of object called factor. The following object simulates
such a categorical variable, for instance political orientation:

> x4 <- declared(
x = c(1:3, -91),
labels = c(Left = 1, Middle = 2, Right = 3, Apolitic = -91),
na_value = -91,
label = "Respondent's political orientation"

)
>
> x4
<declared<integer>[4]> Respondent's political orientation
[1] 1 2 3 NA(-91)
Missing values: -91

Labels:
value label

1 Left
2 Middle
3 Right

-91 Apolitic

8

Such a variable could in principle be constructed directly as a factor:

> x5 <- factor(c("Left", "Middle", "Right", "Apolitic"))
> x5
[1] Left Middle Right Apolitic
Levels: Apolitic Left Middle Right

The base factor does not provide any possibility to assign specific values for the specific
categories, and most importantly does not differentiate between valid values and (declared)
missing values.

Switching between factors and declared objects is straightforward:

> as.factor(x4)
[1] Left Middle Right Apolitic
Levels: Apolitic Left Middle Right

> as.declared(x5, na_values = 1)
<declared<character>[4]>
[1] Left Middle Right Apolitic
Missing values: 1

Labels:
value label

1 Apolitic
2 Left
3 Middle
4 Right

When the declared objects are constructed as categorical variables to replace the base
factors, an additional function becomes of interest, extracting the categories instead of their
values. The function as.character() makes this possible, via a dedicated class method
for declared objects:

> as.character(x4)
[1] "Left" "Middle" "Right" "Apolitic"

And it operates identically if the object was a regular factor:

> as.character(as.factor(x4))
[1] "Left" "Middle" "Right" "Apolitic"

To make them resemble more like factors, it is convenient but not at all mandatory to
replace the categories with numbers. The declared objects are able to ingest character
objects as well as numeric, and the same is valid for the declared missing values:

9

> x6 <- declared(
x = sample(

c("Left", "Middle", "Right", "Apolitic"),
20,
replace = TRUE

),
na_values = "Apolitic"

)

> x6
<declared<character>[20]>
[1] Left Right Right Middle Middle
[6] Left Left Left Right Right

[11] NA(Apolitic) NA(Apolitic) Middle Right NA(Apolitic)
[16] Right NA(Apolitic) Right Right Right
Missing values: Apolitic

Either as character, numeric or categorical, it is possible to declare and use special types of
missing values, employing this new object type of class "declared".

Factors and haven objects have default coercion methods, but not all types of objects
can be automatically coerced to this class. To meet this possibility, the main functions
declared(), as.declared() and undeclare() are all generic, allowing full flexibility for
any other package to create custom (coercion) methods for different classes of objects, thus
facilitating and encouraging a widespread use.

For the remaining examples in this vignette, the following data frame is created for
demonstration purposes:

> n <- 1234
> set.seed(n)
> DF <- data.frame(

Area = declared(
sample(1:2, n, replace = TRUE, prob = c(0.45, 0.55)),
labels = c(Rural = 1, Urban = 2)

),
Gender = declared(

sample(1:2, n, replace = TRUE, prob = c(0.55, 0.45)),
labels = c(Males = 1, Females = 2)

),
Opinion = declared(

sample(c(1:5, NA, -91), n, replace = TRUE),
labels = c(

10

"Very bad" = 1, "Bad" = 2, "Neither" = 3,
"Good" = 4, "Very good" = 5, "Don't know" = -91

),
na_values = -91

),
Age = sample(18:90, n, replace = TRUE),
Children = sample(0:5, n, replace = TRUE)

)

One of the most interesting applications to make use of the declared missing values are the
tables of frequencies. The base function table() ignores missing values by default, but
they can be revealed by using the useNA argument:

> table(DF$Opinion, useNA = "ifany")

Very bad Bad Neither Good Very good Don't know <NA>
180 170 188 171 162 180 183

However, it does not differentiate between empty and declared missing values. Since
“Opinion” is the equivalent of a categorical variable, this can be improved through a custom
built coercion to the base factor class:

> table(as.factor(DF$Opinion), useNA = "ifany")

Bad Don't know Good Neither Very bad Very good <NA>
170 180 171 188 180 162 183

The dedicated function w_table() does the same thing by automatically recognizing objects
of class "declared", additionally printing more detailed information:

> w_table(DF$Opinion, values = TRUE)

fre rel per vld cpd

Very bad 1 180 0.146 14.6 20.7 20.7
Bad 2 170 0.138 13.8 19.5 40.2

Neither 3 188 0.152 15.2 21.6 61.8
Good 4 171 0.139 13.9 19.6 81.4

Very good 5 162 0.131 13.1 18.6 100.0

Don't know -91 180 0.146 14.6
NA 183 0.148 14.8

1234 1.000 100.0

11

The prefix w_ from the function name stands for “weighted”, this being another example
of functionality where the declared missing values play a different role than the empty,
base NA missing values. It is important to differentiate between frequency weights, on one
hand, and other probability based, post-stratification weights on one other, the later being
thoroughly treated by the specialized package survey.

The w_ family of functions are solely dealing with frequency weights, to allow corrections in
descriptive statistics, such as the tables of frequencies and other similar descriptive measures
for both categorical and numeric variables.

To exemplify, a frequency weights variable is constructed, to correct for the distributions of
males / female, as well as the residential distribution by urban / rural areas.

> # Observed proportions
> op <- proportions(with(DF, table(Gender, Area)))
>
> # Theoretical / population proportions:
> # 53% Rural, and 50% Females
> weights <- rep(c(0.53, 0.47), each=2) * rep(0.5, 4) / op
>
> DF$fweight <- weights[

match(10 * DF$Area + DF$Gender, c(11, 12, 21, 22))
]

The updated frequency table, this time using the frequency weights, can be constructed by
passing the weights to the argument wt:

> with(DF, w_table(Opinion, wt = fweight, values = TRUE))

fre rel per vld cpd

Very bad 1 179 0.145 14.5 20.5 20.5
Bad 2 167 0.135 13.5 19.2 39.7

Neither 3 187 0.152 15.2 21.4 61.1
Good 4 171 0.139 13.9 19.6 80.7

Very good 5 168 0.136 13.6 19.3 100.0

Don't know -91 179 0.145 14.5
NA 183 0.148 14.8

1234 1.000 100.0

Except for the empty NA values, for which the weights cannot be applied, almost all other
frequencies (including the one for the declared missing value -91) are now updated by
applying the weights. This shows that, despite being interpreted as “missing” values, the

12

declared ones can and should also be weighted, with a very useful result. Other versions of
weighted frequencies do exist in R, but a custom one was needed to identify (and weight)
the declared missing values.

In the same spirit, many other similar functions are provided such as w_mean(), w_var(),
w_sd() etc., and the list will likely grow in the future. They are similar to the base package
counterparts, with a single difference: the argument na.rm is activated by default, with
or without weighting. This is an informed decision about which users are alerted in the
functions’ respective help pages.

The package declared was built with the specific intention to provide a lightweight, zero
dependency resource in the R ecosystem. It contains an already extensive, robust and ready
to use functionality that duly takes into account the difference between empty and declared
missing values.

It extends base R and opens up data analysis possibilities without precedent. By providing
generic classes for all its objects and functions, package declared is easily extensible to
any type of object, for both creation and coercion to class "declared".

13

	The problem
	The declared solution
	Similarities and added value

