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1. Introduction 
 

The R library ddesolve generates numerical solutions for systems of delay differential 

equations (DDEs) and ordinary differential equations (ODEs). The numerical routines come 

from Simon Wood’s solv95 program (http://www.maths.bath.ac.uk/~sw283/simon/dde.html), 

originally written in C for the Microsoft Windows operating systems. With ddesolve, a user can 

write the gradient code for a system of DDEs or ODEs in the R language, rather than C. The 

code will then run on all platforms supported by R, and the results can be inspected using R’s 

extensive graphics capabilities. 

 

 For more information on Simon Wood and his work at the University of Bath, Bath, UK, 

see his home page http://www.maths.bath.ac.uk/~sw283/index.html. He has very generously 

given us permission to publish ddesolve (including his embedded routines) under the GNU 

GENERAL PUBLIC LICENSE Version 2 

 

 We have designed ddesolve to perform similarly to the earlier R library odesolve, written 

by R. Woodrow Setzer with Fortran algorithms by Linda R. Petzold and Alan C. Hindmarsh at 

the Lawrence Livermore National Laboratory in Livermore, California. 

 

 The demos included with ddesolve are designed to run with PBSmodelling version 1.16. 

It is possible to use the numerical routines without PBSmodelling; however, installing 

PBSmodelling will provide a greater experience and understanding of ddesolve. 

 

2. Defining DDEs 
 

 To define a system of DDEs, a user supplied R function must be created to calculate the 

gradient of each variable in the system with respect to time. This gradient function must have 

one of the following two function definitions. 

 
1. yprime <- function(t, y)     
2. yprime <- function(t, y, parms) 

 

Where t is the current time of integration; y is a vector of estimated values at time t; and 

parms is an optional argument used for passing extra constant parameters. 

 

 If the system of DDEs has multiple variables, then y will be a vector of n variables, and 

can be accessed from y[1] to y[n].  



 

 The function must calculate the gradient for each variable in the system of DDEs and 

return the values in one of the following two return types. 

1. A vector of gradients for each value of y  

2. A list whose first element is a vector of gradients for each value of y, and whose second 

element is a numerical vector of any additional values required at each time step of 

integration.  

 

 Lagged values are accessed with calls to pastvalue() and  pastgradient(). 

Both functions take a single argument, time, and may only be called for times greater or equal to 

the start time, and less than the current time of integration. Both functions return a vector of past 

y values. Lags should be accessed by calls similar to pastvalue(t - constant). Passing 

a constant time value to either function (i.e. pastvalue(constant)) should never be done, 

since this will require a very large memory buffer, and defeats the purpose of a ring buffer.  

 

3. Solving DDEs 
 

 Simon Wood’s numerical routines create the core functionality of ddesolve. The function 

 
dde(y, func, parms=NULL, from=0, to=10, by=0.01, tol=1e-8, 

dt=0.1, hbsize=10000) 

 

is used to invoke the C routines used to numerically solve systems of DDEs. 

 

 The return value of dde() is a data frame containing a time "t" column for every 

solved time point. A column for each variable of the system, named "y1", "y2", ..., 

"yn". And if func() returned a list containing additional information, then additional columns 

named "extra1", "extra2", ..., "extran". 

 

 If the initial values vector y was named, then the variable columns will use those names 

instead of the default "y*" names. 

 

 If func() returned additional information that included a names attribute, then those 

names will override the default "extra*" names. 

 

 

4. Demos 
 

 Three demos are included with ddesolve to illustrate possible uses of ddesolve. These 

demos require the R library PBSmodelling which is utilized to create graphical user interfaces 

(GUIs) designed to aid the exploration of various models.  



 Once PBSmodelling is installed, run the runDemos() function and select ddesolve to 

access the included demos. Alternatively, R’s native demo() function may be used in lieu of 

runDemos(). 

 

4.1 Cooling - Newton’s Law of Cooling (ODE Example) 

                   
Figure 1. Newton’s Law of Cooling demonstration. 

 

 The cooling demo illustrates how to setup and solve ODEs with ddesolve by solving the 

rather easy ordinary differential equation 

 

dy/dt = -rho * (y - Tenv) 

 

which is known to have the analytical solution 

 

y = Tenv + (Tcup - Tenv) * exp(-rho * t) 

 

 



4.2 Blowflies – Gurney and Nisbet’s (1981) Model of Nicholson’s 
(1954) Blowflies (DDE Example) 
 

  
  

Figure 2. Nicholson’s Blowflies Model Demonstration 

 

 This demonstration was included in Simon Wood’s Solv95 User Manual as an example 

of solving a DDE. 

 



4.3 Lorenz – The Lorenz Equation (ODE Example) 
 

 
Figure 3. Lorenz Equation Demonstration 

 

 The Lorenz Equation demonstrates chaotic behaviour in differential equations. This 

demonstration includes the ability to evaluate the system of ODEs in either ddesolve, or 

odesolve. Selecting either numerical solver should not affect the results of the plot. Both 

packages are capable of solving ODEs and have completely different underlying code. This 

demonstration illustrates that both solvers return comparable results, and is used as a sanity 

check to show ddesolve is working correctly. 

 



5. The Algorithm 

 The R library ddesolve provides an interface to Simon Wood's numerical routines found 

in solv95. The algorithm used is ddesolve is the same as the one used by solv95. 

The method used for integration is an embedded RK2(3) scheme due to Fehlberg, 

and reported on page 170 of Hairer et al. (1987). Lagged variables (and gradients) 

are stored in a ring buffer at each step of the integrator. Interpolation is required to 

estimate values of the lagged variables between storage times. For numerical probity 

it is essential that the interpolation of lagged variables is of a higher order of 

approximation than the integrator, otherwise the assumptions underlying the error 

estimate from the RK pair will not be met. The algorithm used in Solv95 uses cubic 

hermite interpolation (e.g. Burden and Faires 1987) to achieve this (which is the 

reason that gradients need to be stored along with lagged values). The consequences 

of not using consistent interpolation and integration schemes are vividly illustrated in 

Highman (1993). Paul (1992) was also influential in the design of the method used 

here, and the step size selection is straight out of Press et al. (1992) (method, not 

code!). The RK2(3) pair used is not actually optimal - it should be possible to derive 

an improved scheme - see Butcher (1987) for an explanation of how to go about it.
1
 

 

 The solv95 software requires users to define DDEs as a model in C code. Users then have 

to compile solv95 on their own to solve the DDE. If the DDE gradient function ever changed, 

solv95 would have to be recompiled. Rather than taking this approach, ddesolve provides a 

generic C model to the numerical routines of solv95, which acts as a glue between the numerical 

C routines and R. This eliminates the need for the compiling process and by returning the results 

to R, the user is able to interpret the results using any of R’s rich libraries and internal functions. 

 

 The numerical routines have been preserved in the files ddeq.c and ddeq.h. The 

interface to dde() has been significantly altered and is now in the file ddesolve95.c, which 

were originally found in solv95.c. The generic C model, mentioned above, started from a basic 

model template from solve95, but now contains many R API calls. 
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