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Abstract

The incorporation of additional information to discriminant rules is receiving increas-
ing attention as the rules including this information perform better than the usual rules.
In this paper we introduce an R package called dawai, which provides the functions that
allow to define the rules that take into account this additional information expressed in
terms of restrictions on the means, to classify the samples and to evaluate the accuracy of
the results. Moreover, in this paper we extend the results and definitions given in previous
papers (Fernández et al. (2006), Conde et al. (2012), Conde et al. (2013)) to the case of
unequal covariances among the populations, and consequently define the corresponding
restricted quadratic discriminant rules. We also define estimators of the accuracy of the
rules for the general more than two populations case. The wide range of applications of
these procedures is illustrated with two data sets from two different fields such as biology
and pattern recognition.
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1. Introduction

The incorporation of additional information, often available in applications, to multivariate
statistical procedures through order restrictions is receiving increasing attention during the
last years as it allows to improve the performance of the procedures. Good examples of this
trend are the papers by Rueda et al. (2009), Fernández et al. (2012) and Barragán et al. (2013)
where this information is used to improve statistical procedures for circular data applied to
cell biology, ElBarmi et al. (2010) where the information is used for estimating cumulative
incidence functions in survival analysis, Ghosh et al. (2008) where it is used to make inferences
on tumor size distributions or Davidov and Peddada (2013) where a test for multivariate
stochastic order is applied to dose-response studies.
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In this work, we deal with the incorporation of additional information to discriminant rules.
Discriminant analysis is a well-known technique, first established by Fisher (1936), used in
many science fields to define rules that allow to classify samples into a small number of
populations based on a sample of observations whose population is known, usually called
training set. To our best knowledge, the first paper considering additional information under
the usual equal covariances assumption, which leads to linear discriminant rules, is Long and
Gupta (1998). However, that paper provided limited results for the case of two populations
with simple order restrictions and identity covariances matrices only. In a series of papers, the
rules appearing in that initial paper have been improved, first to deal with more general types
of information expressed in terms of cones of restrictions and general covariance matrices in
Fernández et al. (2006) and later to the case of more than two populations in Conde et al.
(2012). The robustness of the rules has also been studied in Salvador et al. (2008) and good
estimators of the performance of the rules (which is an essential issue in discriminant analysis)
have been provided in Conde et al. (2013). From now on, we will also refer to these rules
as restricted rules as the additional information is incorporated through restrictions on the
populations means.

The purpose of the present paper is two fold. The first is to introduce the dawai package, pro-
grammed in R environment, which can be downloaded from http://cran.r-project.org/

web/packages/dawai/. This package provides all the functions needed to take advantage of
the rules that incorporate additional information. The functions in the package allow to de-
fine the restricted rules, to classify the samples and to evaluate the accuracy of the results.
The second contribution of this paper is the extension of the ideas given in previous papers
from the case of equal covariances in the different populations to the case of unequal covari-
ances among the populations and consequently the definition of the corresponding restricted
quadratic discriminant rules, and also the definition of estimators of the accuracy of the rules
for the general case where more than two populations appear in the problem.

In Section 2 we describe the statistical problem and the methodology of Fernández et al.
(2006), Conde et al. (2012) and Conde et al. (2013) which we extend to the above mentioned
situations. In Section 3 we introduce the dawai package and detail all the functions that it
includes. The wide range of applications of the dawai package is illustrated in Section 4 using
two data sets coming from two different fields such as biology and pattern recognition. Some
concluding remarks are provided in Section 5.

2. Discriminant Analysis With Additional Information

We consider a finite number k ≥ 2, of distinct populations of items Π1, . . . ,Πk. Each item is
assumed to belong to one and only one of the populations. Let Z be a categorical variable
identifying the population and let X = (X1, . . . , Xp)

′ be the p-dimensional vector of predic-
tors. Denote also as PXZ the joint distribution of (X,Z), and as Pj the distribution of X in
population Πj with density function fj , j = 1, . . . , k. The classical discrimination problem
deals with the classification of an observation U = (U1, . . . , Up), whose origin is unknown,
into one of those populations. If we consider a 0-1 loss function and a priori probability πj
for the population Πj , j = 1, . . . , k, it is well known that the optimal classification rule, also
called Bayes rule, is given by:

Classify U in Πj iff πjfj(U) ≥ πlfl(U), l = 1, 2, . . . , k.

http://cran.r-project.org/web/packages/dawai/
http://cran.r-project.org/web/packages/dawai/
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In applications, the density functions fj , j = 1, . . . , k, are unknown although there is sample
information available. This sample information is contained in the so-called training sample
given by a set of items for which both the predictors values and the correct population they
belong to are registered. We represent the training sample as Mn = {(Yi, Zi), i = 1, . . . , n},
where n is the items sample size, Yi is the value that vector X takes at the i-th item in the
sample and Zi is the population the i-th item belongs to. Then, a classification rule is an
application Rn : {Rp×{1, . . . , k}}n×Rp → {1, . . . , k}, that assigns a new observation U ∈ Rp
for which the population is unknown to one of the k populations, Rn(Mn, U) ∈ {1, . . . , k}.
From now on, we assume that πj = 1

k , j = 1, . . . , k (the case of unequal a priori probabilities
is a trivial extension). If we further assume that Pj ∼ Np(µj ,Σ), j = 1, . . . , k, the optimal
classification rule (the one with lowest expected loss) may be written as:

Classify U in Πj iff (U − µj)′Σ−1(U − µj) ≤ (U − µl)′Σ−1(U − µl), l = 1, . . . , k.

Unfortunately, this rule cannot be used in practice as the mean vectors µj = (µj1, . . . , µjp)
′,

j = 1, . . . , k, and the common covariance matrix Σ are unknown. However, as we have a
training sample these parameters may be estimated using respectively the sample vectors
means Y j and the pooled sample covariance matrix S,

Y j = (Y j1, . . . , Y jp)
′ =

1

nj

n∑
l=1

YlI(Zl=j) and

S =
1

n− k

k∑
j=1

n∑
l=1

(
Yl − Y j

) (
Yl − Y j

)′
I(Zl=j),

where nj =
∑n

l=1 I(Zl=j) is the sample size of population Πj , j = 1, . . . , k, and n =
∑k

j=1 nj .

As this estimated rule, obtained plugging the estimators in the initial rule, is linear in the
predictors, it is usually known as linear discriminant rule or Fisher’s rule:

Classify U in Πj iff (U − Y j)
′S−1(U − Y j) ≤ (U − Y l)

′S−1(U − Y l), l = 1, . . . , k. (1)

If the covariance matrices are not assumed to be equal, i. e., Pj ∼ Np(µj ,Σj), j = 1, . . . , k,
the optimal rule can be written as:

Classify U in Πj iff − 1

2
log(|Σj |)−

1

2

{
(U − µj)′Σ−1j (U − µj)

}
≥

− 1

2
log(|Σl|)−

1

2

{
(U − µl)′Σ−1l (U − µl)

}
, l = 1, . . . , k.

Again, if we replace in this rule the unknown parameters µj and Σj by their corresponding

estimators Y j and Sj = 1
nj−1

∑n
l=1

(
Yl − Y j

) (
Yl − Y j

)′
I(Zl=j), j = 1, . . . , k, we obtain a rule

that depends on the predictor in a quadratic way and it is therefore known as the restricted
quadratic discriminant rule:

Classify U in Πj iff − 1

2
log(|Sj |)−

1

2

{
(U − Y j)

′S−1j (U − Y j),
}
≥ (2)

− 1

2
log(|Sl|)−

1

2

{
(U − Y l)

′S−1l (U − Y l),
}
, l = 1, . . . , k.
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2.1. Restricted discriminant rules

In the introduction we referred applications where it is usual that some additional information
is available. In many of these cases the information can be written as inequality restrictions
among the population means. In the literature these restrictions are usually represented by
a polyhedric cone (cf. Robertson et al. (1988) or Silvapulle and Sen (2005)). In our case, our
pk-dimensional populations means will belong to a cone C in Rpk,

(µ′1, . . . , µ
′
k)
′ ∈ C =

{
x ∈ Rpk : a′jx ≥ 0, j = 1, . . . ,m

}
, (3)

where the m vectors aj ∈ Rpk, j = 1, . . . ,m, are determined by the restrictions imposed on
the means.

Polyhedral cones are widely used in restricted inference literature, because they cover the
most interesting cases from a practical standpoint. Among these cones, those representing
order relations among the means are especially interesting. For example, it is not unusual
to know that the observations from one of the populations, for example, Π1 (which may be
the control population in a medical study), take, in mean, lower values that those coming
from any of the other populations for a subset L ⊆ {1, . . . , p} of predictor variables. In the
usual restricted statistical terminology, we can say that there is a “tree order” among the
populations means in the variables in L. In this case, we can write

(µ′1, . . . , µ
′
k)
′ ∈ CTO =

{
x ∈ Rpk : xl ≤ xl+rp, r = 1, . . . , k − 1, l ∈ L

}
. (4)

Another usual situation is when it is known that there is an increase in the means of a subset L
of predictors (for example, due to increased severity level in an illness study). This is known as
a “simple order” among the populations means in the variables in L, and may be represented
in Rpk using the cone

(µ′1, . . . , µ
′
k)
′ ∈ CSO =

{
x ∈ Rpk : xl ≤ xl+p ≤ · · · ≤ xl+(k−1)p, l ∈ L

}
. (5)

Restricted linear discriminant rules

As mentioned above, in this case we assume Σj = Σ, j = 1, . . . , k. Fernández et al. (2006)
deal with this situation when the number of populations is k = 2. They propose a family of
classification rules whose expected loss (total probability of misclassification) is lower than
that of the linear discriminant rule (1). These rules are based on the use of additional infor-
mation to obtain alternative estimators of the vector means. The generalization to the k > 2
populations case appears in Conde et al. (2012). These alternative estimators are defined via
an iterative procedure whose convergence is shown in Fernández et al. (2006) and that is
described here for completeness.

Consider the pk square matrix S−1∗ =
[
diag

(
S
n1
, Sn2

, . . . , Snk

)]−1
.

Definition 1 (Conde et al. (2012))

For γ ∈ [0, 1], let µ̂γ be the limit value, when m −→∞, of the following iterative procedure:

µ̂γ(m) = PS−1
∗

(
µ̂γ(m−1)|C

)
− γPS−1

∗

(
µ̂γ(m−1)|CP

)
, m = 1, 2, . . . ,
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where µ̂γ(0) =
(
Y
′

1, . . . , Y
′

k

)′
∈ Rpk, PS−1

∗
(Y |C), is the projection of Y ∈ Rpk onto the cone

C using the metric given by the matrix S−1∗ , and CP = {y ∈ Rpk : y′S−1∗ x ≤ 0, x ∈ C} is the
polar cone of C.

The computation of the projection of a vector onto a polyhedral cone can be carried out
using the lsConstrain.fit method contained in ibdreg R package. Figure 1 shows, in R2,
the cones C and CP and the estimators defined when γ = 1, exposing the need for an iterative
procedure when C is an acute cone.

Figure 1: Examples of the iterative procedure for mean vector estimation for an acute (a)
and a non-acute cone (b)

These estimators are plugged into the original rule to obtain the restricted lineal discriminant
rules Rl(γ):

Classify U in Πj iff (U − µ̂γj )′S−1∗ (U − µ̂γj ) ≤ (U − µ̂γl )′S−1∗ (U − µ̂γl ), l = 1, . . . , k.

for γ ∈ [0, 1].

For more details on these restricted linear rules and their properties the reader is referred to
Fernández et al. (2006) and Conde et al. (2012).

Restricted quadratic discriminant rules

In many applications the covariance matrices of the different populations cannot be assumed to
be equal. In this case for each γ ∈ [0, 1] the estimator µ̂γ = (µ̂γ′1 , . . . , µ̂

γ′
k )′ of µ = (µ′1, . . . , µ

′
k)
′ ∈

C is obtained using the iterative procedure described in Definition 1, replacing the matrix

S−1∗ by
[
diag(S1

n1
, . . . , Sk

nk
)
]−1

. Again, these estimators are plugged into the original rule to

obtain the restricted quadratic discriminant rules: Rq(γ)

Classify U in Πj iff − 1

2
log |Sj | −

1

2

{
(U − µ̂γj )′S−1j (U − µ̂γj ),

}
≥

− 1

2
log |Sl| −

1

2

{
(U − µ̂γl )′S−1l (U − µ̂γl ),

}
, l = 1, . . . , k,

for γ ∈ [0, 1].
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The restricted linear and quadratic discriminant rules can be defined with rlda and rqda

functions of the R package dawai, respectively. The corresponding functions that allow to
classify samples are predict.rlda and predict.rqda, respectively.

2.2. True error rate estimation

From the applications point of view, the evaluation of the classification rule for a given training
sample is even more important than the expected loss of the rule. The true error rate, En, of
the rule Rn, is the probability of misclassification of the rule given the training sample, i. e.,
En = PXZ(Rn(Mn, U) 6= Z | Mn). It is well known that the best way of estimating the true
classification error of a classification rule is the use of an independent sample, usually called
test sample. However, in practice it is common that the sample size is not large enough to split
the sample into a training and a test sample as that would decrease the efficiency of the rule.
For this reason, the estimation of En for the usual rules such as for example Fisher’s linear rule
(1), the quadratic discriminant rule (2), the nearest neighbors rules (Cover and Hart 1967) or
random forest rules (Breiman 2001), is a widely studied topic in the literature. Parametric and
non-parametric estimators of En have been proposed and non-parametric estimators based on
resampling have shown a good performance for the above mentioned rules. Schiavo and Hand
(2000) summarizes the work made on this topic until that date. More recent references are,
for instance, Steele and Patterson (2000), Wehberg and Schumacher (2004), Fu et al. (2005),
Molinaro et al. (2005), Kim and Cha (2006), Kim (2009) or Borra and Di Ciaccio (2010).

Conde et al. (2013) propose four new estimators of En specific for the restricted linear discrim-
inant rule Rl(γ) for k = 2 populations. Two of them, BT2 and BT3, are generated from the
leave-one-out bootstrap (LOOBT , see Efron (1983)). The other two, BT2CV and BT3CV ,
are cross-validation after bootstrap (BCV , see Fu et al. (2005)) versions of BT2 and BT3
respectively. In the following, we describe the generalization of these estimators to the k > 2
populations and to the restricted quadratic discrimination cases. The underlying idea in the
definition of the new estimators of the true error rate is that the “bootstrap world” should
mirror the “real world”. We present two proposals: the first one is to modify the restrictions
cone, the second one is to adapt the training sample.

The BT2 and BT2CV estimators

Assume that the additional information is written as in (3). Let us denote as C the following

random cone generated by the sample mean vectors Y =
(
Y
′

1, . . . , Y
′

k

)′
:

C =

{
x ∈ Rpk

a′jx ≥ 0 if a′jY ≥ 0

a′jx ≤ 0 if a′jY < 0
, j = 1, . . . ,m

}
,

i. e., the cone determined by the restrictions verified by the sample means.

The true error rate estimator BT2 of the restricted linear or quadratic classification rules
(Rl(γ), Rq(γ)) is computed in a way similar to LOOBT but considering bootstrap classifica-
tion rules generated using projections onto cone C instead of C for each bootstrap training
sample. LOOBT is the porportion of wrongly classified observations using the following pro-
cedure: B bootstrap samples are considered and the corresponding B bootstrap versions of
the classification rule are used for classifying the original observations that do not belong to
the bootstrap training sample. A bootstrap training sample M∗n = {(Y ∗i , Z∗i ), i = 1, . . . , n}



David Conde, Miguel A. Fernández, Bonifacio Salvador, Cristina Rueda 7

is a size n randomly obtained (with replacement) sample from the original training sam-
ple (i. e. P((Y ∗i , Z

∗
i ) = (Ys, Zs)) = 1

n with s, i ∈ {1, . . . , n}). B such bootstrap samples
M∗bn = {(Y ∗bi , Z∗bi ), i = 1, . . . , n}, b = 1, . . . , B, are obtained from Mn. For each bootstrap
training sample we define the bootstrap version of the estimator of µ = (µ′1, . . . , µ

′
k)
′ that we

denote as µ∗bγ (with γ ∈ [0, 1]), as the limit when i → ∞ of the following iterative procedure

similar to the one considered in Definition 1. Let µ̂
(0)b
γ = Y and

µ̂(i)bγ = PA

(
µ̂(i−1)bγ |C

)
− γPA

(
µ̂(i−1)bγ |CP

)
, i = 1, 2, . . . ,

where matrix A is equal to
[
diag( Sn1

, Sn2
, . . . , Snk

)
]−1

for the restricted linear discriminant rule

and equal to
[
diag(S1

n1
, S1
n2
, . . . , Sk

nk
)
]−1

for the restricted quadratic discriminant rule.

Now, we denote as R∗bl (γ) and R∗bq (γ) the bootstrap versions of the classification rules Rl(γ)
and Rq(γ), respectively. For each of the B bootstrap rules we classify the observations in the
original training sample that do not belong to the corresponding bootstrap sample M∗bn . The
true error rate estimator BT2 is the proportion of observations wrongly classified.

The BT2CV estimator is the BCV (Fu et al. 2005) version of BT2. For each of the B
bootstrap training samples, let CVb be the true error rate estimator obtained using the cross-
validation method on sample M∗bn . Then BT2CV = 1

B

∑B
b=1CVb.

The BT3 and BT3CV estimators

The true error rate estimator denoted as BT3 is based in adapting the original training
sample, instead of modifying the cone C like in BT2, as follows.

Assume that the original training sample Mn = {(Yi, Zi), i = 1, . . . , n} does not verify the
restrictions, i. e., Y /∈ C. For any γ ∈ [0, 1], let µ̂γj be the restricted estimator of µj obtained
in Definition 1. Now, we transform the original training sample in such a way that the new
sample means belong to C. The transformed training sample is {(Wi, Zi), i = 1, . . . , n}, where

Wi = Yi − Y j + µ̂γj if Zi = j,

for i = 1, . . . , n and j = 1, . . . , k.

In this way W = (W
′
1, . . . ,W

′
k)
′, W j = 1

nj

∑n
l=1WlI(Zl=j), j = 1, . . . , k. Now, the estimator

denoted as BT3 is computed in a similar way to that of LOOBT but replacing the original
training sample by the transformed one.

The BT3CV estimator is the cross-validation after bootstrap version of BT3.

These four estimators of the true error rates of the restricted linear and quadratic discriminant
rules can be obtained with err.est.rlda and err.est.rqda functions of the R package dawai,
respectively.
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3. Package dawai

The R package dawai consists of a total of six functions, three for each of the two restricted
discrimination analysis situations (i. e., equal or unequal covariances in the populations). The
three functions for each case are: one to define the rules that take into account the additional
information expressed in terms of restrictions on the populations means and classify the
samples in the training set; a second one which predicts the populations of new samples using
the previously defined rule; and, finally, a third one which can evaluate the accuracy of the
rules associated to the training set.

We start this section giving some background on R packages for performing discriminant
analysis. We then explain the functions of this package.

3.1. Related packages

As discriminant analysis is a well-known and widely used technique there are many packages
in R for performing discriminant analysis. The basic procedures are in package

• MASS (Ripley et al. 2011): Support Functions and Datasets for Venables and Ripley’s
MASS.

Some more recent packages including new features and discrimination in specific conditions
are

• mda (Hastie et al. 2013): Mixture and flexible discriminant analysis.

• rrlda (Gschwandtner et al. 2013): Robust Regularized Linear Discriminant Analysis.

• sparsediscrim (Ramey 2013): Sparse Discriminant Analysis.

Since none of the existing packages for discriminant analysis are applicable for performing
discriminant analysis under restrictions, in this article we introduce the package “d iscriminant
analysis w ith additional information”, with the acronym dawai.

Our package depends on boot (Ripley 2013) for bootstrapping, ibdreg (Sinnwell and Schaid
2013) for computing the projection of a vector onto a polyhedral cone with lsConstrain.fit,
and mvtnorm (Genz et al. 2013) for computing multivariate normal densities. These packages
should be installed before loading dawai.

3.2. The rlda, predict.rlda and err.est.rlda functions

As aforementioned, there are three functions with regard to the described restricted linear
discriminant rules in the dawai package.

Firstly, the rlda function builds restricted linear classification rules with additional informa-
tion expressed as inequality restrictions on the populations means, using the methodology
developed in Fernández et al. (2006) and Conde et al. (2012).

The rlda function creates an S3 object of class "rlda", explained below. The arguments of
this function are summarized in Table 1.
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Arguments Values

formula formula specifying the grouping factor and the variables

data data frame from which variables in formula are to be taken

x (if no formula given) data frame or matrix with the explanatory variables

grouping (if no formula given) numeric vector or numeric levels factor with the classes
of the observations

subset index vector specifying the cases to be used in the training sample

resmatrix matrix specifying the linear restrictions on the mean vectors

resvector vector of constant values. If unspecified, a vector of 0’s is used

restext (if no resmatrix given) character string from which resmatrix is created

gamma vector with the gamma values. If unspecified, c(0,1) is used

prior prior probabilities of class membership. If unspecified, the class proportions
for the training set are used

Table 1: Arguments of the rlda function.

The rlda function may be called giving either a formula and data frame, or a data frame
and grouping factor, or a matrix and grouping factor, as the first two arguments. Arguments
resmatrix or restext must be specified. All other arguments are optional.

Classes of the observations must be identified, either in a colum of data or in the grouping

vector, by natural numbers varying from 1 to the number of classes, which must be greater
than 1.

Arguments resmatrix and resvector determine the additional information on the means
vector: resmatrix (µ′1, . . . , µ

′
k)
′ ≤ resvector.

The purpose of restext is to make easier the specification of the two most usual cones of
restrictions, the tree order (4) and the simple order (5) cones. The first element of restext
must be either “s” (simple order) or “t” (tree order), the second element must be either “<”
(increasing componentwise order) or “>” (decreasing componentwise order), and the rest of
the elements should be numbers from 1 to the number of explanatory variables, separated by
commas, specifying among which variables the restrictions hold.

If there are missing values in either data, x or grouping, the corresponding observations will
be deleted.

The rlda function creates an S3 object of class "rlda", which is a list with the following
elements:

$call is the (matched) function call.

$trainset is a matrix with the training set used (first columns) and the class for each
observation (last column).

$restrictions is an edited character string with the linear restrictions on the mean vectors
detailed.

$resmatrix is the matrix with the restrictions on the mean vectors used.
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$resvector is the constant values vector used.

$prior is a vector containing the prior probabilities of class membership used.

$counts is the number of observations of each of the classes used.

$N is the total number of observations used.

$samplemeans is a matrix with the sample means in rows.

$samplevariances is an array with the sample covariance matrices of the classes.

$gamma are the gamma values used.

$spooled is the pooled covariance matrix.

$estimatedmeans is an array with the estimated means for each classification rule.

$apparent is the apparent error rate for each classification rule.

The print.rlda(x, ...) method is an S3 method defined to print an object x of class
"rlda".

The second function predict.rlda matches the parameters of the generic function predict

and adds some more. The arguments of this function are summarized in Table 2. This function
classifies multivariate observations contained in a data frame newdata using the restricted lin-
ear classification rules defined in an object of class "rlda". All other arguments are optional.

Arguments Values

object object of class "rlda"

newdata data frame of cases to be classified. It must contain the variables in object

prior prior probabilities of class membership. If unspecified, object$prior is used

gamma gamma values. If specified, its values must be contained in object$gamma. If
unspecified, object$gamma is used

grouping numeric vector or numeric levels factor with the classes of the observations in
newdata. If present, true error rate will be estimated from newdata

Table 2: Arguments of the predict.rlda function.

The output of this function is a list with the following elements:

$call is the (matched) function call.

$class is a matrix with the classification for each rule (in columns).

$prior is a vector containing the prior probabilities of the classes used.

$posterior is an array with the posterior probabilities for each rule.

$error.rate is the true error rate estimation (when grouping is specified) for each rule
based on newdata.
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Finally, the third function err.est.rlda estimates the true error rate of the restricted linear
classification rules defined in an object x of class "rlda", using the methodology developed
in Conde et al. (2013) and in Section 2.2. of this paper. The arguments of this method are
summarized in Table 3.

Arguments Values

x object of class "rlda"

nboot number of bootstrap samples used to estimate the true error rate. If unspeci-
fied, nboot = 50

gamma gamma values. If specified, its values must be contained in x$gamma. If un-
specified, x$gamma is used

prior prior probabilities of class membership. If unspecified, x$prior is used

Table 3: Arguments of the err.est method.

The output of the err.est.rlda function is a list with the following elements:

$call is the (matched) function call.

$restrictions is a character vector with the restrictions on the means vector detailed.

$prior is the prior probabilities of the classes used.

$counts is the number of observations of the classes used.

$N is the total number of observations used.

$estimationError is a matrix with BT2, BT3, BT2CV and BT3CV true error rate esti-
mates of the rules.

Examples to illustrate these functions are provided in Section 4.1.

3.3. The rqda, predict.rqda and err.est.rqda functions

The rqda, predict.rqda and err.est.rqda functions are the corresponding versions of the
rqda, predict.rqda and err.est.rqda functions for performing restricted quadratic dis-
crimination.

The rqda function builds restricted quadratic classification rules using the methodology de-
veloped in Section 2.1. The arguments of the rqda function are the same arguments of the
rlda function, summarized in Table 1. The rqda function creates an S3 object of class "rqda",
which is a list with the same elements as class "rlda" except spooled, the pooled covariance
matrix, not used in quadratic classification.

The method print.rqda(x, ...) is an S3 method defined to print an object x of class
"rlda".

The predict.rqda function classifies multivariate observations with restricted quadratic clas-
sification rules. The arguments of this function are the same as predict.rlda, summarized in
Table 2. This function classifies a data frame newdata with restricted quadratic classification
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rules defined in an object of class "rqda". The output of this function is a list with the same
elements as the output of the predict.rlda function.

Finally, the err.est.rqda function estimates the true error rate of restricted quadratic classi-
fication rules using the methodology developed in Section 2.2. The arguments of this function
are the same as the arguments of the err.est.rlda function, summarized in Table 3, where
x is an object of class "rqda".

Examples to illustrate these functions are provided in Section 4.2.

4. Applications

There is a wide range of applications of the dawai package, which we illustrate in this section
using two data sets coming from two different fields such as biology and pattern recognition.

4.1. Biological application

In patient care, as for example in cancer treatment, an important component is the correct
classification of the patient into one of the disease stages. The disease stages correspond to
increasingly advanced levels of the disease, so it is reasonable to expect the mean values
of some variables to increase or decrease with the severity of the illness. This is the case of
primary biliary cirrhosis (PBC), an autoimmune liver disease causing liver inflammation and a
gradual destruction of the intrahepatic bile ducts found within the liver. PBC is a progressive
disease, with four sucessive stages as time passes (Scheuer 1967).

The data set we will use now, called pbc, is in survival R package, taken from Therneau and
Grambsch (2000). This data set is from the Mayo Clinic trial in PBC of the liver conducted
between 1974 and 1984, and it has 418 cases and 20 variables.

We will use this data set to exemplify the restricted linear discriminant rules. We consider
three variables as predictors (p = 3), Bili, Albumin and Platelet (the amounts of serum
bilirunbin (mg/dl) and serum albumin (g/dl) and platelet count, respectively), and three
populations (k = 3), joining the original stages 1 and 2 into one so that the classes have
enough elements to split the sample into training and a test data sets of reasonable size, as
seen below.

R> library(survival)

R> data("pbc")

R> data <- pbc[, c("bili", "albumin", "platelet", "stage")]

Let us take complete observations only.

R> data <- data[rowSums(is.na(data)) == 0, ]

We transform logarithmically the values of the explicative variables so that the variables are
approximately normally distributed.
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R> data <- cbind(data[, "stage", drop = FALSE],

+ "logBili" = log(data[["bili"]]),

+ "logAlbumin" = log(data[["albumin"]]),

+ "logPlatelet" = log(data[["platelet"]]))

R> data$stage <- as.factor(data$stage)

R> levels(data$stage)

[1] "1" "2" "3" "4"

R> table(data$stage)

1 2 3 4

20 86 153 142

These are the number of elements in each of the four classes. Notice that there is a low number
in the first class and that 401 cases out of the 418 initial ones have no missing values in the
three predictor variables. As mentioned before, we join stages “1” and “2” and relabel them.

R> levels(data$stage) <- c(1, 1, 2, 3)

R> table(data$stage)

1 2 3

106 153 142

We will consider the restrictions between population means given by the whole data set:
µ1,1 ≤ µ2,1 ≤ µ3,1, µ1,2 ≥ µ2,2 ≥ µ3,2, µ1,3 ≥ µ2,3 ≥ µ3,3, i. e., the amount of serum bilirunbin
increases and the amount of serum albumin and platelet count decrease with PBC stage. To
establish these restrictions, we define a restrictions matrix (resmatrix).

R> A <- matrix(0, ncol = 9, nrow = 6)

R> A[t(matrix(c(1, 1, 4, 4, 2, 5, 3, 6, 5, 8, 6, 9), nrow = 2))] <- 1

R> A[t(matrix(c(1, 4, 4, 7, 2, 2, 3, 3, 5, 5, 6, 6), nrow = 2))] <- -1

R> A

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 0 0 -1 0 0 0 0 0

[2,] 0 -1 0 0 1 0 0 0 0

[3,] 0 0 -1 0 0 1 0 0 0

[4,] 0 0 0 1 0 0 -1 0 0

[5,] 0 0 0 0 -1 0 0 1 0

[6,] 0 0 0 0 0 -1 0 0 1

As the restrictions are expressed as resmatrix (µ′1, µ
′
2, µ
′
3)
′ ≤ resvector, the parameter

resvector must be (0, 0, 0, 0, 0, 0)′, so we will not need to specify it (see Table 1).

We split the data set into a randomly selected training set and test set, fixing a seed in order
to get the same results as the reader.
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R> set.seed(-13615)

R> values <- runif(dim(data)[1])

R> trainsubset <- (values < 0.25)

R> testsubset <- (values >= 0.25)

Now we can build the restricted linear discriminant rules. Let us consider equal a priori
probabilities.

R> obj <- rlda(stage ~ logBili + logAlbumin + logPlatelet, data,

+ subset = trainsubset, gamma = c(0, 0.75, 1),

+ resmatrix = A, prior = c(1/3, 1/3, 1/3))

R> obj

Restrictions:

mu1,1 - mu2,1 <= 0

- mu1,2 + mu2,2 <= 0

- mu1,3 + mu2,3 <= 0

mu2,1 - mu3,1 <= 0

- mu2,2 + mu3,2 <= 0

- mu2,3 + mu3,3 <= 0

Prior probabilities of classes:

class1 class2 class3

0.3333333 0.3333333 0.3333333

Apparent error rate (%):

gamma=0 gamma=0.75 gamma=1

50.00000 53.84615 54.80769

Now we consider the test set, containing the observations in data not present in the training
set, and classify them. As we know the classes that the observations in the test set belong to,
we can estimate the true error rate.

R> pred <- predict(obj, newdata = data[testsubset,],

+ grouping = data[testsubset, "stage"])

R> pred$error.rate

gamma=0 gamma=0.75 gamma=1

True error rate (%): 54.20875 52.86195 51.51515

The fact that the apparent error rate increases and the true error rate decreases with γ is a
typical effect for these restricted rules, see Fernández et al. (2006), Conde et al. (2012) and
Conde et al. (2013).

Finally, we estimate the true error rate from the training sample with nboot = 50 (the default
value) and γ = 0.75, 1.

R> err.est(obj, gamma = c(0.75, 1))
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Restrictions:

mu1,1 - mu2,1 <= 0

- mu1,2 + mu2,2 <= 0

- mu1,3 + mu2,3 <= 0

mu2,1 - mu3,1 <= 0

- mu2,2 + mu3,2 <= 0

- mu2,3 + mu3,3 <= 0

Prior probabilities of classes:

class1 class2 class3

0.3333333 0.3333333 0.3333333

True error rate estimation (%):

gamma=0.75 gamma=1

BT2 53.89034 53.31593

BT3 55.45692 55.56136

BT2CV 50.23077 50.53846

BT3CV 51.90385 51.63462

4.2. Pattern recognition application

As an example of pattern recognition, we will use a data set contained in dawai package called
Vehicle2.

R> data("Vehicle2")

This data set is a subset from the Vehicle data set, available in the R package mlbench
and taken from the UCI Repository Of Machine Learning Databases (http://www.ics.uci.
edu/~mlearn/MLRepository.html), originally gathered in Siebert (1987). The purpose of the
data set is to study how to distinguish 3D objects from a 2D image, i. e., how to classify a
given silhouette as viewed from a camera from different angles and elevations into one of
four types of vehicle, using a set of features extracted from the silhouette. The vehicles used
were a double-decker bus, a Cheverolet van, a Saab 9000 and an Opel Manta 400, with the
expectation that the bus, the van and either one of the cars would be readily distinguishable,
but it would be more difficult to distinguish between the cars.

Vehicle2 is a data frame with 846 observations on 4 variables, all numerical and one nominal
defining the class of the objects, the vehicle.

We will use this data set to exemplify the restricted quadratic discriminant rules.

We consider the three variables as predictors (p = 3) and the four available populations
(k = 4).

R> data <- Vehicle2[, 1:3]

R> grouping <- Vehicle2$Class

R> levels(grouping)

[1] "bus" "opel" "saab" "van"

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
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R> levels(grouping) <- c(4, 1, 2, 3)

We have “ordered” the populations in terms of the vehicle size. The third variable, Holl.Ra,
is the quotient (hollows area)/(bounding polygon area), and it could be reasonable to think
that the means decrease with the vehicle size, so let us suppose the following restrictions on
the means: µ13 ≥ µ23 ≥ µ33 ≥ µ43. We specify these restrictions by restext = "s>3".

We split the data set into a randomly selected training set and test set, fixing a seed in order
to get the same results as the reader.

R> set.seed(6550)

R> values <- runif(dim(data)[1])

R> trainsubset <- (values < 0.25)

Now we can build the restricted quadratic discriminant rules:

R> obj <- rqda(data, grouping, subset = trainsubset, restext = "s>3")

R> obj

Restrictions:

- mu1,3 + mu2,3 <= 0

- mu2,3 + mu3,3 <= 0

- mu3,3 + mu4,3 <= 0

Prior probabilities of classes:

class1 class2 class3 class4

0.2060302 0.2663317 0.2562814 0.2713568

Apparent error rate (%):

gamma=0 gamma=1

55.77889 58.79397

Note that, as we have not specifed neither gamma nor prior, restricted rules are by default
obtained for γ = 0, 1, and the class proportions of the training set are used as the prior
probabilities of class membership.

Now we consider the test set, containing the observations in data not present in the training
set, and classify them. As we know the classes of the observations in the test set, we can
estimate the true error rate.

R> testsubset <- (values >= 0.25)

R> pred <- predict(obj, newdata = data[testsubset,],

+ grouping = grouping[testsubset])

R> pred$error.rate

gamma=0 gamma=1

True error rate (%): 62.75116 61.051



David Conde, Miguel A. Fernández, Bonifacio Salvador, Cristina Rueda 17

We can also use equal a priori probabilities. We only need to specify them.

R> pred <- predict(obj, newdata = data[testsubset,],

+ grouping = grouping[testsubset], prior = rep(1/4, 4))

R> pred$error.rate

gamma=0 gamma=1

True error rate (%): 61.36012 62.13292

Finally, we estimate the true error rate from the training sample, with nboot = 60 and equal
a priori probabilities.

R> err.est(obj, nboot = 60, prior = rep(1/4,4))

Restrictions:

- mu1,3 + mu2,3 <= 0

- mu2,3 + mu3,3 <= 0

- mu3,3 + mu4,3 <= 0

Prior probabilities of classes:

class1 class2 class3 class4

0.25 0.25 0.25 0.25

True error rate estimation (%):

gamma=0 gamma=1

BT2 62.82842 62.66849

BT3 63.05689 62.87411

BT2CV 56.64154 56.47404

BT3CV 57.06868 57.29481

5. Conclusions

In this paper the R package dawai has been presented. The package provides the functions
needed to define linear or quadratic classification rules under order restrictions, to classify the
samples and to evaluate the accuracy of the rules.

We have also extended in this paper the definitions given in previous papers (Fernández et al.
(2006), Conde et al. (2012), Conde et al. (2013)) from the case of equal covariances in the
different populations to the case of unequal covariances among the populations and conse-
quently defined the corresponding restricted quadratic discriminant rules. Another novelty
is the definition of estimators of the accuracy of the rules for the general more than two
populations case, for restricted linear and quadratic discriminant rules, thus completing the
procedures presented in those three previous papers.

Though we have illustrated the proposed methodology using examples from biology and pat-
tern recognition, the software can obviously be applied to a wide range of contexts such as
medical image analysis, drug discovery and development, optical character and handwriting
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recognition, document classification, credit scoring. . . We expect the software described to be
useful for researchers working in any of those fields.
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