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1 Introduction

The the R (R Development Core Team, 2017) package dae (Brien, 2017) provides functions useful in the design
and anova of experiments. This document describes how to use some of them to produce layouts for experiments
and to check some of their properties.

1.1 Functions to be used

The functions in dae fall into the following categories and those that will be covered in this document are listed
and described:

1. Data

2. Factor manipulation functions

fac.gen: Generate all combinations of several factors.

fac.recode: Recodes the levels and values of a factor.

fac.combine: Combines several factors into one.

3. Design functions

blockboundaryPlot: Plots a block boundary on a plot produced by designPlot.

designAnatomy: Given the layout for an experiment, an anatomy of its design showing the confounding
and aliasing inherent in the design that is obtained via a canonical analysis of its projectors.

designLatinSqrSys: Generate a systematic plan for a Latin Square design.

designPlot: A graphical representation of an experimental design using labels stored in a matrix.

designRandomize Takes a systematic design and randomizes it according to the nesting (and crossing)
relationships between the recipient(unit) factors for the randomization.

no.reps: Computes the number of replicates for an experiment.

summary.pcanon: Summarizes the anatomy of a design, being the decomposition of the sample space
based on its canonical analysis as produced by designAnatomy.

4. ANOVA functions

5. Matrix functions

6. Projector and canonical efficiency functions

efficiencies.pcanon: Produces a list containing the canonical efficiency factors for the joint decomposition
of two or more sets of projectors (Brien and Bailey, 2009) obtained using projs.canon.

7. Miscellaneous functions.

Documentation for each of these functions is available from the user manual for the relevant package (see the
doc subdirectory of the directory in which the package is installed) or from the help for the function once the
package has been installed. For the latter, to see the manual for package foo, enter help(package="foo") and
click on the link User guides, package vignettes and other documentation.

1.2 The paradigm

Fundamental to the approach in this document, and to using the functions described, is that a single allocation
involves allocating a set of allocated factors to a set of recipient factors. In many designs, this allocation is
achieved by randomization. However, sometimes there is systematic allocation or restricted allocation.
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2 Single-allocation orthogonal design in R

This class of experiments covers the orthogonal standard or textbook experiments and these experiments must
be single phase because they involve a single randomization, in the sense that the randomization can be achieved
with a single permutation. Hence there will be two sets of factors, or tiers, one set being allocated to the other
set. In designRandomize, these are referred to as the allocated and recipient sets of factors. They are also called
the unit and treatment factors, respectively.

Firstly, initialize by loading the library that will be used.

library(dae)

## Loading required package: ggplot2

options(width=100)

2.1 Two potential designs for a 5× 5 grid of plots

Suppose an experiment to investigate five treatments is to be conducted on 25 plots, the 25 plots being arranged
in a 5× 5 grid. Two possible designs are a randomized complete block design (RCBD) or a Latin square design
(LSD). The factor-allocation diagram (Brien et al., 2011) for the RCBD is in Figure 1 and that for the LSD is
in Figure 2.

�� ��5 Treatments
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	5 Rows

5 Columns in R

5 treatments 25 units

Figure 1: Factor-allocation diagram for an RCBD: treatments are allocated to units; the arrow indicates that the factor Treatments
is randomized to Columns; Columns in R indicates that the Columns are considered to be nested within Rows for this randomization;
R = Rows.
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	5 Rows

5 Columns

5 treatments 25 units
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Figure 2: Factor-allocation diagram for a LSD: treatments are allocated to units; the arrow indicates that the allocation is
randomized; the ‘©⊥ ’ at the end of the arrow indicates that an orthogonal design is used; the two lines from ‘©⊥ ’ indicates that the
Treatments are allocated to the combinations of Rows and Columns using the design.

2.1.1 Produce the randomized layout for an RCBD

Use designRandomize to randomize the treatments according to an RCBD. The arguments to designRandomize

that need to be set are (i) allocated, (ii) nested.recipients, (iii) recipient, and optionally, (iv) seed. The
allocated factors as treatment factors and recipient factors are also referred to as block or unit factors. Often, the
recipient factors and the nesting of the recipient factors are specified by lists. This will result in the recipient
factors being generated in standard order. A systematic arrangement of the allocated factors, corresponding to
the values of the recipient factors, needs to be supplied and this can be done via factor for a single factor or a
data.frame for several allocated factors. The name of the allocated factor(s) in the layout produced will be the
name of the supplied factor or the names of the data.frame columns.

In this example, the allocated factor is Treatments, with 5 levels, and the recipient factors are Rows and
Columns, both with 5 levels. Suppose that Rows are to form the blocks.

Use the following R code to obtain and display the layout:
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#'## Obtain the layout

Treatments <- factor(rep(1:5, times=5))

RCBD.lay <- designRandomize(allocated = Treatments,

recipient = list(Rows=5, Columns=5),

nested.recipients = list(Columns = "Rows"),

seed = 521814)

#'## Output the layout

RCBD.lay

## Rows Columns Treatments

## 1 1 1 1

## 2 1 2 4

## 3 1 3 2

## 4 1 4 3

## 5 1 5 5

## 6 2 1 4

## 7 2 2 2

## 8 2 3 5

## 9 2 4 1

## 10 2 5 3

## 11 3 1 5

## 12 3 2 1

## 13 3 3 3

## 14 3 4 2

## 15 3 5 4

## 16 4 1 4

## 17 4 2 1

## 18 4 3 2

## 19 4 4 5

## 20 4 5 3

## 21 5 1 3

## 22 5 2 4

## 23 5 3 2

## 24 5 4 5

## 25 5 5 1

#'## Plot the layout

Trt.mat <- matrix(as.character(RCBD.lay$Treatments), nrow=5, byrow=TRUE)

designPlot(Trt.mat, labels = levels(RCBD.lay$Treatments)[1:5],

rtitle = "Row", ctitle = "Column",

chardivisor = 6, rchardivisor = 6, cchardivisor = 6,

blockdefinition = cbind(1,5), blocklinecolour = "blue")
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The randomized layout is obtained by permuting (i) Rows and (ii) Columns within Rows. Then the permuted
Rows and Columns and the systematic Treatments are sorted so that Rows and Columns are in standard order.
The column .Permutation shows the permutation used. This and the .Units column are only included if
unit.permutation=TRUE.

2.1.2 Produce the randomized layout for an LSD

Use designRandomize to randomize the treatments according to an LSD, having obtained the systematic design
using designLatinSqrSys. In this case, for this design Rows and Columns are crossed, there are no nested
factors. The layout can be obtained using the following R code:

#'## Obtain the layout

Treatments <- factor(designLatinSqrSys(5))

LSD.lay <- designRandomize(allocated = Treatments,

recipient = list(Rows=5, Columns=5),

seed = 154381)

#'## Output the layout

LSD.lay

## Rows Columns Treatments

## 1 1 1 5

## 2 1 2 4

## 3 1 3 2

## 4 1 4 3

## 5 1 5 1

## 6 2 1 2

## 7 2 2 1

## 8 2 3 4

## 9 2 4 5

## 10 2 5 3
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## 11 3 1 3

## 12 3 2 2

## 13 3 3 5

## 14 3 4 1

## 15 3 5 4

## 16 4 1 4

## 17 4 2 3

## 18 4 3 1

## 19 4 4 2

## 20 4 5 5

## 21 5 1 1

## 22 5 2 5

## 23 5 3 3

## 24 5 4 4

## 25 5 5 2

#'## Plot the layout

Trt.mat <- matrix(as.character(LSD.lay$Treatments), nrow=5, byrow=TRUE)

designPlot(Trt.mat, labels = levels(LSD.lay$Treatments)[1:5],

rtitle = "Row", ctitle = "Column",

chardivisor = 6, rchardivisor = 6, cchardivisor = 6,

blockdefinition = cbind(1,5), blocklinecolour = "blue")
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2.1.3 Check the properties of the designs

The properties of the designs can be investigated using designAnatomy.
Because these experiments involve a single randomization, they are two-tiered. That is, there are just two

sets of factors involved in the randomization. As we have seen, the first set of factors is the set of allocated
(treatment) factors and the second set is the set of recipient (unit) factors. Further there will be a set of projectors
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associated with each tier and designAnatomy is used to do an eigenanalysis of the relationships between the two
sets of projectors. The sets of projectors are specified to designAnatomy via model formulae, the formula for
the recipient factors coming first in the list of formulae.

For both the RCBD and LSD the two sets of factors are (i) {Rows,Columns} and (ii) {Treatments}. What
differs between the two designs is the nesting/crossing relationship between Rows and Columns and this will be
expressed in the formulae.

Use the commands given below to produce the anatomy for the RCBD and LSD that have been obtained.
Note that the ‘Mean’ source has been omitted from these tables. It can be included using the grandMean

argument for designAnatomy.

#'## Anatomy for the RCBD

RCBD.canon <- designAnatomy(formulae = list(unit = ~Rows/Columns,

trt = ~Treatments),

data = RCBD.lay)

summary(RCBD.canon)

##

##

## Summary table of the decomposition for unit & trt (based on adjusted quantities)

##

## Source.unit df1 Source.trt df2 aefficiency eefficiency order

## Rows 4

## Columns[Rows] 20 Treatments 4 1.0000 1.0000 1

## Residual 16

#'## Anatomy for the LSD

LSD.canon <- designAnatomy(formulae = list(unit = ~Rows*Columns,

trt = ~Treatments),

data = LSD.lay)

summary(LSD.canon)

##

##

## Summary table of the decomposition for unit & trt (based on adjusted quantities)

##

## Source.unit df1 Source.trt df2 aefficiency eefficiency order

## Rows 4

## Columns 4

## Rows#Columns 16 Treatments 4 1.0000 1.0000 1

## Residual 12

Get the mixed-model terms for the analysis by reruning the summary function with the label.swap argument
set to TRUE.

#'## Term-based anatomy for the RCBD

summary(RCBD.canon, label.swap = TRUE)

##

##

## Summary table of the decomposition for unit & trt (based on adjusted quantities)

##

## Source.unit df1 Source.trt df2 aefficiency eefficiency order

## Rows 4

## Columns[Rows] 20 Treatments 4 1.0000 1.0000 1

## Residual 16
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#'## Term-based anatomy for the LSD

summary(LSD.canon, label.swap = TRUE)

##

##

## Summary table of the decomposition for unit & trt (based on adjusted quantities)

##

## Source.unit df1 Source.trt df2 aefficiency eefficiency order

## Rows 4

## Columns 4

## Rows#Columns 16 Treatments 4 1.0000 1.0000 1

## Residual 12

2.1.4 Questions

1. With what unit term is Treatments confounded in these designs and what is the difference in the interpre-
tation of this term between the two different designs?

Treatments is confounded with the term Rows:Columns. For the RCBD, this term coresponds to the
source Columns[Rows], or Rows within Columns. For the LSD, this term corresponds to the source
Rows#Columns, or the interaction of Rows-and-Columns.

2. What would determine which of these two designs is used for a particular experiment?

In a discussion with the researcher, it needs to be determined whether overall Column differences can be
ruled out. If they can then the RCBD should be used; otherwise the LSD would be used.

2.2 Split-plot from Yates (1937)

Yates (1937) describes a split-plot experiment that investigates the effects of three varieties of oats and four levels
of Nitrogen fertilizer. The varieties are assigned to the main plots using a randomized complete block design with
6 blocks and the nitrogen levels are randomly assigned to the subplots in each main plot. The factor-allocation
diagram for the experiment is in Figure 3.
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	3 Variety

4 Nitrogen

�
�

�
�

6 Blocks
3 Wplots in B
4 Subplots in B, W

12 treatments 72 units

Figure 3: Factor-allocation diagram for an split-plot design: treatments are allocated to units; the arrows indicates that the factors
Variety and Nitrogen are randomized to Wplots and Subplots, respectively; Wplots in B indicates that the Wplots are considered
to be nested within Blocks for this randomization; Sunplots in B, W indicates that the Subplots are considered to be nested within
Blocks and Wplots for this randomization; B = Blocks, W = Wplots

2.2.1 Produce the randomized experimental layout

Use designRandomize (and fac.gen) to obtain a randomized layout for this experiment and then check its
properties, as illustrated in the following R code:

#'## Obtain the layout

spld.recip <- fac.gen(list(Blocks=6, Wplots=3, Subplots=4))

spld.nest <- list(Wplots = "Blocks",

Subplots = c("Wplots", "Blocks"))

spld.trt <- fac.gen(list(Variety=c("Victory","Golden Rain","Marvellous"),

Nitrogen=c(0,0.2,0.4,0.6)), times=6)
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spld.lay <- designRandomize(allocated = spld.trt,

recipient = spld.recip,

nested.recipients = spld.nest,

seed = 235805)

#'## Display design produced

spld.lay

## Blocks Wplots Subplots Variety Nitrogen

## 1 1 1 1 Marvellous 0.4

## 2 1 1 2 Marvellous 0

## 3 1 1 3 Marvellous 0.2

## 4 1 1 4 Marvellous 0.6

## 5 1 2 1 Victory 0

## 6 1 2 2 Victory 0.2

## 7 1 2 3 Victory 0.6

## 8 1 2 4 Victory 0.4

## 9 1 3 1 Golden Rain 0.2

## 10 1 3 2 Golden Rain 0.4

## 11 1 3 3 Golden Rain 0.6

## 12 1 3 4 Golden Rain 0

## 13 2 1 1 Marvellous 0.4

## 14 2 1 2 Marvellous 0.2

## 15 2 1 3 Marvellous 0

## 16 2 1 4 Marvellous 0.6

## 17 2 2 1 Victory 0.2

## 18 2 2 2 Victory 0

## 19 2 2 3 Victory 0.6

## 20 2 2 4 Victory 0.4

## 21 2 3 1 Golden Rain 0.6

## 22 2 3 2 Golden Rain 0.4

## 23 2 3 3 Golden Rain 0.2

## 24 2 3 4 Golden Rain 0

## 25 3 1 1 Golden Rain 0.2

## 26 3 1 2 Golden Rain 0.6

## 27 3 1 3 Golden Rain 0.4

## 28 3 1 4 Golden Rain 0

## 29 3 2 1 Marvellous 0.4

## 30 3 2 2 Marvellous 0.6

## 31 3 2 3 Marvellous 0

## 32 3 2 4 Marvellous 0.2

## 33 3 3 1 Victory 0.4

## 34 3 3 2 Victory 0.2

## 35 3 3 3 Victory 0

## 36 3 3 4 Victory 0.6

## 37 4 1 1 Marvellous 0

## 38 4 1 2 Marvellous 0.4

## 39 4 1 3 Marvellous 0.2

## 40 4 1 4 Marvellous 0.6

## 41 4 2 1 Golden Rain 0.2

## 42 4 2 2 Golden Rain 0.6

## 43 4 2 3 Golden Rain 0.4

## 44 4 2 4 Golden Rain 0

## 45 4 3 1 Victory 0.4

## 46 4 3 2 Victory 0
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## 47 4 3 3 Victory 0.6

## 48 4 3 4 Victory 0.2

## 49 5 1 1 Golden Rain 0.2

## 50 5 1 2 Golden Rain 0

## 51 5 1 3 Golden Rain 0.6

## 52 5 1 4 Golden Rain 0.4

## 53 5 2 1 Marvellous 0

## 54 5 2 2 Marvellous 0.2

## 55 5 2 3 Marvellous 0.6

## 56 5 2 4 Marvellous 0.4

## 57 5 3 1 Victory 0.4

## 58 5 3 2 Victory 0.2

## 59 5 3 3 Victory 0.6

## 60 5 3 4 Victory 0

## 61 6 1 1 Marvellous 0

## 62 6 1 2 Marvellous 0.6

## 63 6 1 3 Marvellous 0.4

## 64 6 1 4 Marvellous 0.2

## 65 6 2 1 Victory 0.4

## 66 6 2 2 Victory 0.2

## 67 6 2 3 Victory 0

## 68 6 2 4 Victory 0.6

## 69 6 3 1 Golden Rain 0.6

## 70 6 3 2 Golden Rain 0.2

## 71 6 3 3 Golden Rain 0.4

## 72 6 3 4 Golden Rain 0

#'## Check its properties

spld.canon <- designAnatomy(formulae = list(unit = ~Blocks/Wplots/Subplots,

trt = ~Variety*Nitrogen),

data = spld.lay)

summary(spld.canon, which.criteria = c("aeff", "order"))

##

##

## Summary table of the decomposition for unit & trt (based on adjusted quantities)

##

## Source.unit df1 Source.trt df2 aefficiency order

## Blocks 5

## Wplots[Blocks] 12 Variety 2 1.0000 1

## Residual 10

## Subplots[Blocks:Wplots] 54 Nitrogen 3 1.0000 1

## Variety#Nitrogen 6 1.0000 1

## Residual 45

The function fac.gen is from the package dae and generates the factors in the list in standard order with
the specified numbers of levels or the levels in supplied character or numeric vectors. Its use here is unneces-
sary, but it does illustrate that, besides a list, a data.frame can be supplied to the recipient argument of
designRandomize. The seed is specified to ensure that the same design is produced whenever designRandomize
is run with these arguments.

2.2.2 Analysis of variance (anova) for the Yields

After reading in the data, use the aov function to produce the anova as shown below. Note the use of the Error

function to produce two Residual lines, one each for Wplots and Subplots.
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#'## Read in data for actual experiment

data("Oats.dat")

#'## Analyse by anova

oats.aov <- aov(Yield ~ Nitrogen*Variety +

Error(Blocks/Wplots/Subplots), data=Oats.dat)

summary(oats.aov)

##

## Error: Blocks

## Df Sum Sq Mean Sq F value Pr(>F)

## Residuals 5 15875 3175

##

## Error: Blocks:Wplots

## Df Sum Sq Mean Sq F value Pr(>F)

## Variety 2 1786 893.2 1.485 0.272

## Residuals 10 6013 601.3

##

## Error: Blocks:Wplots:Subplots

## Df Sum Sq Mean Sq F value Pr(>F)

## Nitrogen 3 20020 6673 37.686 2.46e-12 ***

## Nitrogen:Variety 6 322 54 0.303 0.932

## Residuals 45 7969 177

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The anova table shown here is the same as the anatomy, but in a different format.

2.2.3 Questions

1. In what sense does this design involve a single randomization?

In the sense that the randomization of both Nitrogen and Variety can be achieved with a single permutation
of the units, the subplots.

2. A factorial RCBD would involve randomizing the 3 × 4 = 12 treatments to the 12 subplots within each
block. What has been achieved in using the split-plot design as compared to a factorial RCBD?

The precision of the Variety differences has been sacrified to increase the precision of the Nitrogen differ-
ences. This is the case because the Residual mean square for Blocks:Wplots is substantially larger than that
for Blocks:Wplots:Subplots. If a factorial RCBD had been used, the Residual mean square for Blocks:Plots
would be the weighted average of the two Residual mean squares from the split-plot experiment, the weight
being the Residual degrees of freedom. That is, the value of the Residual mean square for the factorial
RCBD would be between the values for the two Residual mean squares for the splot-plot design.

2.3 An environmental experiment

Suppose an environmental scientist wants to investigate the effect on the biomass of burning areas of natural
vegetation. There are available two areas separated by several kilometres for use in the investigation. It is only
possible to either burn or not burn an entire area. The area to be burnt is randomly selected and the other area
is to be left unburnt as a control. Further, 30 locations in each area are to be randomly sampled and the biomass
measured at each location. The factor-allocation diagram for the experiment is in Figure 4.

Obtain the randomized layout for this experiment and check its properties.

#'## Obtain the layout

Burn <- factor(rep(1:2, each=30))
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Figure 4: Factor-allocation diagram for the environmental experiment: treatments are allocated to locatiions; the arrow indicates
that the factor Burning is randomized to Areas; Locations in A indicates that the LOcations are considered to be nested within
Areas; A = Areas.

Burn.lay <- designRandomize(allocated = Burn,

recipient = list(Areas=2, Samples=30),

nested.recipients = list(Samples = "Areas"),

seed = 872159)

#'## Check its properties

Burn.canon <- designAnatomy(formulae = list(unit = ~Areas/Samples,

trt = ~Burn),

data = Burn.lay)

summary(Burn.canon)

##

##

## Summary table of the decomposition for unit & trt (based on adjusted quantities)

##

## Source.unit df1 Source.trt df2 aefficiency eefficiency order

## Areas 1 Burn 1 1.0000 1.0000 1

## Samples[Areas] 58

2.3.1 Questions

1. How is the pseudo-replication involved in this experiment manifested in the anatomy?

Because (i) Areas and Burn are alongside each other in the anova table, (ii) they both have 1 degree
of freedom, and (iii) the single canonical eficiency factor is one, then Areas and Burn are completely
confounded. That is, the pseudoreplication has resulted in differences between Areas and between Burns
being inextricably mixed up.

2. The randomization-based mixed model for the experiment is E[Y ] = Burn and Var[Y ] = Areas + Areas :
Samples. What difficulties do you anticipate in attempting to fit this model? How could the model be
modified so that a fit can be obtained? Brien and Demétrio (2009) call models formed by removing terms
to enable a fit to be achieved ‘models of convenience’. What dangers do you foresee in basing conclusions
on the fitted model?

There will be a singularity in the model because Areas is confounded with Burn. A fit could be obtained by
removing Areas from the random model. The problem is that a test of Burn would then be based on the
ratio of variability in Burn differences to an estimate of the variance of Samples-within-Areas variability.
This does not include Areas variability and so the denominator is likely to be underestimated; p-values
based from this test are likely to be too small and significant differences are more likely to be declared where
there are none as compared to when an estimate of Areas variability is included in the denominator of the
F -statistic.
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3 Single-allocation, nonorthogonal design in R

This class of experiments covers the nonorthogonal standard or textbook experiments.

3.1 Twenty treatments in an alpha design

The following table gives an alpha design for 20 treatments, taken from Williams et al. (2002, p.128). The design
has 3 replicates, each of which contains 5 blocks of 4 plots. It is a resolved design in that each replicate contains
a complete set of the treatments.

Table 1: Unrandomized alpha design for 20 treatments

1
Block 1 2 3 4 5

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

Replicate
2

1 2 3 4 5
1 2 3 4 5
7 8 9 10 6
13 14 15 11 12
19 20 16 17 18

3
1 2 3 4 5
1 2 3 4 5
8 9 10 6 7
15 11 12 13 14
17 18 19 20 16

The factor-allocation diagram for the experiment is in Figure 5.
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4 Plots in R, B
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Figure 5: Factor-allocation diagram for the alpha design: treatments are allocated to units; the arrow indicates that the allocation
is randomized; the ‘◦’ at the end of the arrow indicates that a nonorthogonal design is used; the two lines from ‘◦’ indicates that
the Treaments are allocated to the combinations of Blocks and Plots using the design; Blocks in R indicates that the Blocks are
considered to be nested within Reps for this randomization; Plots in R, B indicates that the Plots are considered to be nested within
Reps and Blocks for this randomization; R = Reps; B = Blocks.

3.1.1 Produce the randomized layout for the alpha design and check its properties

Use designRandomize to obtain the randomized layout and designAnatomy to check its properties.

#'## Obtain the layout

Treats <- factor(c(1:20,

1:5, 7:10,6, 13:15,11,12, 19,20,16:18,

1:5, 8:10,6,7, 15,11:14, 17:20,16))

# Note that Treatments has been entered by rows within a replicate

alpha.lay <- designRandomize(allocated = Treats,

recipient = list(Reps=3, Plots=4, Blocks=5),

nested.recipients = list(Blocks = "Reps",

Plots = c("Reps", "Blocks")),

seed = 918508)

alpha.lay <- with(alpha.lay, alpha.lay[order(Reps,Blocks,Plots), ])

#'## Check its properties

alpha.canon <- designAnatomy(formulae = list(units = ~Reps/Blocks/Plots,

trts = ~Treats),

which.criteria = "all",
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data = alpha.lay)

summary(alpha.canon, which.criteria = "all")

##

##

## Summary table of the decomposition for units & trts (based on adjusted quantities)

##

## Source.units df1 Source.trts df2 aefficiency eefficiency mefficiency sefficiency xefficiency

## Reps 2

## Blocks[Reps] 12 Treats 12 0.2778 0.1667 0.3333 0.0152 0.4167

## Plots[Reps:Blocks] 45 Treats 19 0.7447 0.5833 0.7895 0.0365 1.0000

## Residual 26

## order dforthog

##

## 2 0

## 3 7

##

##

## The design is not orthogonal

The summary table shows us a number of summary statistics calculated from the canonical efficiency factors.
They are:

aefficiency: the harmonic mean of the nonzero canonical efficiency factors.

mefficiency: the mean of the nonzero canonical efficiency factors.

eefficiency: the minimum of the nonzero canonical efficiency factors.

sefficiency: the variance of the nonzero canonical efficiency factors.

xefficiency: the maximum of the nonzero canonical efficiency factors.

order: the order of balance and is the number of unique nonzero canonical efficiency factors.

dforthog: the number of canonical efficiency factors that are equal to one.

For this example it can be seen that (i) an average 74.47%, as measured by the harmonic mean, or 78.95%,
as measured by the arithmetic mean, of the information about Treats is confounded with the differences between
plots within the reps-blocks combinations and (ii) there are 3 different efficiency factors associated with the 19
Treats degrees of freedom estimated from Reps:Blocks:Plots, the smallest of which is 0.5833 and 7 of which are
one. In this case, where the treatments are equally replicated, it can be concluded that the mean variance of a
normalized treatment contrast is inversely proportional to the harmonic mean of the canonical efficiency factors,
that is, to 0.7447.

Get the mixed-model terms for the analysis by reruning the summary function with the label.swap argument
set to TRUE.

#'## Obtain the terms for the design

summary(alpha.canon, which.criteria = "all", label.swap = TRUE)

##

##

## Summary table of the decomposition for units & trts (based on adjusted quantities)

##

## Source.units df1 Source.trts df2 aefficiency eefficiency mefficiency sefficiency xefficiency

## Reps 2

## Blocks[Reps] 12 Treats 12 0.2778 0.1667 0.3333 0.0152 0.4167
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## Plots[Reps:Blocks] 45 Treats 19 0.7447 0.5833 0.7895 0.0365 1.0000

## Residual 26

## order dforthog

##

## 2 0

## 3 7

##

##

## The design is not orthogonal

3.1.2 Questions

1. What is the randomization-based mixed model for this experiment?

The trts term (Source.trts) provides the fixed term and the units terms (Source.units) provide the random
terms. That is, Treats is assumed fixed and Reps, Blocks and Plots are assumed random. Hence, the
symbolic mixed model is E[Y ] = Treats and Var[Y ] = Reps + Reps:Blocks + Reps:Blocks:Plots.

2. In a mixed-model analysis, which unit terms might you fit as fixed terms? Why?

Reps is a definite candidate for the following reasons. Firstly, Reps has only two degrees of freedom and
it will be difficult to estimate a variance component for it. Secondly, one does not want to estimate Treats
from Reps (there is no Treat information between Reps).

3.2 Balanced incomplete block design from Joshi (1987)

Joshi (1987) gives an experiment to investigate six varieties of wheat that employs a balanced incomplete block
design with 10 blocks, each consisting of three plots. The factor-allocation diagram for the experiment is in
Figure 6.

�� ��6 Varieties
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Figure 6: Factor-allocation diagram for the balanced incomplete block design: treatments are allocated to units; the arrow indicates
that the allocation is randomized; the ‘◦’ at the end of the arrow indicates that a nonorthogonal design is used; the two lines from
‘◦’ indicates that the Varieties are allocated to the combinations of Blocks and Plots using the design; Plots in B indicates that
the Plots are considered to be nested within Blocks for this randomization; B = Blocks.

3.2.1 Input the Yields and check properties of the design

Use the following R code to input the data for the experiment and check its properties.

#'## Input the design and data

data("BIBDWheat.dat")

#'## Check the properties of the design

bibdwheat.canon <- designAnatomy(formulae = list(units = ~Blocks/Plots,

trts = ~Varieties),

data = BIBDWheat.dat)

summary(bibdwheat.canon)

##

##
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## Summary table of the decomposition for units & trts (based on adjusted quantities)

##

## Source.units df1 Source.trts df2 aefficiency eefficiency order

## Blocks 9 Varieties 5 0.2000 0.2000 1

## Residual 4

## Plots[Blocks] 20 Varieties 5 0.8000 0.8000 1

## Residual 15

##

## The design is not orthogonal

From this it is clear that 80% of the information about Varieties is available from the Block:Plots source;
that is, 80% of the Varieties information is confounded with differences between plots within blocks. Of course,
the remaining 20% is confounded with Blocks.

3.2.2 Anova for the Yields

#'## Perfom an anova

summary(aov(Yield ~ Varieties + Error(Blocks/Plots), data = BIBDWheat.dat))

##

## Error: Blocks

## Df Sum Sq Mean Sq F value Pr(>F)

## Varieties 5 196.6 39.32 0.582 0.718

## Residuals 4 270.4 67.59

##

## Error: Blocks:Plots

## Df Sum Sq Mean Sq F value Pr(>F)

## Varieties 5 1156.4 231.29 4.021 0.0163 *

## Residuals 15 862.9 57.53

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.3 A design with rows and columns from Williams (2002)

Williams et al. (2002, p.144) provides an example of a resolved, Latinized, row-column design with four rectangles
(blocks) each of six rows by ten columns. The experiment investigated differences between 60 provenances of
a species of Casuarina tree, these provenances coming from 18 countries; the trees were inoculated prior to
planting at two different times, time of inoculation being assigned to the four replicates so that each occurred in
two replicates. At 30 months, diameter at breast height (Dbh) was measured.

The factor-allocation diagram for the experiment is in Figure 7.�
�
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Figure 7: Factor-allocation diagram for the row-and-column design: treatments are allocated to units; the arrows indicates that
the allocations are randomized; the ‘◦’ at the end of the lower arrow indicates that a nonorthogonal design is used; the two lines
from ‘◦’ indicates that the Countries and Provenances are allocated to the combinations of Rows and Columns using the design;
Rows in B indicates that the Rows are considered to be nested within Blocks for this randomization; B = Blocks.
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3.3.1 Input the design and check the properties of the design

Use the following R code to input the design and check its properties.

#'## Input the design

data("Casuarina.dat")

#'## Check the properties of the design

Casuarina.canon <- designAnatomy(formulae = list(units = ~(Reps/Rows)*Columns,

trts = ~InocTime*(Countries+Provenances)),

data = Casuarina.dat)

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]

and Countries are partially aliased in Rows[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]

and Countries are partially aliased in Reps#Columns

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Countries and

Countries are partially aliased in Rows#Columns[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Countries and

Provenances[Countries] are partially aliased in Rows#Columns[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Provenances[Countries] are partially aliased in Rows#Columns[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and InocTime#Countries are partially aliased in Rows#Columns[Reps]

summary(Casuarina.canon, which = c("aeff", "eeff", "order", "dforth"))

##

##

## Summary table of the decomposition for units & trts (based on adjusted quantities)

##

## Source.units df1 Source.trts df2 aefficiency eefficiency order dforthog

## Reps 3 InocTime 1 1.0000 1.0000 1 1

## Residual 2

## Rows[Reps] 20 Countries 17 0.0145 0.0018 17 0

## Provenances[Countries] 3 0.1622 0.1326 3 0

## Columns 9 Countries 9 0.0137 0.0028 9 0

## Reps#Columns 27 Countries 17 0.0134 0.0012 17 0

## Provenances[Countries] 10 0.2320 0.1596 10 0

## Rows#Columns[Reps] 180 Countries 17 0.7611 0.5588 17 0

## Provenances[Countries] 42 0.6851 0.3429 42 0

## InocTime#Countries 17 0.6808 0.4735 17 0

## InocTime#Provenances[Countries] 42 0.5516 0.2009 42 0

## Residual 62

##

## Table of (partial) aliasing between sources derived from the same formula

##

## Source df Alias In aefficiency

## 1 Provenances[Countries] 3 Countries Rows[Reps] 0.1621520

## 2 Provenances[Countries] 10 Countries Reps#Columns 0.2319508

## 3 Provenances[Countries] 42 Countries Rows#Columns[Reps] 0.6851388

## 4 InocTime#Countries 17 Countries Rows#Columns[Reps] 0.6808388
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## 5 InocTime#Countries 17 Provenances[Countries] Rows#Columns[Reps] 0.6808388

## 6 InocTime#Provenances[Countries] 42 Countries Rows#Columns[Reps] 0.5516203

## 7 InocTime#Provenances[Countries] 42 Provenances[Countries] Rows#Columns[Reps] 0.5516203

## 8 InocTime#Provenances[Countries] 42 InocTime#Countries Rows#Columns[Reps] 0.5516203

## eefficiency order dforthog

## 1 0.1325981 3 0

## 2 0.1596326 10 0

## 3 0.3429479 42 0

## 4 0.4734970 17 0

## 5 0.4734970 17 0

## 6 0.2009237 42 0

## 7 0.2009237 42 0

## 8 0.2009237 42 0

##

## The design is not orthogonal

Firstly, note that designAnatomy has automatically detected that Provenances is nested within Countries,
even though Provenances has 60 unique levels: the sources for these two terms are Countries and Prove-
nances[Countries] and these have 17 and 42 degrees of freedom when estimated from Rows # Columns [Reps],
respectively. The total of these degrees of freedom is 59, one less than the number of Provenances, as expected.

Secondly, the partial aliasing evident in this design reflects a lack of (structure) balance between the treat-
ment sources within each units source. This is an undesirable, but unavoidable, feature of the design for this
experiment.
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4 Multiphase experiments in R

This class of experiments differs from those previously presented in that they often employ two or more random-
izations or allocations, each to a different type of unit. As a result, there will be three or more sets of factors,
or tiers, to deal with; further, when there are three sets of factors, three formula will need to be supplied to
designAnatomy.

4.1 Athletic examples based on Brien et al. (2011)

Brien et al. (2011) give several designs for an athletic experiment that illustrate the basic principles to be
employed in designing multiphase experiments. Here designs for three different scenarios are considered.

4.1.1 A standard single-phase athlete training experiment

First, a split-plot experiment in which the performance of an athlete when subject to nine different training
conditions is investigated. The nine training conditions are the combinations of three surfaces and three intensities
of training. Also, assume that the prime interest is in surface differences, with intensities included to observe
the surfaces over a range of intensities. The experiment is to involve 12 athletes, three per month for four
consecutive months; each athlete undergoes three tests. The heart rate of the athlete is to be taken immediately
upon completion of a test.

A split-plot design is to be employed for the experiment: the three intensities are randomized to the three
athletes in each month and the three surfaces are randomized to the three tests that each athlete is to undergo.
The randomization diagram is shown in Figure 8. Generate a randomized layout for the experiment.

Figure 8: Randomization diagram for the single-phase athlete training experiment

#'## Generate a layout for a standard athlete training experiment

eg1.lay <- designRandomize(allocated = fac.gen(list(Intensities = 3, Surfaces = 3),

times = 4),

recipient = list(Months = 4, Athletes = 3, Tests = 3),

nested.recipients = list(Athletes = "Months",

Tests = c("Months", "Athletes")),

seed = 2598)

eg1.lay

## Months Athletes Tests Intensities Surfaces

## 1 1 1 1 2 3

## 2 1 1 2 2 2

## 3 1 1 3 2 1

## 4 1 2 1 3 2

## 5 1 2 2 3 1

## 6 1 2 3 3 3

## 7 1 3 1 1 1

## 8 1 3 2 1 2

## 9 1 3 3 1 3

## 10 2 1 1 2 1

## 11 2 1 2 2 2
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## 12 2 1 3 2 3

## 13 2 2 1 1 3

## 14 2 2 2 1 2

## 15 2 2 3 1 1

## 16 2 3 1 3 1

## 17 2 3 2 3 3

## 18 2 3 3 3 2

## 19 3 1 1 2 1

## 20 3 1 2 2 3

## 21 3 1 3 2 2

## 22 3 2 1 3 2

## 23 3 2 2 3 3

## 24 3 2 3 3 1

## 25 3 3 1 1 2

## 26 3 3 2 1 3

## 27 3 3 3 1 1

## 28 4 1 1 1 3

## 29 4 1 2 1 2

## 30 4 1 3 1 1

## 31 4 2 1 2 1

## 32 4 2 2 2 2

## 33 4 2 3 2 3

## 34 4 3 1 3 1

## 35 4 3 2 3 3

## 36 4 3 3 3 2

#'## Check properties of the design

eg1.canon <- designAnatomy(formulae = list(tests = ~Months/Athletes/Tests,

cond = ~Intensities*Surfaces),

data = eg1.lay)

summary(eg1.canon, which.criteria="none")

##

##

## Summary table of the decomposition for tests & cond (based on adjusted quantities)

##

## Source.tests df1 Source.cond df2

## Months 3

## Athletes[Months] 8 Intensities 2

## Residual 6

## Tests[Months:Athletes] 24 Surfaces 2

## Intensities#Surfaces 4

## Residual 18

Question

1. Why was a split-plot design chosen for this experiment?

Because it is likely that differences between tests within an athlete will be smaller than differences between
athletes within a month. Hence, becasue the prime interest is in Surfaces, they are assigned to tests within
an athlete and will have better precision than Intensities, which have been assigned to the more variable
athletes within a month.
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4.1.2 A simple two-phase athlete training experiment

Suppose that, in addition to heart rate taken immediately upon completion of a test, the free haemoglobin is to
be measured using blood specimens taken from the athletes after each test and transported to the laboratory
for analysis. That is, a second laboratory phase is required to obtain the new response. In this phase, because
the specimens become available monthly, the batch of specimens for one month are to be processed, in a random
order, before those for the next month are available. The allocation diagram for this experiment is in Figure 9,
the dashed line indicating that Months are systematically allocated to Batches. The randomizations in this
diagram are composed (Brien and Bailey, 2006) and is one of the two types of randomizations in a chain (Bailey
and Brien, 2015). This means that the second-phase randomization only need to consider how the tests factors
are to be assigned to locations; training conditions can be ignored in determining the second-phase design.

Figure 9: Allocation diagram for the two-phase athlete training experiment

Using the following R code, obtain a layout for the second phase and check the properties of the layout. In
doing this, the first-phase layout is randomized. However, because Months is not randomized to Batches, the
argument except in designRandomize is used to effect the systematic allocation.

#'## Generate a layout for a simple two-phase athlete training experiment

#'## Phase 1 - the split-plot design that has already been generated.

#'## Phase 2 - randomize tests (and training conditions) to locations,

#'## but Months assigned systematicaly to Batches

#'## so except Batches from the randomization

eg2.lay <- designRandomize(allocated = eg1.lay,

recipient = list(Batches = 4, Locations = 9),

nested.recipients = list(Locations = "Batches"),

except = "Batches",

seed = 71230)

eg2.lay

## Batches Locations Months Athletes Tests Intensities Surfaces

## 1 1 1 1 2 3 3 3

## 2 1 2 1 1 2 2 2

## 3 1 3 1 2 2 3 1

## 4 1 4 1 3 1 1 1

## 5 1 5 1 3 2 1 2

## 6 1 6 1 1 1 2 3

## 7 1 7 1 2 1 3 2

## 8 1 8 1 1 3 2 1

## 9 1 9 1 3 3 1 3

## 10 2 1 2 3 1 3 1

## 11 2 2 2 2 2 1 2

## 12 2 3 2 1 3 2 3

## 13 2 4 2 1 2 2 2

## 14 2 5 2 3 2 3 3

## 15 2 6 2 2 1 1 3

## 16 2 7 2 2 3 1 1

## 17 2 8 2 3 3 3 2

## 18 2 9 2 1 1 2 1

21



## 19 3 1 3 1 1 2 1

## 20 3 2 3 3 1 1 2

## 21 3 3 3 2 3 3 1

## 22 3 4 3 2 2 3 3

## 23 3 5 3 2 1 3 2

## 24 3 6 3 3 3 1 1

## 25 3 7 3 3 2 1 3

## 26 3 8 3 1 2 2 3

## 27 3 9 3 1 3 2 2

## 28 4 1 4 2 3 2 3

## 29 4 2 4 2 1 2 1

## 30 4 3 4 1 1 1 3

## 31 4 4 4 1 2 1 2

## 32 4 5 4 1 3 1 1

## 33 4 6 4 3 1 3 1

## 34 4 7 4 2 2 2 2

## 35 4 8 4 3 2 3 3

## 36 4 9 4 3 3 3 2

#'## Check properties of the design

eg2.canon <- designAnatomy(formulae = list(locs = ~Batches/Locations,

tests = ~Months/Athletes/Tests,

cond = ~Intensities*Surfaces),

data = eg2.lay)

summary(eg2.canon, which.criteria="none")

##

##

## Summary table of the decomposition for locs, tests & cond (based on adjusted quantities)

##

## Source.locs df1 Source.tests df2 Source.cond df3

## Batches 3 Months 3

## Locations[Batches] 32 Athletes[Months] 8 Intensities 2

## Residual 6

## Tests[Months:Athletes] 24 Surfaces 2

## Intensities#Surfaces 4

## Residual 18

Questions

1. What would be the allocation-based mixed model for this experiment, an allocation-based mixed model
having the same terms as the randomization-based mixed model that would apply if all the allocations had
been made by randomizing. Do you anticipate any problem in fitting it?

The allocation-based mixed model is formed by treating all training-conditions factors as fixed and the
remaining factors as random. Hence, the symbolic mixed model is E[Y ] = Intensities+Surfaces+Intensities:
Surfaces and Var[Y ] = Months+Months:Athletes+Months:Athletes:Tests+Batches+Batches:Locations.
The problem in fitting it would be that Months and Batches are confounded so that the variance model is
singular.

2. Compare the units for the two phases in this experiment?

A unit in the first phase is a test conducted on an athlete in a particular month; in the second phase, a
unit is a location of a test within a batch. That is, the unit in the first phase is an athlete’s test and in the
second phase is a blood specimen in a lab location.

3. What are the outcomes for the two phases for this experiment?
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The outcome for the first phase is the heart rate for a test and a blood specimen from the test; the outcome
for the second phase, is the free haemglobin measured at a location.

4.1.3 Allowing for lab processing order in the athletic training example

This experiment differs from the last in the second phase: the second phase now requires a row-column design.
However, one cannot consider a design for just Months, Athletes and Tests and ignore Intensities and Surfaces,
as was done in the previous design. Indeed prime consideration needs to be given to Intensities and Surfaces.

Rosemary Bailey has manually constructed a design to assign two three-level factors to 4 rows × 9 columns,
such that the split-plot nature of the first phase design is retained. One begins by forming an incomplete block
design of 9 blocks each of 4 plots for two three-level treatment factors. Then this is converted to a row-column
design by using the algorithm associated with Hall’s Marriage Theorem (Bailey, 2008, Section 11.10) to rearrange
the treatments within a block so that there is a complete set of training conditions in each row. Finally, the
columns have to be rearranged into three groups to have the same number of each Intensity within a group of 3
Locations and rearrange the columns within the groups so that the order of the Surfaces within a Batch is the
same for all 3 groups of Locations. The systematic design is given in Table 2.

To complete the design for the experiment the Athletes and Tests in each Month have to be associated with
the Intensities and Surfaces combinations. For example, the Athlete for the first Month that was assigned level
1 of Intensities is associated with the first three combinations in the first row of Table 2; then the levels of Tests
for this Athlete is associated with the Surface levels according to which Surface was assigned to which Test in
the first phase. This is repeated for all combinations in the table.

If one considers how the Athletes are to be assigned to the combinations in Table 2, it is clear that there
will be a group of Athletes assigned to each group of three Locations. We could introduce a pseudofactor A1 for
Athletes that has level 1 for the 4 Athletes assigned to Locations 1–3, level 2 for those assigned to Locations 4–6
and level 3 for those assigned to Locations 7–9. This pseudofactor is confounded with Locations; that is, two of
the Months:Athletes degrees of freedom are confounded with Locations. However, the randomization does not
assign the levels of the pseudofactor to Locations groups and so it only needs to be included in the analysis if
one wants to separately identify it as a source there. It has not been included in what follows.

Table 2: Row-column design for assigning 3 Intensities × 3 Surfaces to 4 Batches × 9 Locations in the second-
phase of the two-phase athlete training experiment†

†The pair of numbers in a cell of the table is the Intensity level followed by the
Surfaces level to be be applied to the Batch-Location combination for that cell.

The allocation diagram, using this design, is in Figure 10. In this diagram, the training conditions and
tests panels are surrounded by a dashed rectangle and lines go from the training conditions sources to the lines
from the test sources. This indicates that the result of the allocation in the first phase needs to be explicitly
taken into account in the second-phase allocation. The randomization involved has been called a randomized-
inclusive randomization (Brien and Bailey, 2006) and is one of the two types of randomizations in a chain (Bailey
and Brien, 2015). Because Batches and Locations are crossed, the second phase randomization is achieved by
independently permuting the Batches and Locations.

Use the following R code to obtain a layout for the new second phase design.

#'## Generate systematic design proposed by RAB for Intensities and Surfaces

#'## It is based on two 3x3 mutually orthogonal Latin squares
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Figure 10: Allocation diagram for the two-phase athlete training experiment with a row-column design for the
second phase

#'## that are extended by adding fourth rows

ELS3x3 <- c(1:3, 1:3, 2,3,1, 3,1,2)

eg3.sys <- cbind(fac.gen(list(Batches = 4, Locations = 9)),

data.frame(Intensities = factor(rep(ELS3x3, each=3)),

Surfaces = factor(c(rep(c(2,3,1), 3), rep(c(3,1,2), 3),

rep(1:3, 6)))))

#'## Second phase design

#'## Generate a systematic layout for Months, Athletes, Tests, Intensities and Surfaces

eg3.sys$Months <- eg3.sys$Batches

eg3.sys <- merge(eg1.lay, eg3.sys) #merges on commmon factors Months, Intensities and Surfaces

eg3.sys <- with(eg3.sys, eg3.sys[order(Batches,Locations),])

eg3.sys <- eg3.sys[c("Months", "Athletes", "Tests", "Intensities", "Surfaces")]

#'## Allocate the second phase

eg3.lay <- designRandomize(allocated = eg3.sys,

recipient = list(Batches = 4, Locations = 9),

except = "Batches",

seed = 243526)

eg3.lay

## Batches Locations Months Athletes Tests Intensities Surfaces

## 1 1 1 1 3 3 1 3

## 2 1 2 1 2 3 3 3

## 3 1 3 1 3 1 1 1

## 4 1 4 1 2 1 3 2

## 5 1 5 1 3 2 1 2

## 6 1 6 1 1 1 2 3

## 7 1 7 1 2 2 3 1

## 8 1 8 1 1 2 2 2

## 9 1 9 1 1 3 2 1

## 10 2 1 2 2 3 1 1

## 11 2 2 2 3 1 3 1

## 12 2 3 2 2 2 1 2

## 13 2 4 2 3 2 3 3

## 14 2 5 2 2 1 1 3

## 15 2 6 2 1 1 2 1

## 16 2 7 2 3 3 3 2

## 17 2 8 2 1 3 2 3

## 18 2 9 2 1 2 2 2

## 19 3 1 3 1 3 2 2

## 20 3 2 3 3 1 1 2

## 21 3 3 3 1 2 2 3
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## 22 3 4 3 3 3 1 1

## 23 3 5 3 1 1 2 1

## 24 3 6 3 2 1 3 2

## 25 3 7 3 3 2 1 3

## 26 3 8 3 2 3 3 1

## 27 3 9 3 2 2 3 3

## 28 4 1 4 3 3 3 2

## 29 4 2 4 2 2 2 2

## 30 4 3 4 3 2 3 3

## 31 4 4 4 2 1 2 1

## 32 4 5 4 3 1 3 1

## 33 4 6 4 1 2 1 2

## 34 4 7 4 2 3 2 3

## 35 4 8 4 1 3 1 1

## 36 4 9 4 1 1 1 3

#'## Plot the layout - or see file that includes the output

A.mat <- matrix(as.character(eg3.lay$Athletes), nrow=4, byrow=TRUE)

comb.fac <- with(eg3.lay, fac.combine(list(AT = fac.combine(list(Athletes, Tests),

combine=TRUE, sep=","),

IS = fac.combine(list(Intensities, Surfaces),

combine=TRUE, sep=",")),

combine=TRUE, sep=" "))

comb.mat <- matrix(as.character(comb.fac), nrow=4, byrow=TRUE)

#Output the row and column labels

designPlot(A.mat, plotlabels = FALSE, rtitle = "Batches", ctitle = "Locations",

chardivisor = 6, rchardivisor = 6, cchardivisor = 6)

#Colour according to athlete

cell.colours <- c("lightcoral","lightcyan","lightgoldenrod")

for (i in 1:3)

designPlot(A.mat, labels=i, plotlabels = FALSE, cellfillcolour = cell.colours[i],

plotcellboundary = TRUE, new=FALSE,

chardivisor = 6, rchardivisor = 6, cchardivisor = 6)

#Add the Athletes, Tests, Intensities, Surfaces combinations

designPlot(comb.mat, new=FALSE, chardivisor = 6, rchardivisor = 4, cchardivisor = 4)

1

2

3

4

B
at

ch
es

Locations
1 2 3 4 5 6 7 8 9

3,3 1,3

2,3 1,1

1,3 2,2

3,3 3,2

3,3 3,2

3,3 3,2

3,3 3,2

2,3 3,32,3 3,3

3,1 3,1

3,1 3,1

3,1 3,1

3,1 3,1

3,1 1,23,1 1,2

2,2 2,22,2 2,2

3,1 1,13,1 1,13,1 1,1

2,2 1,22,2 1,22,2 1,2

1,2 2,31,2 2,31,2 2,3

3,2 3,3

3,2 3,3

3,2 3,3

3,2 3,3

2,1 3,2

2,1 3,2

2,1 3,2

2,1 3,23,3 1,13,3 1,13,3 1,13,3 1,1

2,1 2,12,1 2,12,1 2,12,1 2,1

3,2 1,23,2 1,23,2 1,23,2 1,23,2 1,2

2,1 1,32,1 1,32,1 1,32,1 1,32,1 1,3

1,1 2,1

1,1 2,1

1,1 2,1

1,1 2,1

1,1 2,31,1 2,31,1 2,31,1 2,31,1 2,31,1 2,3

1,2 1,21,2 1,21,2 1,21,2 1,21,2 1,21,2 1,2

2,2 3,12,2 3,12,2 3,12,2 3,12,2 3,12,2 3,12,2 3,1

3,2 1,33,2 1,33,2 1,33,2 1,33,2 1,33,2 1,33,2 1,3

2,3 2,32,3 2,32,3 2,32,3 2,32,3 2,32,3 2,32,3 2,3

1,2 2,2

1,2 2,2

1,2 2,2

1,2 2,21,3 2,31,3 2,31,3 2,31,3 2,31,3 2,31,3 2,31,3 2,31,3 2,3

2,3 3,12,3 3,12,3 3,12,3 3,12,3 3,12,3 3,12,3 3,12,3 3,1

1,3 1,11,3 1,11,3 1,11,3 1,11,3 1,11,3 1,11,3 1,11,3 1,1

1,3 2,11,3 2,11,3 2,11,3 2,11,3 2,11,3 2,11,3 2,11,3 2,11,3 2,1

2,2 3,32,2 3,32,2 3,32,2 3,32,2 3,32,2 3,32,2 3,32,2 3,32,2 3,3

1,1 1,31,1 1,31,1 1,31,1 1,31,1 1,31,1 1,31,1 1,31,1 1,31,1 1,3

Check the properties of the design.
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#'## Check properties of the design

eg3.canon <- designAnatomy(formulae = list(locs = ~Batches*Locations,

tests = ~Months/Athletes/Tests,

cond = ~Intensities*Surfaces),

data = eg3.lay)

summary(eg3.canon, which.criteria =c("aefficiency", "order"))

##

##

## Summary table of the decomposition for locs, tests & cond (based on adjusted quantities)

##

## Source.locs df1 Source.tests df2 Source.cond df3 aefficiency order

## Batches 3 Months 3 1.0000 1

## Locations 8 Athletes[Months] 2 Intensities 2 0.0625 1

## Tests[Months:Athletes] 6 Surfaces 2 0.0625 1

## Intensities#Surfaces 4 0.2500 1

## Batches#Locations 24 Athletes[Months] 6 Intensities 2 0.9375 1

## Residual 4 1.0000 1

## Tests[Months:Athletes] 18 Surfaces 2 0.9375 1

## Intensities#Surfaces 4 0.7500 1

## Residual 12 1.0000 1

##

## The design is not orthogonal

It is clear that Months:Athletes and Months:Athletes:Tests are not orthogonal to Locations and Batches:Locations,
because the former sources are confounded with both of the latter sources. To examine the nature of the
nonorthogonality, the anatomy for just the tests and locations tiers is obtained.

#"### Examine the nonorthogonality between locations and tests

eg3.locstests.canon <- designAnatomy(formulae = list(locs = ~Batches*Locations,

tests = ~Months/Athletes/Tests),

data = eg3.lay)

summary(eg3.locstests.canon, which.criteria =c("aefficiency", "order"))

##

##

## Summary table of the decomposition for locs & tests (based on adjusted quantities)

##

## Source.locs df1 Source.tests df2 aefficiency order

## Batches 3 Months 3 1.0000 1

## Locations 8 Athletes[Months] 2 1.0000 1

## Tests[Months:Athletes] 6 1.0000 1

## Batches#Locations 24 Athletes[Months] 6 1.0000 1

## Tests[Months:Athletes] 18 1.0000 1

Questions

1. What do you conclude about the confounding of Months:Athletes and Months:Athletes:Tests with Loca-
tions?

Since all efficiency factors are one, it is concluded that the 8 degrees of freedom for Months:Athletes has been
split into two orthogonal parts, one with 2 degrees of freedom which is confounded with Batches and the other
with 6 degrees of freedom which is confounded with Batches:Locations. The source Months:Athletes:Tests
has been similarly partitioned.
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2. Are the designs proposed for this experiment first-order balanced?

The design is first-order balanced, because the order of the efficiency factors is one for all confounded
sources.

3. What has been the cost of allowing for order of processing in the lab? Is the cost acceptable? Why?

The cost has been that some information about Months:Athletes, along with Intensities, and some infor-
mation about Months:Athletes:Tests, along with Surfaces and Intensities:Surfaces, has been confounded
with Locations. The cost is acceptable, because the amount of information lost on the main effects is only
6.25% and on the interaction is 25%. The latter will be recovered in a REML-based mixed model analy-
sis. However, the Resdiual degrees of freedom for Months:Athletes has been reduced from 6 to 4 and for
Months:Athletes:Tests from 18 to 14. While the latter is unlikely to be seriously deleterious, the former is
of concern.

4.2 McIntyre’s (1955) two-phase example

McIntyre (1955) reports an investigation of the effect of four light intensities on the synthesis of tobacco mosaic
virus in leaves of tobacco Nicotiana tabacum var. Hickory Pryor. It is a two-phase experiment: the first phase
is a treatment phase, in which the four light treatments are randomized to the tobacco leaves, and the second
phase is an assay phase, in which the tobacco leaves are randomized to the half-leaves of assay plants.

In the first phase, four successive leaves at defined positions on the stem were taken from each of eight plants
of comparable age and vigour that had been inoculated with the virus. Arbitrarily grouping the plants into two
sets of four, the four treatments were applied to the leaves, which had been separated from the plants and were
sustained by flotation on distilled water, in a Latin square design for each set with tobacco plants as columns
and leaf positions as rows; see Figure 12.

In the second phase, virus content of each tobacco leaf was assayed by expressing sap and inoculating half
leaves of the assay plants, Datura stramonium, on which countable lesions would appear. Lots of eight sap
samples were formed from pairs of tobacco plants, the pairs being comprised of a plant from each set in the
treatment phase. The eight samples from a lot were assigned to four assay plants using one of four 4× 4 Graeco-
Latin square designs, with the leaves from a single tobacco plant assigned using one of the alphabets and the
second tobacco plant using the other (see Figure 13). Actually, this design is a semi-Latin square (Bailey, 1992).

The randomization diagram for the experiment in Figure 11. Unfortunately, the randomization for this
experiment was not described by McIntyre (1955). Because there are multiple squares in both phases, there are
several possible randomizations depending on the effects anticipated as possible in the experiment. As shown by
the nesting relations in the randomization diagram, I have assumed that NicPlant is randomized within Sets and
Posn randomized across Sets. Similarly, I have assumed that DatPlant was randomized with Lot and AssPosn
across Lot. In the randomization diagram, N1 is a factor for the pairs of tobacco plants formed by taking a plant
from each set in the first phase.

Figure 11: Randomization diagram for McIntyre’s (1955) two-phase experiment
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Figure 12: Layout for the first phase of McIntyre’s (1955) experiment†

Nicotiana Plants
1 2 3 4 1 2 3 4

Leaf Leaf
Position Position

1 a b c d a b c d
1 5 9 13 17 21 25 29

2 b a d c c d a b
2 6 10 14 18 22 26 30

3 c d a b d c b a
3 7 11 15 19 23 27 31

4 d c b a b a d c
4 8 12 16 20 24 28 32

†The letter in each cell refers to the light intensity to be applied to the unit and the number to the
unit.

Figure 13: Layout for the second phase of McIntyre’s (1955) experiment†

Datura Plants
1 2 3 4 5 6 7 8

Assay Leaf Assay Leaf
Position Position

1 1 2 3 4 5 6 7 8
17 20 18 19 23 22 24 21

2 2 1 4 3 8 7 6 5
18 19 17 20 22 23 21 24

3 3 4 1 2 7 8 5 6
19 18 20 17 21 24 22 23

4 4 3 2 1 6 5 8 7
20 17 19 18 24 21 23 22

Datura Plants
9 10 11 12 13 14 15 16

Assay Leaf Assay Leaf
Position Position

1 9 10 11 12 13 14 15 16
28 25 27 26 30 31 29 32

2 10 9 12 11 16 15 14 13
27 26 28 25 31 30 32 29

3 11 12 9 10 15 16 13 14
26 27 25 28 32 29 31 30

4 12 11 10 9 14 13 16 15
25 28 26 27 29 32 30 31

†The numbers in the cell refer to the units from the first phase (tobacco leaves) to be assigned to the two
half-leaves of the assay plant; they are in standard order for Set, then NicPlant followed by Position.
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4.2.1 Check the properties of the randomized layout

Load the data and use designAnatomy to check the properties of the design.

#'## Load data

data("McIntyreTMV.dat")

#'## Check properties of the design

TMV.canon <- designAnatomy(formulae = list(assay = ~((Lot/DatPlant)*AssPosn)/HalfLeaf,

test = ~(Set/NicPlant)*Posn,

trt = ~Treat),

data=McIntyreTMV.dat)

summary(TMV.canon, which.criteria=c("aeff", "ord"))

##

##

## Summary table of the decomposition for assay, test & trt (based on adjusted quantities)

##

## Source.assay df1 Source.test df2 Source.trt df3 aefficiency order

## Lot 3 NicPlant[Set] 3 1.0000 1

## DatPlant[Lot] 12

## AssPosn 3

## Lot#AssPosn 9

## DatPlant#AssPosn[Lot] 36 Posn 3 0.5000 1

## Set#Posn 3 0.5000 1

## NicPlant#Posn[Set] 18 Treat 3 0.5000 1

## Residual 15 0.5000 1

## Residual 12

## HalfLeaf[Lot:DatPlant:AssPosn] 64 Set 1 1.0000 1

## NicPlant[Set] 3 1.0000 1

## Posn 3 0.5000 1

## Set#Posn 3 0.5000 1

## NicPlant#Posn[Set] 18 Treat 3 0.5000 1

## Residual 15 0.5000 1

## Residual 36

##

## The design is not orthogonal

4.2.2 Questions

1. Is the variance matrix for this experiment based on two sets of terms that are orthogonal?

The variance matrix for this experiment is based on the factors in the tobacco leaves and Datura half-leaves
tiers. The terms derived from the factors in these two tiers are not orthogonal. In particular, Set:Posn and
Set:NicPlant:Posn are partially confounded with both Lot:DatPlant:AssPosn and
Lot:DatPlant:AssPosn:HalfLeaf.

2. What are the advantages and disadvantages of a mixed -model analysis of the data from this experiment,
as opposed to an anova?

The advantage of a mixed-model analysis is that combined estimates will be provided for Set:Posn,
Set:NicPlant:Posn, and Treat. The disadvantages are (i) that not all random terms are well-estimated,
some having small degrees of freedom, and cause problems in fitting the model, and (ii) the Wald F -statistics
are only approximately distributed as F -distributions. On the other hand, an anova is not applicable because
of the nonorthogonality between the sets of terms making up the variance matrix; at least some F -ratios
will not be independently distributed.
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4.3 A Plant Accelerator experiment with a split-plot design

This experiment involves the investigation of 75 wheat lines, of which 73 are Nested Association Mapping (NAM)
wheat lines and the other two are two check lines, Scout and Gladius. It was conducted in 2014 in the Plant
Accelerator, a facility in Adelaide with 4 Smarthouses. A Smarthouse is a large greenhouse with two areas within
it: (i) a Table area at the southern end and (ii) a Conveyor area at the northern end — see Figure 14. The
conveyor system has the capability of automatically moving and imaging around 500 pots per day. There are air
conditioners placed down the western side of the Smarthouse, which creates a trend from west to east. Further,
there is a north-south trend due to changes in light intensity (Brien et al., 2013).

The experiment involves two phases: the table and conveyor phases. The table phase is the establishment
phase in which plants are germinated in pots on the tables where they undergo an early growth stage. In the
conveyor phase, having placed the pots in carts on the conveyor system, the plants are automatically imaged
and watered daily, being moved to a processing station by the conveyor system for this.

This experiment has a single plant per pot and these will be arranged in a 24 × 22 grid in both phases: 24
columns × 22 locations in the table phase and 24 lanes × 22 (2–23) positions, as shown in Figure 14. However,
the 24 columns in the table phase run east-west and the 24 lanes in the conveyor phase run north-south. Because
there are systematic trends in both phases to be accounted for in the analysis, the same layout will be used
in both phases, but the table layout will be rotated clockwise through 90◦. That is, Locations 1–22 will be in
Positions 2–23, respectively, and the Column will be placed in the Lane with the same number.

Figure 14: Schematic of Smarthouse for the Plant Accelerator experiment

The design employed for the experiment is a split-plot design in which two consecutive pots/carts form a
main plot. The main-plot design uses a blocked design with rows and columns generated with DiGGer (Coombes,
2009). It assigns Lines to main plots, the Lines being unequally replicated; Scout and Gladius each occur on 12
main plots (24 carts), 21 randomly-selected NAM lines each occur on 4 main plots (8 carts) and the remaining
52 NAM lines each occur on 3 main plots (6 carts). The subplot design merely randomizes Conditions (0 mM
NaCl, 100 mM NaCl) to the two carts in each main plot.

In the main-plot design, the blocks are, in the table phase, 6 Groups of 4 Columns and, in the conveyor
phase, 6 Zones of 4 Rows (lanes). However, while the generated design is based on crossed rows and columns, it
is known from past experience that, while there are differences between Zones, there are not differences between
Rows within Zones (Brien et al., 2013) and none are anticipated between Columns within Groups on the tables.
The columns of the main-plot design are indexed by 11 Pairs in the table phase and 11 MainPosns in the
conveyor phase. The design generated with DiGGer (Coombes, 2009) will be rerandomized so that the Lines are
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randomized to 4 Columns within each Groups-Pairs combination and the 11 sets of Lines assigned by DiGGer to
the 11 Pairs will be rerandomized to Pairs. The allocation diagram is shown in Figure 15.

Figure 15: Allocation diagram for the Plant Accelerator experiment

4.3.1 Produce the layout

Use the following instructions to load the main-plot design produce with DiGGer and check its properties using
designAnatomy.

#'## Load the main-plot design - it has Lines in row-column order

data("Exp249.mplot.des")

Exp249.mplot.des$Blocks <- factor(rep(1:6, each = 44))

#'## Check its properties

Exp249.mplot.canon <- designAnatomy(formulae = list(cart = ~(Blocks/Rows)*Cols,

treat = ~Lines),

data = Exp249.mplot.des)

summary(Exp249.mplot.canon)

##

##

## Summary table of the decomposition for cart & treat (based on adjusted quantities)

##

## Source.cart df1 Source.treat df2 aefficiency eefficiency order

## Blocks 5 Lines 5 0.1498 0.1422 5

## Rows[Blocks] 18 Lines 18 0.2685 0.1813 18

## Cols 10 Lines 10 0.2102 0.1769 10

## Blocks#Cols 50 Lines 50 0.1154 0.0142 50

## Rows#Cols[Blocks] 180 Lines 74 0.5816 0.2088 74

## Residual 106

##

## The design is not orthogonal

Expand main-plot design to produce the split-plot design, including a three-level factor Checks that compares
Scout, Gladius and the mean of the NAM lines. Perhaps, produce a plot of the allocation of the Lines.

#'## Expand design to rerandomize lines and to assign conditions to locations

Exp249.recip <- list(Groups = 6, Columns = 4, Pairs = 11, Locations = 2)

Exp249.nest <- list(Columns = c("Groups", "Pairs"),

Locations = c("Groups", "Columns", "Pairs"))

Exp249.alloc <- data.frame(Lines = factor(rep(Exp249.mplot.des$Lines, each=2),

levels=1:75),

Checks = fac.recode(rep(Exp249.mplot.des$Lines, each=2),

newlevels=c(rep(3, 73), 1 , 2),

labels = c("NAM","Scout","Gladius")),

Conditions = factor(rep(1:2, times=264),

labels = c('0 NaCl','100 NaCl')))
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Exp249.lay <- designRandomize(allocated = Exp249.alloc,

recipient = Exp249.recip,

nested.recipients = Exp249.nest,

seed = 51412)

#'## Add second-phase factors

#'## (to which the first-phase factors have been systematically allocated)

Exp249.lay <- cbind(fac.gen(list(Lanes = 24, Positions = 2:23)),

fac.gen(list(Zones = 6, Rows = 4, MainPosn = 11, Subplots = 2)),

Exp249.lay)

#'## Plot the assignment of Lines in the second-phase design - or see file that includes the output

SPL.Line.mat <- matrix(as.numfac(Exp249.lay$Lines), ncol=22, byrow=T)

colnames(SPL.Line.mat) <- 2:23

rownames(SPL.Line.mat) <- 1:24

SPL.Line.mat <- SPL.Line.mat[24:1, 22:1]

designPlot(SPL.Line.mat, labels = 1:21, cellfillcolour = "lightblue", new=TRUE,

plotlabels = TRUE, rtitle = "Lanes", ctitle = "Positions",

chardivisor = 4, rchardivisor = 3, cchardivisor = 3, plotcellboundary = TRUE)

designPlot(SPL.Line.mat, labels = 22:73, cellfillcolour = "grey", new=FALSE,

plotlabels = TRUE, chardivisor = 4, rchardivisor = 3, cchardivisor = 3,

plotcellboundary = TRUE)

designPlot(SPL.Line.mat, labels = 74:75, cellfillcolour = "lightgreen", new=FALSE,

plotlabels = TRUE, chardivisor = 4, rchardivisor = 3, cchardivisor = 3,

plotcellboundary = TRUE,

blocksequence = TRUE, blockdefinition = cbind(4,22),

blocklinewidth = 3, blocklinecolour = "blue")
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4.3.2 Check the properties of the design

The maximal allocation-based mixed model is E[Y] = (Checks + Lines) * Conditions, with Checks nested within
Lines, and var[Y] = (Zones * MainPosn) / Rows / Subplots + (Groups * Pairs) / Columns / Locations. Use the
designAnatomy to check the properties of the design for an analysis of data from an experiment based on this
design.

#'## Check design properties

Exp249.canon <- designAnatomy(formulae = list(carts = ~(Zones*MainPosn)/Rows/Subplots,

tables = ~(Groups*Pairs)/Columns/Locations,

treats = ~(Checks + Lines) * Conditions),

data = Exp249.lay)

33



## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in MainPosn&Pairs

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Zones#MainPosn&Groups#Pairs

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Rows[Zones:MainPosn]&Columns[Groups:Pairs]

summary(Exp249.canon)

##

##

## Summary table of the decomposition for carts, tables & treats (based on adjusted quantities)

##

## Source.carts df1 Source.tables df2 Source.treats df3

## Zones 5 Groups 5 Lines[Checks] 5

## MainPosn 10 Pairs 10 Checks 2

## Lines[Checks] 8

## Zones#MainPosn 50 Groups#Pairs 50 Checks 2

## Lines[Checks] 48

## Rows[Zones:MainPosn] 198 Columns[Groups:Pairs] 198 Checks 2

## Lines[Checks] 72

## Residual 124

## Subplots[Zones:MainPosn:Rows] 264 Locations[Groups:Pairs:Columns] 264 Conditions 1

## Checks#Conditions 2

## Lines#Conditions[Checks] 72

## Residual 189

## aefficiency eefficiency order

## 0.1498 0.1422 5

## 0.0033 0.0031 2

## 0.2094 0.1809 8

## 0.2111 0.2049 2

## 0.1142 0.0145 48

## 0.7854 0.7792 2

## 0.6640 0.2632 66

## 1.0000 1.0000 1

## 1.0000 1.0000 1

## 1.0000 1.0000 1

## 1.0000 1.0000 1

## 1.0000 1.0000 1

##

## Table of (partial) aliasing between sources derived from the same formula

##

## Source df Alias In aefficiency eefficiency order

## 1 Lines[Checks] 8 Checks MainPosn&Pairs 0.2094430 0.18086639 8

## 2 Lines[Checks] 48 Checks Zones#MainPosn&Groups#Pairs 0.1142173 0.01449789 48

## 3 Lines[Checks] 72 Checks Rows[Zones:MainPosn]&Columns[Groups:Pairs] 0.6639769 0.26323582 66

##

## The design is not orthogonal

Because, there is a one-to-one correspondence between the tables and carts sources, omit the tables formula
and rerun — it will make the anova table more readable.

#'## Check design properties, with tables omitted

Exp249.canon <- designAnatomy(formulae = list(carts = ~(Zones*MainPosn)/Rows/Subplots,
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treats = ~(Checks + Lines) * Conditions),

data = Exp249.lay)

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in MainPosn

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Zones#MainPosn

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Rows[Zones:MainPosn]

summary(Exp249.canon)

##

##

## Summary table of the decomposition for carts & treats (based on adjusted quantities)

##

## Source.carts df1 Source.treats df2 aefficiency eefficiency order

## Zones 5 Lines[Checks] 5 0.1498 0.1422 5

## MainPosn 10 Checks 2 0.0033 0.0031 2

## Lines[Checks] 8 0.2094 0.1809 8

## Zones#MainPosn 50 Checks 2 0.2111 0.2049 2

## Lines[Checks] 48 0.1142 0.0145 48

## Rows[Zones:MainPosn] 198 Checks 2 0.7854 0.7792 2

## Lines[Checks] 72 0.6640 0.2632 66

## Residual 124

## Subplots[Zones:MainPosn:Rows] 264 Conditions 1 1.0000 1.0000 1

## Checks#Conditions 2 1.0000 1.0000 1

## Lines#Conditions[Checks] 72 1.0000 1.0000 1

## Residual 189

##

## Table of (partial) aliasing between sources derived from the same formula

##

## Source df Alias In aefficiency eefficiency order

## 1 Lines[Checks] 8 Checks MainPosn 0.2094430 0.18086639 8

## 2 Lines[Checks] 48 Checks Zones#MainPosn 0.1142173 0.01449789 48

## 3 Lines[Checks] 72 Checks Rows[Zones:MainPosn] 0.6639769 0.26323582 66

##

## The design is not orthogonal

4.3.3 Examine the properties of the design for an alternative analysis

However, rather than fit the allocation-based model, because it is known from past experience that once a linear
trend for MainPosn has been fitted there are no deviations from this trend, the term xMainPosn is used to fit
the trend; the term xMainPosn is a centred, linear covariate for MainPosn. Use the designAnatomy to check the
properties of the design for an analysis based on a modified model, in which MainPosn in the random model has
been replaced by xMainPosn in the fixed model, Zones:MainPosn has been omitted and Zones:MainPosn:Rows
has been replaced by Zones:Mainplots.

#'## Add factors and variates for new analysis

Exp249.lay <- within(Exp249.lay,

{ xMainPosn <- as.numfac(MainPosn)

xMainPosn <- -(xMainPosn - mean(xMainPosn))

Mainplots <- fac.combine(list(Rows,MainPosn))

})
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head(Exp249.lay)

## Lanes Positions Zones Rows MainPosn Subplots Groups Columns Pairs Locations Lines Checks

## 1 1 2 1 1 1 1 1 1 1 1 3 Gladius

## 2 1 3 1 1 1 2 1 1 1 2 3 Gladius

## 3 1 4 1 1 2 1 1 1 2 1 74 NAM

## 4 1 5 1 1 2 2 1 1 2 2 74 NAM

## 5 1 6 1 1 3 1 1 1 3 1 1 Gladius

## 6 1 7 1 1 3 2 1 1 3 2 1 Gladius

## Conditions Mainplots xMainPosn

## 1 100 NaCl 1 5

## 2 0 NaCl 1 5

## 3 100 NaCl 2 4

## 4 0 NaCl 2 4

## 5 100 NaCl 3 3

## 6 0 NaCl 3 3

#'## Check properties if only linear trend fitted

Exp249.canon <- designAnatomy(formulae = list(cart = ~ Zones/Mainplots/Subplots,

treat = ~ xMainPosn +

(Checks + Lines) * Conditions),

data = Exp249.lay)

summary(Exp249.canon)

##

##

## Summary table of the decomposition for cart & treat (based on adjusted quantities)

##

## Source.cart df1 Source.treat df2 aefficiency eefficiency order

## Zones 5 Lines[Checks] 5 0.1500 0.1426 5

## Mainplots[Zones] 258 xMainPosn 1 1.0000 1.0000 1

## Checks 2 1.0000 1.0000 1

## Lines[Checks] 72 0.9879 0.8437 6

## Residual 183

## Subplots[Zones:Mainplots] 264 Conditions 1 1.0000 1.0000 1

## Checks#Conditions 2 1.0000 1.0000 1

## Lines#Conditions[Checks] 72 1.0000 1.0000 1

## Residual 189

##

## Table of (partial) aliasing between sources derived from the same formula

##

## Source df Alias In aefficiency eefficiency order

## 1 Checks 2 xMainPosn treat 0.9994947 0.9989899 2

## 2 Lines[Checks] 74 xMainPosn treat 0.9963140 0.7850694 2

## 3 Checks#Conditions 5 xMainPosn treat 0.9997978 0.9989899 2

## 4 Lines#Conditions[Checks] 149 xMainPosn treat 0.9981660 0.7850694 2

##

## The design is not orthogonal

The Table of (partial) aliasing shows that all treat- sources are partially aliased with \verbxMainPosn=,
although they are not far from being orthogonal.

We have been able to check what information is available about Lines and Conditions after adjustment for
the linear trend. In practice, a spline term might be needed to account for nonlinearity in the trend.
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4.3.4 Questions

1. What advantages accrue from randomizing Lines within Groups:Pairs (Zones:MainPosn) as compared to
the original DiGGer design, in which they are randomized to Columns within Groups (Lanes within Zones)
and to Pairs (MainPosn)?

The anatomy for the DiGGer design shows us that all 74 degrees of freedom are estimable in
Blocks:Rows:Columns with average efficiency 0.582 and minimum efficiency 0.209. Compared to this, the
anatomy for the rerandomized design show that the NAM lines are estimable from Zones:MainPosn:Rows,
the source equivalent to Blocks:Rows:Columns, with average efficiency 0.664 and minimum efficiency 0.263.
Also, the Residual degrees of freedom for Blocks:Rows:Columns have increased from 106 degrees of freedom
in the original design to 124 degrees of freedom for Zones:MainPosn:Rows in the rerandomized design.
That is, one can expect the estimation of the Lines predictions and their standard errors to be more precise
for the rerandomized design.

2. What effect does the use of a linear trend, as opposed to a set of effects, have on the analysis?

The efficiency for Lines has increased further so that the minimum is now 0.844 and the Residual degrees
of freedom for Zones:MainPosn:Rows now stands at 183. This allows one to consider ignoring information
not estimable from Zones:MainPosn:Rows, while predictions will be adjusted for the trend across MainPosn.

4.4 Two-phase, wheat experiment with 49 lines

The first, or field, phase of a wheat trial for 49 lines is laid out as an RCBD with four blocks. The produce
from the field trial is processed in the second, or laboratory, phase and the design employed is a balanced lattice
square for 49 treatments that involves 4 replicates each consisting of a 7 × 7 square. In the laboratory phase
there are four intervals each of which consists of 7 runs of a machine. In a run, samples are processed at seven
consecutive times. This experiment is Example 2.2 from Bailey and Brien (2015), where its anova with expected
mean squares is given. Its randomization diagram is in Figure 16.

Figure 16: Randomization diagram for the two-phase wheat variety experiment

4.4.1 Produce randomized layout for both phases and check its properties

#'## Generate a layout for the field phase

Lines <- factor(rep(1:49, times=4))

field.lay <- designRandomize(allocated = Lines,

recipient = list(Blocks = 4, Plots = 49),

nested.recipients = list(Plots = "Blocks"),

seed = 82522)

field.lay

## Blocks Plots Lines

## 1 1 1 48

## 2 1 2 10

## 3 1 3 23
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## 4 1 4 31

## 5 1 5 36

## 6 1 6 11

## 7 1 7 18

## 8 1 8 40

## 9 1 9 12

## 10 1 10 43

## 11 1 11 30

## 12 1 12 7

## 13 1 13 29

## 14 1 14 20

## 15 1 15 46

## 16 1 16 28

## 17 1 17 37

## 18 1 18 21

## 19 1 19 34

## 20 1 20 4

## 21 1 21 24

## 22 1 22 32

## 23 1 23 41

## 24 1 24 6

## 25 1 25 38

## 26 1 26 45

## 27 1 27 22

## 28 1 28 42

## 29 1 29 19

## 30 1 30 2

## 31 1 31 33

## 32 1 32 13

## 33 1 33 9

## 34 1 34 15

## 35 1 35 5

## 36 1 36 16

## 37 1 37 35

## 38 1 38 8

## 39 1 39 49

## 40 1 40 1

## 41 1 41 3

## 42 1 42 39

## 43 1 43 26

## 44 1 44 14

## 45 1 45 27

## 46 1 46 17

## 47 1 47 44

## 48 1 48 25

## 49 1 49 47

## 50 2 1 35

## 51 2 2 21

## 52 2 3 11

## 53 2 4 42

## 54 2 5 44

## 55 2 6 19

## 56 2 7 29
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## 57 2 8 45

## 58 2 9 13

## 59 2 10 49

## 60 2 11 30

## 61 2 12 18

## 62 2 13 37

## 63 2 14 23

## 64 2 15 16

## 65 2 16 22

## 66 2 17 14

## 67 2 18 12

## 68 2 19 6

## 69 2 20 41

## 70 2 21 28

## 71 2 22 9

## 72 2 23 17

## 73 2 24 5

## 74 2 25 31

## 75 2 26 40

## 76 2 27 4

## 77 2 28 32

## 78 2 29 1

## 79 2 30 43

## 80 2 31 2

## 81 2 32 48

## 82 2 33 38

## 83 2 34 27

## 84 2 35 39

## 85 2 36 26

## 86 2 37 46

## 87 2 38 3

## 88 2 39 8

## 89 2 40 15

## 90 2 41 10

## 91 2 42 24

## 92 2 43 36

## 93 2 44 25

## 94 2 45 34

## 95 2 46 47

## 96 2 47 33

## 97 2 48 7

## 98 2 49 20

## 99 3 1 8

## 100 3 2 23

## 101 3 3 40

## 102 3 4 16

## 103 3 5 13

## 104 3 6 7

## 105 3 7 1

## 106 3 8 26

## 107 3 9 15

## 108 3 10 6

## 109 3 11 14
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## 110 3 12 4

## 111 3 13 28

## 112 3 14 30

## 113 3 15 25

## 114 3 16 31

## 115 3 17 12

## 116 3 18 19

## 117 3 19 20

## 118 3 20 39

## 119 3 21 3

## 120 3 22 42

## 121 3 23 38

## 122 3 24 17

## 123 3 25 10

## 124 3 26 46

## 125 3 27 34

## 126 3 28 35

## 127 3 29 29

## 128 3 30 44

## 129 3 31 18

## 130 3 32 24

## 131 3 33 21

## 132 3 34 47

## 133 3 35 22

## 134 3 36 33

## 135 3 37 41

## 136 3 38 2

## 137 3 39 9

## 138 3 40 48

## 139 3 41 5

## 140 3 42 37

## 141 3 43 43

## 142 3 44 32

## 143 3 45 49

## 144 3 46 45

## 145 3 47 27

## 146 3 48 36

## 147 3 49 11

## 148 4 1 24

## 149 4 2 40

## 150 4 3 39

## 151 4 4 28

## 152 4 5 46

## 153 4 6 20

## 154 4 7 11

## 155 4 8 10

## 156 4 9 36

## 157 4 10 33

## 158 4 11 18

## 159 4 12 12

## 160 4 13 9

## 161 4 14 38

## 162 4 15 43
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## 163 4 16 42

## 164 4 17 23

## 165 4 18 6

## 166 4 19 13

## 167 4 20 14

## 168 4 21 29

## 169 4 22 4

## 170 4 23 19

## 171 4 24 30

## 172 4 25 2

## 173 4 26 44

## 174 4 27 26

## 175 4 28 35

## 176 4 29 17

## 177 4 30 7

## 178 4 31 32

## 179 4 32 37

## 180 4 33 31

## 181 4 34 8

## 182 4 35 21

## 183 4 36 25

## 184 4 37 15

## 185 4 38 34

## 186 4 39 48

## 187 4 40 27

## 188 4 41 1

## 189 4 42 16

## 190 4 43 49

## 191 4 44 41

## 192 4 45 22

## 193 4 46 3

## 194 4 47 5

## 195 4 48 45

## 196 4 49 47

#'## Generate laboratory phase

#'### Load a systematic balanced lattice square

data("LatticeSquare_t49.des")

#'### Form systematic design

#'### Add Intervals to field layout, merge the data frames and sort into lab phase order

field.lay$Intervals <- field.lay$Blocks

lab.alloc <- merge(LatticeSquare_t49.des, field.lay)

lab.alloc <- with(lab.alloc, lab.alloc[order(Intervals, Runs,Times),])

lab.alloc <- lab.alloc[c("Blocks","Plots","Lines")] #Reduce columns in lab.alloc

#'### Randomize the design

lab.lay <- designRandomize(allocated = lab.alloc,

recipient = list(Intervals = 4, Runs = 7, Times = 7),

nested.recipients = list(Runs = "Intervals",

Times = "Intervals"),

seed = 141797)

lab.lay

## Intervals Runs Times Blocks Plots Lines

## 1 1 1 1 4 41 1
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## 2 1 1 2 4 43 49

## 3 1 1 3 4 36 25

## 4 1 1 4 4 13 9

## 5 1 1 5 4 10 33

## 6 1 1 6 4 44 41

## 7 1 1 7 4 29 17

## 8 1 2 1 4 5 46

## 9 1 2 2 4 14 38

## 10 1 2 3 4 35 21

## 11 1 2 4 4 47 5

## 12 1 2 5 4 45 22

## 13 1 2 6 4 24 30

## 14 1 2 7 4 19 13

## 15 1 3 1 4 33 31

## 16 1 3 2 4 17 23

## 17 1 3 3 4 18 6

## 18 1 3 4 4 3 39

## 19 1 3 5 4 20 14

## 20 1 3 6 4 37 15

## 21 1 3 7 4 49 47

## 22 1 4 1 4 40 27

## 23 1 4 2 4 23 19

## 24 1 4 3 4 26 44

## 25 1 4 4 4 28 35

## 26 1 4 5 4 46 3

## 27 1 4 6 4 7 11

## 28 1 4 7 4 9 36

## 29 1 5 1 4 42 16

## 30 1 5 2 4 34 8

## 31 1 5 3 4 2 40

## 32 1 5 4 4 1 24

## 33 1 5 5 4 39 48

## 34 1 5 6 4 30 7

## 35 1 5 7 4 31 32

## 36 1 6 1 4 12 12

## 37 1 6 2 4 22 4

## 38 1 6 3 4 21 29

## 39 1 6 4 4 6 20

## 40 1 6 5 4 32 37

## 41 1 6 6 4 48 45

## 42 1 6 7 4 4 28

## 43 1 7 1 4 16 42

## 44 1 7 2 4 38 34

## 45 1 7 3 4 8 10

## 46 1 7 4 4 15 43

## 47 1 7 5 4 11 18

## 48 1 7 6 4 27 26

## 49 1 7 7 4 25 2

## 50 2 1 1 2 23 17

## 51 2 1 2 2 26 40

## 52 2 1 3 2 34 27

## 53 2 1 4 2 17 14

## 54 2 1 5 2 30 43
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## 55 2 1 6 2 27 4

## 56 2 1 7 2 11 30

## 57 2 2 1 2 4 42

## 58 2 2 2 2 22 9

## 59 2 2 3 2 8 45

## 60 2 2 4 2 28 32

## 61 2 2 5 2 6 19

## 62 2 2 6 2 16 22

## 63 2 2 7 2 19 6

## 64 2 3 1 2 7 29

## 65 2 3 2 2 38 3

## 66 2 3 3 2 35 39

## 67 2 3 4 2 36 26

## 68 2 3 5 2 9 13

## 69 2 3 6 2 15 16

## 70 2 3 7 2 10 49

## 71 2 4 1 2 32 48

## 72 2 4 2 2 40 15

## 73 2 4 3 2 31 2

## 74 2 4 4 2 33 38

## 75 2 4 5 2 44 25

## 76 2 4 6 2 1 35

## 77 2 4 7 2 18 12

## 78 2 5 1 2 3 11

## 79 2 5 2 2 45 34

## 80 2 5 3 2 2 21

## 81 2 5 4 2 29 1

## 82 2 5 5 2 13 37

## 83 2 5 6 2 46 47

## 84 2 5 7 2 42 24

## 85 2 6 1 2 24 5

## 86 2 6 2 2 21 28

## 87 2 6 3 2 39 8

## 88 2 6 4 2 5 44

## 89 2 6 5 2 25 31

## 90 2 6 6 2 20 41

## 91 2 6 7 2 12 18

## 92 2 7 1 2 14 23

## 93 2 7 2 2 37 46

## 94 2 7 3 2 47 33

## 95 2 7 4 2 49 20

## 96 2 7 5 2 48 7

## 97 2 7 6 2 41 10

## 98 2 7 7 2 43 36

## 99 3 1 1 3 24 17

## 100 3 1 2 3 20 39

## 101 3 1 3 3 6 7

## 102 3 1 4 3 30 44

## 103 3 1 5 3 17 12

## 104 3 1 6 3 27 34

## 105 3 1 7 3 35 22

## 106 3 2 1 3 1 8

## 107 3 2 2 3 14 30
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## 108 3 2 3 3 34 47

## 109 3 2 4 3 22 42

## 110 3 2 5 3 21 3

## 111 3 2 6 3 15 25

## 112 3 2 7 3 19 20

## 113 3 3 1 3 10 6

## 114 3 3 2 3 13 28

## 115 3 3 3 3 23 38

## 116 3 3 4 3 36 33

## 117 3 3 5 3 43 43

## 118 3 3 6 3 4 16

## 119 3 3 7 3 49 11

## 120 3 4 1 3 28 35

## 121 3 4 2 3 7 1

## 122 3 4 3 3 31 18

## 123 3 4 4 3 5 13

## 124 3 4 5 3 2 23

## 125 3 4 6 3 46 45

## 126 3 4 7 3 3 40

## 127 3 5 1 3 26 46

## 128 3 5 2 3 18 19

## 129 3 5 3 3 29 29

## 130 3 5 4 3 32 24

## 131 3 5 5 3 37 41

## 132 3 5 6 3 11 14

## 133 3 5 7 3 38 2

## 134 3 6 1 3 8 26

## 135 3 6 2 3 40 48

## 136 3 6 3 3 39 9

## 137 3 6 4 3 12 4

## 138 3 6 5 3 33 21

## 139 3 6 6 3 48 36

## 140 3 6 7 3 16 31

## 141 3 7 1 3 42 37

## 142 3 7 2 3 25 10

## 143 3 7 3 3 47 27

## 144 3 7 4 3 9 15

## 145 3 7 5 3 44 32

## 146 3 7 6 3 41 5

## 147 3 7 7 3 45 49

## 148 4 1 1 1 40 1

## 149 4 1 2 1 10 43

## 150 4 1 3 1 38 8

## 151 4 1 4 1 34 15

## 152 4 1 5 1 13 29

## 153 4 1 6 1 5 36

## 154 4 1 7 1 27 22

## 155 4 2 1 1 24 6

## 156 4 2 2 1 1 48

## 157 4 2 3 1 32 13

## 158 4 2 4 1 14 20

## 159 4 2 5 1 19 34

## 160 4 2 6 1 23 41
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## 161 4 2 7 1 45 27

## 162 4 3 1 1 35 5

## 163 4 3 2 1 49 47

## 164 4 3 3 1 9 12

## 165 4 3 4 1 29 19

## 166 4 3 5 1 31 33

## 167 4 3 6 1 8 40

## 168 4 3 7 1 43 26

## 169 4 4 1 1 20 4

## 170 4 4 2 1 15 46

## 171 4 4 3 1 6 11

## 172 4 4 4 1 7 18

## 173 4 4 5 1 22 32

## 174 4 4 6 1 42 39

## 175 4 4 7 1 48 25

## 176 4 5 1 1 12 7

## 177 4 5 2 1 39 49

## 178 4 5 3 1 44 14

## 179 4 5 4 1 18 21

## 180 4 5 5 1 37 35

## 181 4 5 6 1 28 42

## 182 4 5 7 1 16 28

## 183 4 6 1 1 30 2

## 184 4 6 2 1 47 44

## 185 4 6 3 1 33 9

## 186 4 6 4 1 36 16

## 187 4 6 5 1 11 30

## 188 4 6 6 1 17 37

## 189 4 6 7 1 3 23

## 190 4 7 1 1 41 3

## 191 4 7 2 1 26 45

## 192 4 7 3 1 2 10

## 193 4 7 4 1 46 17

## 194 4 7 5 1 4 31

## 195 4 7 6 1 25 38

## 196 4 7 7 1 21 24

#'## Check properties of the design

wheat.canon <- designAnatomy(formulae = list(lab = ~Intervals/(Runs*Times),

field = ~Blocks/Plots,

treats = ~Lines),

data = lab.lay)

summary(wheat.canon, which.criteria =c("aefficiency", "order"))

##

##

## Summary table of the decomposition for lab, field & treats (based on adjusted quantities)

##

## Source.lab df1 Source.field df2 Source.treats df3 aefficiency order

## Intervals 3 Blocks 3 1.0000 1

## Runs[Intervals] 24 Plots[Blocks] 24 Lines 24 0.2500 1

## Times[Intervals] 24 Plots[Blocks] 24 Lines 24 0.2500 1

## Runs#Times[Intervals] 144 Plots[Blocks] 144 Lines 48 0.7500 1

## Residual 96 1.0000 1
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##

## The design is not orthogonal

Given, the nonorthogonality of Blocks:Plots evident in the anatomy, redo the table with just the lab and field
tiers to investigate.

#'## Check confounding of field sources with lab sources

wheat.labfield.canon <- designAnatomy(formulae = list(lab = ~Intervals/(Runs*Times),

field = ~Blocks/Plots),

data = lab.lay)

summary(wheat.labfield.canon, which.criteria =c("aefficiency", "order"))

##

##

## Summary table of the decomposition for lab & field (based on adjusted quantities)

##

## Source.lab df1 Source.field df2 aefficiency order

## Intervals 3 Blocks 3 1.0000 1

## Runs[Intervals] 24 Plots[Blocks] 24 1.0000 1

## Times[Intervals] 24 Plots[Blocks] 24 1.0000 1

## Runs#Times[Intervals] 144 Plots[Blocks] 144 1.0000 1

4.4.2 Questions

1. Is the variance matrix for this experiment based on two sets of terms that are orthogonal??

Because all plots sources are confounded orthogonally with analyses sources, the variance matrix is indeed
based on two sets of terms that are orthogonal.

4.5 Elaborate, two-phase, sensory experiment

Brien and Payne (1999) describe a two-phase sensory experiment, of which the first, or field, phase is a viticultural
experiment and the second, or evaluation, phase involves the assessment of wine made from the produce of the
first phase plots. In the field phase, two adjacent Youden squares are used to assign trellis treatments to the
plots, a plot being a row-column combination within a square. Each plot is divided into two halfplots and two
methods of pruning assigned at random to them. In the second phase, the halfplots from the field phase are
randomized, using two Latin squares and an extended Youden design, to glasses in positions on a table for
evaluation by judges. This experiment is Example 1.2 from Bailey and Brien (2015), where its anova, along with
expected mean squares, is given. Its randomization diagram is in Figure 17.

Figure 17: Randomization diagram for the two-phase sensory experiment

4.5.1 Check the properties of the randomized layout

Load the layout and use designAnatomy to check the properties of the design.
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#'## Load the layout

data("Sensory3PhaseShort.dat")

#'## Examne the properties of the design

sensory.canon <- designAnatomy(formulae = list(eval = ~((Occ/Int/Sit)*Jud)/Posn,

field = ~(Row*(Sqr/Col))/Hplot,

treats = ~Trel*Meth),

data = Sensory3PhaseShort.dat)

summary(sensory.canon, which.criteria =c("aefficiency", "order"))

##

##

## Summary table of the decomposition for eval, field & treats (based on adjusted quantities)

##

## Source.eval df1 Source.field df2 Source.treats df3 aefficiency order

## Occ 1 Sqr 1 1.0000 1

## Int[Occ] 4

## Sit[Occ:Int] 18 Col[Sqr] 6 Trel 3 0.0370 1

## Residual 3 0.3333 1

## Residual 12

## Jud 5

## Occ#Jud 5

## Int#Jud[Occ] 20 Row 2 1.0000 1

## Row#Sqr 2 1.0000 1

## Residual 16

## Sit#Jud[Occ:Int] 90 Col[Sqr] 6 Trel 3 0.0741 1

## Residual 3 0.6667 1

## Row#Col[Sqr] 12 Trel 3 0.8889 1

## Residual 9 1.0000 1

## Residual 72

## Posn[Occ:Int:Sit:Jud] 432 Hplot[Row:Sqr:Col] 24 Meth 1 1.0000 1

## Trel#Meth 3 1.0000 1

## Residual 20 1.0000 1

## Residual 408

##

## The design is not orthogonal

Note that 1/3 of Sqr:Col is partially confounded with Occ:Int:Sit and 2/3 with Occ:Int:Sit:Jud. Also, 1/9
of Trel is partially confounded with Sqr:Col and 8/9 with Row:Sqr:Col. The canonical efficiency factor for Trel
in the two Sqr:Col sources is obtained by multiplying the canonical efficiency of 1/9 for Trel with that for the
particular Sqr:Col source, yielding canonical efficiencies of 1/27 and 2/27.

4.5.2 Questions

1. Which is the nonorthogonal source amongst the field sources (Source.field) and what is its interblock
and intrablock efficiency factors?

The only nonorthogonal field source is Sqr.Col. Its interblock efficiency factor is 1/3 and its intrablock
effciciency factor is 2/3.

2. How would an intrablock analysis be achieved using, say, regression software?

To achieve an intrablock analysis requires careful specification of the order of fitting terms; a nonorthogonal
source should not estimated until after all nonorthogonal terms with which it is confounded, except the last,
have been estimated. For this experiment, terms should be fitted in the following order:
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Occ*Jud + Row + Occ:Int/(Int + Sit) + Sqr.Col + Trel + Row:Sqr:Col + Occ:Int:Sit:Jud + Meth +
Trel:Meth + Row:Sqr:Col:Hplot.

This will leave a Residual that corresponds to Occ:Int:Sit:Jud:Posn.
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5 Power and sample size for designed experiments

In power and sample size calculations, in addition to specifying delta, sigma, power and alpha, one has to supply
a number of quantities that vary with the design of the experiment. The following table summarizes these for
the common designs, giving the degrees of freedom of the denominator as a function of r, the pure replication
of the treatments. Note that rm is the number of replicates in means being compared. For treatment means,
this will be the product of r and a multiple, m, for the product of the number of levels of factors not involved
in means being compared.

Design m rm df.num (ν1) df.denom (ν2)
CRD 1 r t− 1 t(r − 1)
RCBD 1 b t− 1 (t− 1)(b− 1)
LSD 1 r(= t) r − 1 (r − 1)(r − 2)
Factorial
A b br a− 1 CRD ab(r − 1)
B a ar b− 1 RCBD (ab− 1)(r − 1)
A:B 1 r (a− 1)(b− 1) LSD (r − 1)(r − 2)
Standard split-plot
A b br a− 1 (a− 1)(r − 1)
B a ar b− 1 (b− 1)(r − 1)
A:B 1 r (a− 1)(b− 1) a(b− 1)(r − 1)†

†only approximate for effects not at the same level of A

5.1 Computing the power for given sample size

The function power.exp from the dae library is used for computing the power in detecting the difference between
means for some, not necessarily proper, subset of the factors from a designed experiment.

The usage and arguments for this function are:
power.exp(rm5,df.num=1, df.denom=10, delta=1, sigma=1, alpha=0.05, print=FALSE)=

rm: the number of observations used in computing a mean.

df.num: the degrees of freedom of the numerator of the F for testing the term involving the means;

df.denom: the degrees of freedom of the denominator of the F for testing the term involving the means;

delta: the true difference between a pair of means;

sigma: population standard deviation;

alpha: the significance level to be used;

print: T or F to have or not have a table of power calculation details printed out.

Note that the values given for the arguments in the above expression for power.exp are the default values
assigned to the arguments if they are not set in a call to the function.

5.2 Example: Penicillin yield

Consider the penecillin example taken from Box et al. (2005). Suppose it was expected that the minimum
difference between a pair of treatment means is 5 and that α = 0.05. In the analysis of variance for this
experiment, the Residual MSq was 18.83 so we will take σ2 ≈ 20. Also, r = 5 and m = 1. The power.exp call
to compute the power, and the resulting output, is given below. Note that alpha is not set in this call and so
the default value of 0.05 will be used. Also, the expressions 3 * (rm - 1) and sqrt(20) will be evaluated prior
to the call to the function. To get the correct value of rm used in evaluating the expression 3 * (rm - 1), rm
needs to be set prior to calling power.exp.
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rm <- 5

power.exp(rm=rm, df.num=3, df.denom=3*(rm-1), delta=5, sigma=sqrt(20), print=TRUE)

## rm df.num df.denom alpha delta sigma lambda powr

## 1 5 3 12 0.05 5 4.472136 3.125 0.2159032

## [1] 0.2159032

That is, the power of the experiment is just over 0.2.

5.3 Computing the sample size to achieve specified power

The function no.reps from the dae library is used to compute the required number of pure replicates, r, of the
treatments in a designed experiment to achieve a specified power in detecting a difference between the means for
some, not necessarily proper, subset of the treatment factors. The usage and arguments for this function are as
follows:

no.reps(multiple=1, df.num=1,

df.denom=expression((df.num+1)*(r-1)),

delta=1, sigma=1, alpha=0.05, power =0.8,

tol = 0.025, print=FALSE)

multiple: the multiplier, m, which when multiplied by the number of pure replicates of a treatment, r, gives the
number of observations (rm) used in computing means for the treatment factor subset; m is the replication
arising from other treatment factors. However, for single treatment factor experiments the subset can only
be the treatment factor and m = 1;

df.num: the degrees of freedom of the numerator of the F for testing the term involving the treatment factor
subset;

df.denom: an expression for the degrees of freedom of the denominator of the F for testing the term involving
the treatment factor subset it must involve r, the number of pure replicates, can involve other arguments
to no.reps such as multiple and df.num, and must be enclosed in an expression function so that it is not
evaluated when no.reps is called but will be evaluated as different values of r are tried during execution
of no.reps;

delta: the true difference between a pair of means for some, not necessarily proper, subset of the treatment
factors;

sigma: population standard deviation;

alpha: the significance level to be used;

power: the minimum power to be achieved;

tol: the maximum difference tolerated between the power required and the power computed in determining the
number of replicates;

print: T or F to have or not have a table of power calculation details printed out.

5.4 Example II.1.Penicillin yield (continued)

We now determine the number of replicates required to achieve a power of 0.80 in detecting ∆ = 5 with α = 0.05.
We continue to take σ2 ≈ 20. The use of no.reps and the resulting output is as follows:

no.reps(multiple=1, df.num=3, df.denom=expression(df.num*(r-1)), delta=5,

sigma=sqrt(20), power=0.8, print=FALSE)
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## $nreps

## [1] 19

##

## $power

## [1] 0.8055926

That is, 19 reps will achieve a little more than the required power of 0.80.
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