Covariance Estimation
Rohit Arora
2015-09-28

Abstract

There exists a rich modern set of covariance matrix estimator methods for
use in financial data. The purpose of covmat package is to implement some of
these techniques such that they are readily available to be used with appropriate
financial data. The purpose of this vignette is to demonstrate the usage of
functions implemented in the covmat package.
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1 Load Package

The latest version of the covmat package can be downloaded and installed through the
following command:

library(devtools)
install_github("arorar/covmat")

The github version of covmat also implements Stambaugh and FMMC estimators which
are not available in the CRAN release. The implementation of these estimators depened
on the factorAnalytics package which is not yet available on CRAN.

2 Denoising using Random Matrix Theory

Random matrix theory provides a way to de-noise the sample covariance matrix . Let X
be a matrix with T rows and N columns random matrix. C is the sample correlation
matrix. Under the random matrix assumption, the eigenvalues of C must follow a
Marchenko-Pastur density such that N, 7" — oo, = N/T. The density of eigenvalues
is given by

Q

T 2mNo2

F Ve = A) (X = Ain)

For a random matrix all eigenvaules will be within the range. The variance of these
eigenvalues is 1. If any eigenvalue lies outside A, it is considered as a signal. We can

choose these eigenvalues and replace the eigenvalues within the cutoff with either an
average value or completely ignore them.

2.1 Data

To demonstrate the use of Random Matrix theory we will choose the dow30data object
which contains daily returns for ow Jones 30 index for a year.

data("dow30data")

2.2 Covariance estimation

To fit a covariance matrix we can use the estRMT fucntion.

estRMT(R, Q =NA, cutoff = c("max", "each"),
eigenTreat = c("average", "delete") ,
numEig=1, parallel = TRUE)



This function takes serveral options, details of which can be found on the man page.
However, in the simplest case we can pass a timeseries object of assets. In such a case we
will assume that we know the largest eigenvalue and fit the distribution to the remaining
eigenvalues. Values less than the cutoff are replaced with an average value.

2.3 Plots

Once we have fitted a model we can also investigate the fit visually using the plot
function. The plot function takes in a fitted model and plots the fitted density overlayed
on a histogram. It also displays some important fit parameters.

plot(model)
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2.4 Evaluation

We will now demonstrate the use of RMT with a more elaborate example. Let us build
a custom portfolio stratey using all 30 stocks from the Daily Dow Jones 30 index. We
will use dow30data object that contains daily data from 04/02/2014 to 07/10/2015. We
will use the PortfolioAnalytics package for building the portfolio and backtesting
the strategy.

Let us first construct a custom moment function where covariance is built by denoising
using Random Matrix Theory. We assume no third/fourth order effects.



custom.portfolio.moments <- function(R, portfolio) {
momentargs <- list()
momentargs$mu <- matrix(as.vector(apply(R,2, "mean")), ncol = 1)
momentargs$sigma <- estRMT(R, parallel=FALSE)S$cov
momentargs$m3 <- matrix(0, nrow=ncol(R), ncol=ncol(R)"2)
momentargs$m4 <- matrix(0, nrow=ncol(R), ncol=ncol(R)"3)

return(momentargs)

We will construct a portfolio with the following specficatiion. No short sales are allowed.
All cash needs to be invested at all times. As our objective, we will seek to maximize
the quadratic utility which maximizes returns while controlling for risk.

pspec.lo <- portfolio.spec(assets = colnames(dow30data))

#long-only
pspec.lo <- add.constraint(pspec.lo, type="full investment")
pspec.lo <- add.constraint(pspec.lo, type="long only")

pspec.lo <- add.objective(portfolio=pspec.lo, type="return", name="mean"
pspec.lo <- add.objective(portfolio=pspec.lo, type="risk", name="var"

Now lets backtest our strategy using an ordinary covariance matrix and a covariance
matrix build by denoising using Random Matrix theory.

opt.ordinary <-
optimize.portfolio.rebalancing(dow30data, pspec.lo,
optimize_method="quadprog",
rebalance_on="months",
training period=120,
trailing_periods=120)
opt.rmt <-
optimize.portfolio.rebalancing(dow30data, pspec.lo,
optimize_method="quadprog",
momentFUN = "custom.portfolio.moments",
rebalance on="months",
training period=120,
trailing periods=120)

We can now extract weights and build cummulative returns using the PerformanceAnalytics
package.



ordinary.wts <- na.omit(extractWeights(opt.ordinary))
ordinary <- Return.rebalancing(R=dow30data, weights=ordinary.wts)

rmt.wts <- na.omit(extractWeights(opt.rmt))
rmt <- Return.rebalancing(R=dow30data, weights=rmt.wts)

rmt.strat.rets <- merge.zoo(ordinary,rmt)
colnames(rmt.strat.rets) <- c("ordinary", "rmt")

In the chart below we can see that the cumulative returns generated using our strategy
with filtering using Random Matrix Theory are superior to ordinary returns. They are
also better with smaller drawdowns. This suggests that there is value in filtering a large
sample covariance matrix before using it for optimizing portfolios.

charts.PerformanceSummary(rmt.strat.rets,wealth.index = T,
colorset = c("red","blue"),
main=paste(c("Comparison of Portflio ",
"Performance using two ",
"different covariance matrices"),
collapse=""), cex.legend = 1.3,
cex.axis = 1.3, legend.loc = "topleft")

Comparison of Portflio Performance using two different covariance matrices
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3 Independent Switching Dynamic Conditional
Correlation Model

The IS-DCC model from (Lee 2010) has the same structure as the DCC model but it
lets the constants be state dependent and hence makes it possible to model time-varying
correlation with different dynamics for each regime. The model runs a separate DCC
process for each state in parallel and avoids the path dependency problem and makes
the model tractable.

Fitting the IS-DCC model to data corresponds to a two step process, where the first step
is to estimate the volatility of each univariate time series separately using GARCH(1,1),
as in the case for DCC. The second step corresponds to estimating the DCC(1,1)
parameters for each state and estimating the transition probabilities corresponding to
the Hidden Markov Model. This is done by maximising the log likelihood using the
Expectation Maximization (EM) algorithm.

3.1 Data

To demonstrate the use of IS-DCC we will choose the etfdata object which contains
daily returns for 9 exchange traded funds (SPDRs) that represent the U.S. stock market
from S&P, i.e. XLE, XLY, XLP, XLF, XLV ,XLI, XLB, XLK and XLU. The Sector
SPDRs divide the S&P 500 into nine sector index funds. The returns on assets are
considered to be dependent on regimes which are in turn defined by market conditions.
Daily returns on the ETFs from January 1, 2008 to December 31, 2010 were retrieved
from Yahoo Finance.

data("etfdata")

3.2 Covariance estimation
To fit a covariance matrix we can use the isdccfit fucntion.

isdccfit (R, numRegimes, transMatbounds = c(2,10),
dccBounds = ¢(0,1), w = NA, ...)

This function takes serveral options, details of which can be found on the man page.
However, in the simplest case we can pass a timeseries object of asset returns and
the number of regimes that we want to fit to the data. Since we use Expectation
Maximization to fit data, convergence can be slow and additional parameters must be
passed to the optimizer to speed by computation. We use DEoptim to fit paramters. If
no control paramters are passed we use the 1hs package to generate initial paramters
uniformaly in the paramters space and pass it as initial population to DEoptim.

Let us fit a simple model for demonstration that fits three regimes to the data.



3.3 Plots
Once we have fitted a model we can also investigate the regimes by examining the
implied states using the plot function. The plot function takes in a fitted model and

and the type of plot. It then plots either the implied states or the implied probability of
regimes.

plot (model.isdcc)
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3.4 Evaluation

We will now build a custom portfolio stratey using etfdata. We will use a simple
strategy such that at each period we will choose the covariance matrix from the regime
which has the highest probability of occurance. We will benchmark the strategy against
the ordinary DCC model that does not use regimes.

Let us first construct two custom moment functions where covariance is built using

DCC and IS-DCC
custom.portfolio.moments.isdcc <- function(R, portfolio) {

momentargs <- list()
momentargs$mu <- matrix(as.vector(apply(R,2, "mean")), ncol = 1)

result <- isdccfit(R, numRegimes = 2, itermax=100)
ldate <- as.character(tail(index(R),1))
maxProbIndex <- which.max(result$filtProb[ldate,])



momentargs$sigma <- result$cov[[ldate]] [[maxProbIndex]]

momentargs$m3 <- matrix(0, nrow=ncol(R), ncol=ncol(R)~2)
momentargs$m4 <- matrix(0, nrow=ncol(R), ncol=ncol(R)"3)

return(momentargs)

custom.portfolio.moments.dcc <- function(R, portfolio) {

momentargs <- list()
momentargs$mu <- matrix(as.vector(apply(R,2, "mean")), ncol = 1)

garchll.spec <- ugarchspec(mean.model = list(armaOrder = c(0,0)),
variance.model = list(garchOrder = c(1,1)
, model = "sGARCH"),
distribution.model = "norm"

dcc.garchll.spec <- dccspec(uspec = multispec( replicate(ncol(R),
garchll.spec) ),

dccOrder = c(1,1), distribution = "mvnorm'")

dcc.fit <- dccfit(dcc.garchll.spec, data = R)
momentargs$sigma <- rcov(dcc.fit)[,,as.character(tail(index(R),1))]

momentargs$m3 <- matrix(0, nrow=ncol(R), ncol=ncol(R)"2)
momentargs$m4 <- matrix(0, nrow=ncol(R), ncol=ncol(R)~3)

return(momentargs)

We will construct a portfolio with the following specficatiion. No short sales are allowed.
All cash needs to be invested at all times. As our objective, we will seek to maximize
the quadratic utility which maximizes returns while controlling for risk.

datap <- etfdatal["2009-07/"]
pspec.lo.isdcc <- portfolio.spec(assets = colnames(datap))
#long-only

pspec.lo.isdcc <- add.constraint(pspec.lo.isdcc, type="full investment")
pspec.lo.isdcc <- add.constraint(pspec.lo.isdcc, type="long only")



pspec.lo.isdcc <- add.objective(portfolio=pspec.lo.isdcc,
type="return", name="mean")

pspec.lo.isdcc <- add.objective(portfolio=pspec.lo.isdcc,
type="risk", name="var")

Now lets backtest our strategy using an ordinary covariance matrix and covariance
matrices built using DCC and IS-DCC models.

ordinary <-
optimize.portfolio.rebalancing(datap, pspec.lo.isdcc,
optimize_method="quadprog",
rebalance on="months",
training period=120,
trailing periods=120)

opt.dcc <-

optimize.portfolio.rebalancing(datap, pspec.lo.isdcc,
optimize method="quadprog",
momentFUN =

"custom.portfolio.moments.dcc",

rebalance on="months",
training_period=120,
trailing periods=120)

opt.isdcc <-
optimize.portfolio.rebalancing(datap, pspec.lo.isdcc,
optimize_method="quadprog",
momentFUN =
"custom.portfolio.moments.isdcc",
rebalance_on="months",
training period=120,
trailing_periods=120)

We can now extract weights and build cummulative returns using the PerformanceAnalytics
package.

ord.wts <- na.omit(extractWeights(ordinary))
ord <- Return.rebalancing(R=datap, weights=ord.wts)

dcc.wts <- na.omit(extractWeights(opt.dcc))
dcc <- Return.rebalancing(R=datap, weights=dcc.wts)

isdcc.wts <- na.omit(extractWeights(opt.isdcc))
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isdcc <- Return.rebalancing(R=datap, weights=isdcc.wts)

isdcc.strat.rets <- merge.zoo(merge.zoo(ord, dcc), isdcc)
colnames(isdcc.strat.rets) <- c("ordinary", "dcc", "isdcc")

In the chart below we can see that the cumulative returns generated using our strategy
with IS-DCC model are superior to ordinary returns as well as returns by the DCC
model. This suggests that there is value in assuming the presence of regimes in data
and exploring the idea further while optimizing portfolios.

charts.PerformanceSummary(isdcc.strat.rets,wealth.index = T,
colorset = c("red","blue","green"),
main=paste(c("Comparison of Portflio ",
"Performance using two ",
"different covariance matrices"),
collapse=""), cex.legend = 1.3,
cex.axis = 1.3, legend.loc = "topright")

Comparison of Portflio Performance using two different covariance matrices
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4 Eigenvalue Shrinkage in Spiked Covariance
Model

The MLE estimator of covariance matrix is not an accurate estimator when the ratio
of number of variables to observations is large. It distorts the eigenstructure of the
population covariance matrix such that the largest sample eigenvalue is biased upward
and the smallest sample eigenvalue is biased downward. However, empirical eigenvalues
can be improved by shrinkage. (Donoho, Gavish, and Johnstone 2013) assume that the
population covariance matrix follows a spiked covariance model and construct scalar non-
linear shrinkers which shrink eigenvalues greater than the bulk edge of the Marchenko
Pastur distribution and set values within bulk to 1. 26 loss functions under different
losses and matrix norms are considered.

4.1 Data

To demonstrate the use of shrinkage in Spiked Covariance model we will choose
the rmtdata object which contains simulated data with multivariate normal
distribution. The data is generated as follows. We first generate a spiked co-
variance matrix with 100 dimensions and the following 15 eigenvalues as spikes,
A € {48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20}.Our spiked covariance
model is as follows

C= Z )\ﬂ)ﬂ); + 1100
AiEA

We will use the spiked covarianve matrix from above and generate 500 observations
from a multivarite nornal distribution. This object is saved for ease of use and is called
as rmtdata.

data("rmtdata")

4.2 Covariance estimation
To fit a covariance matrix we can use the estSpikedCovariance fucntion.
estSpikedCovariance(R, gamma = NA,

numOfSpikes = NA,

method = c("KNTest", "median-fitting"),
norm = c("Frobenius", "Operator", "Nuclear"),

12



pivot = 1, statistical = NA,
fit = NA)

This function takes serveral options. In the simplest case we can pass a timeseries
object of asset returns where all other parameters assume default value. The parameter
gamma if missing is set to the ratio of variables to observations. For time series data,
the choice of gamma can be important and one may want to control it such that the
block of returns under consideration is stationary. If numOfSpikes is missing, then it is
estimated using two methods, KNTest or median-fitting. In case of median-fitting we
first count the number of breaks in the emperical histogram of eigenvalues using the
Freedman-Diaconis algorithm. The initial number of spikes are calculated by counting
the number of eigenvalues in the breaks after the first zero. The initial number of
spikes are used to match the bulk edge and estimate 0. This serves as an lower bound
for 02. o2 calculated by assuming no spikes is used as an upper bound. We then
estimate variance by minimizing the absolute distance between the true median of the
MP distribution and the median of the eigenvalues within the bulk. The details of
KNTest desribed in (Kritchman and Nadler 2009).

4.3 Plots

We can investigate the peformance of 26 shrinkers by plotting them simultaneoulsy

plotSpikedCovariance(rmtdata)
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Optimal Shrinkers for 26 Component Loss Functions
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5 Robust Exponential Smooting of Multivariate

Time Series

Classical exponential smoothing is a popular technique used to forecast time series.
However, presence of outliers can distort the forecasts leading to bad estimates. Robust
methods result in much better forecasts than the classical approach in presence of
outliers. (Croux, Gelper, and Mahieu 2010) suggest a methodology to combine these
two techniques in a multivariate setting, where forecasting uses information from all

components leading to more accurate forecasts.

5.1 Covariance estimation

To estimate a covariance matrix we can use the estSpikedCovariance fucntion.
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robustMultExpSmoothing(R, smoothMat = NA, startup_period = 10,
training period = 60 , seed = 9999, trials = 50,
method = "L-BFGS-B", lambda = 0.2)

The smoothing parameter is optional and will be estimated if missing. To estimate the
smoothing matrix we use the constraints that the smoothing matrix is symmetric and
its eigenvalues lie between 0 and 1. We also use the fact that the orthogonal matrix in
spectral decomposition of smoothing matrix can be parameterized using givens angles.
These angles must lie between —7/2 and 7/2. To estimate the smoothing matrix we
set up an optimization problem as described in the paper to minimize the determinant
of the covariance of one step ahead forecast errors. The method argument allows one
to change the optimization algorithm used. We use the optimx package to solve the
multivariate optimization problem. The package allows us to choose from 16 different
algoritms. Experimental results show that Nelder-Mead and L-BFGS-B perform well
for such a noisy function. One also needs to be careful with the rerproducablility of
the results. Esimation of smoothing matrix may lead to sligtly different results on each
run. However, the cleaned series or covariance matrix show only marginal differnces. To
estimate the matrix we start the optimization from random points and the parameter
trials decides the number of runs and the parmater seed can be used for replicate
the starting points. One needs to be careful with esitmation of smoothing matrix for
high dimensional data. The estimation requires to search roughly, dimension squared
parameters, which can be slow. Semidefinite-programming could lead to better solutions.
However, at the time of writing the package, support for such a solver which is open
source in R is challenging to find.

5.2 Evaluation
Let us use 5 stocks from Dow Jones 30 data, ie AAPL, GE, MSFT, NKE and V.

data("dow30data")
symbols <- c('AAPL', 'GE', 'MSFT' , 'NKE', 'V')

R <- dow30data[,which(colnames(dow30data) %in} symbols)]
smoothfit <- robustMultExpSmoothing(R)

Now lets plot the returns. Notice the spikes in AAPL and V in the regular plot.

plotmissing(R)
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Let us also examine the cleaned time series. Notice that the spikes are missing.

plotmissing(smoothfit$cleanValues)

Dates

Let us also compare the ordinary robust covariance matrix against robust covariance
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matrix obtained using the procedure outlined in Croux. Notice the similarity between
the two estimates.

rob <- covRob(R)$cov

compareCov (smoothfit$covMat, rob, labels = c("Robust Croux", "Robust"))
a i
< o 2
0.42
0.39 0.50
MSFT 0.35 0.47 OO
0.46 0.49 0.38
N 043 050 038 0
v 0.45 0.55 0.50 0.63
0.44 0.56 0.50 0.64
—— Robust Croux
- Robust
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