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Abstract

Objective: The Cochran-Armitage linear trend test for proportions is commonly
used for genotype-based analysis of candidate gene association. Depending on the
underlying genetic mode of inheritance, the use of model-specific scores maximises the
power. Commonly, the underlying genetic model, i.e., additive, dominant or recessive
mode of inheritance, is a priori unknown. Permutation tests for the analysis of
association studies appropriate for both inference and identification of the underlying
mode of inheritance are suggested.

Methods: Maximum tests using standardised Cochran-Armitage tests having
power under all three models have been proposed for case-control studies. We re-
formulate the problem and propose a conditional maximum test of scores-specific
linear-by-linear association tests. For both maximum-type and quadratic test statis-
tics the asymptotic expectation and covariance can be derived in a closed form and
the limiting distribution is known.

Results: We extend the area of application to stratified designs, studies involving
more than two groups and the simultaneous analysis of multiple loci by means of
multiplicity-adjusted p-values for the underlying multiple Cochran-Armitage trend
tests. The new test is applied to reanalyse a study investigating genetic components
of different subtypes of psoriasis.

Conclusion: A new and flexible inference tool for association studies is available
both theoretically as well as practically since already available software packages can
be easily used to implement the suggested test procedures.

1 Objectives

In population-based case-control studies the association between a candidate allele and
a disease can be evaluated by the Cochran-Armitage (CA) trend test [1], regardless of
whether or not Hardy-Weinberg equilibrium holds [8]. The CA test is based on a set of
scores assigned to the alleles. For genotypes aa, Aa, or AA, with A denoting a high risk
candidate allele and a any of the other alleles, three-dimensional scores vectors optimising
the power of the CA test against dominant, additive, and recessive alternatives can be
defined. Thus, if the underlying mode of inheritance is known, the choice of an appropriate
score vector and thus trend test test is obvious. However, in situations where the underlying
genetic model is unknown choosing the ‘wrong’ score vector leads to a substantial loss of
power as shown by Freidlin et al. [2]. Consequently, inference procedures with good power
under all three genetic models are of special interest. An intuitive idea is to construct
a test based on all three possible trend tests, for example utilising the maximum of the
standardised test statistics of the CA tests which are optimal under the dominant, additive,
and recessive model. Actually, such a test was proposed and investigated by Freidlin
et al. [2]. The distribution of this maximum test, called MAX test hereafter, under the
null hypothesis of equal genotype distribution in cases and controls is approximated by
simulation procedures by Freidlin et al. [2] since the unconditional asymptotic distribution
is hard to derive.
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Table 1: Genotype distributions for cases and controls.

Cases Controls Total
aa raa saa naa

aA raA saA naA

AA rAA sAA nAA

Total R S N

In this paper, we embed the MAX test as suggested by Freidlin et al. [2] into a flexible
framework for conditional independence tests introduced by Strasser and Weber [11]. The
merits of doing so are i) the distribution for the MAX test can be easily approximated by
a three-dimensional normal distribution, ii) tests for stratified designs, designs with more
than two groups and to multiple loci can be defined in a rather straightforward way, ii)
the most likely underlying mode of inheritance can be ‘estimated’ by multiplicity-adjusted
p-values for the three CA statistics under test, and iv) the analysis of genetic association
studies using the MAX test and its newly introduced extension can be performed by already
available software implementations of the Strasser and Weber [11] framework.

2 Methods

2.1 Maximum Test

For case-control studies on candidate gene association the data are typically given by the
empirical genotype distribution in both groups. For a simple bi-allelic marker the data can
be presented in a 3× 2 contingency table, where A is the high risk candidate allele and a
is any of the other alleles (see Table 1).

We are interested in a comparison of the genotype distributions of cases and controls,
i.e., the probabilities pj = P (case has genotype j) and qj = P (control has genotype j) for
j ∈ {aa, aA,AA}, especially in procedures with power against ordered alternatives:

H0 : pj = qj vs. H1 : pj < qj for j ∈ {aa, aA,AA}.

The CA test statistic with scores ξ = (ξaa, ξaA, ξAA) basically (modulo standardisation)
reads

CA(ξ) =
∑

j∈{aa,aA,AA}

ξjrj. (1)

If the mode of inheritance is best described by the dominant model, the scores ξdom =
(0, 1, 1) (genotype aa vs. aA and AA) will lead to a trend test with maximal power. Under
the recessive model the score vector ξrec = (0, 0, 1) (aa and aA vs. AA) is power optimal
whereas a linear trend represented by scores ξadd = (0, 1, 2) should be chosen when the
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Table 2: Genotype distribution reformulated.

i Yi Xi wi h(Yi) gadd(Xi) gdom(Xi) grec(Xi)
1 Case aa raa 1 0 0 0
2 Case Aa raA 1 1 1 0
3 Case AA rAA 1 2 1 1
4 Control aa saa 0 0 0 0
5 Control Aa saA 0 1 1 0
6 Control AA sAA 0 2 1 1

mode if inheritance is additive [8, 10]. However, the underlying genetic model is rarely
known a priori. Motivated by the problem of choosing the ‘right’ score vector, Freidlin
et al. [2] proposed the MAX test as the maximum of three standardised CA tests with
scores ξdom, ξadd, and ξrec as a global test for association. An alternative approach [14] is to
introduce a parameter η for the score vector ξη = (0, η, 1) and to choose η in a data-driven
way.

In the sequel, we present the problem in a slightly different however equivalent way and
embed the MAX test into a general framework for conditional inference procedures, derive
its limiting distribution and propose extensions to stratified designs, more than two groups
and multiple loci.

2.1.1 Reformulation of the Problem

Let Yi denote the both groups (cases and controls) and Xi the genotype for all cells
i = 1, . . . , n = 6. The weights wi represent the number of observations in each cell with
total number of observations N =

∑
iwi. The so-called influence function h provides us

with a zero-one dummy coding of the groups (being one for cases and zero for controls).
Moreover, three transformations g of the genotype are under test: gdom assigns scores
ξdom to genotypes (aa,Aa,AA), gadd assigns scores ξadd and grec implements scores ξrec, cf.
Table 2.

2.1.2 Inference Problem and Linear Statistic

We are interested in testing the null hypothesis of independence of grouping Y and genotype
X

H0 : D(Y|X) = D(Y)

against ordered alternatives. First, we define a three-dimensional statistic T, each dimen-
sion being associated with one of the scores gadd, gdom, and grec. Each statistic is defined
by the sum of the scores multiplied by the weights associated with cases, i.e., is equivalent
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to the Cochran-Armitage statistic (1):

T = (Tadd,Tdom,Trec) =
n∑

i=1

wig(Xi)h(Yi) ∈ R3 (2)

with g(Xi) = (gadd(Xi), gdom(Xi), grec(Xi)). Thus, the three-dimensional linear statistic T
is the vector of the unstandardised Cochran-Armitage statistics (CA(ξdom),CA(ξadd),CA(ξrec))
for the dominant, additive, and recessive model.

2.1.3 Conditional Expectation and Covariance

The distribution of T depends on the joint distribution of Y and X, which is unknown
under almost all practical circumstances. At least under the null hypothesis one can dispose
of this dependency by fixing the genotypes and conditioning on all possible permutations
of the groups. This principle leads to test procedures known as permutation tests. Strasser
and Weber [11] derived closed-form expressions for the conditional expectation µ ∈ Rpq

and covariance Σ ∈ R3×3 of T under H0 given all permutations of the groupings.
The conditional expectation of the influence function h is

E(h) = N−1
∑

i

wih(Yi) ∈ R

with corresponding variance

V(h) = N−1
∑

i

wi (h(Yi)− E(h))2

The conditional expectation of the linear statistic T is

µ = E(T) = E(h)
n∑

i=1

wig(Xi),

Σ = V(T)

=
N

N − 1
V(h)×

(∑
i

wi

(
g(Xi)g(Xi)

>)) (3)

− 1

N − 1
V(h)×

(∑
i

wig(Xi)

)(∑
i

wig(Xi)

)>

.

The three-dimensional expectation µ and the three diagonal elements of the covariance
matrix Σ contain the mean and the variances for the additive, dominant and recessive (un-
standardised) Cochran-Armitage statistics under H0, as given in (1) and (2), respectively.

Note that the complete covariance structure, and thus the correlation between the
elements of the three-dimensional statistic T is known and can be computed for the data
at hand. The corresponding correlation matrix coincides with the correlations obtained for
the three CA test statistics by Freidlin et al. [2].
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2.1.4 Test Statistics

Based on the three-dimensional statistic T and its expectation µ and covariance matrix
Σ, we can easily construct test statistics and derive their distribution under the conditions
described in the null hypothesis. As the number of observationsN tends to infinity, Strasser
and Weber [11] proved that the limiting distribution of the three-dimensional statistic T is
a three-dimensional normal distribution with expectation µ and covariance Σ. Thus, the
asymptotic distribution of a maximum-type statistic

cmax(T, µ,Σ) = max

∣∣∣∣ T− µ

diag(Σ)1/2

∣∣∣∣
can be evaluated by computing three-dimensional normal probabilities. Alternatively, a
quadratic form

cquad(T, µ,Σ) = (T− µ)>Σ+(T− µ)

follows a χ2 distribution with two degrees of freedom. The quadratic form, which is a
competitor for the MAX test statistic, reveals high power for an average alternative while
the maximum-type form for a particular genetic alternative. Therefore, we focus on the
maximum-type statistics, particularly because information on the elementary genetic alter-
native is available by multiplicity-adjusted p-values. Note that, under any circumstances,
the exact conditional distribution can be approximated by conditional Monte-Carlo meth-
ods, which is especially attractive for small sample sizes N when we can’t expect asymp-
totics to work well.

2.2 Illustration

In order to compare the above test and its implementation with the results reported by
Freidlin et al. [2], we reanalyse a study on association between a variant of the epidermal
growth factor (EGF) gene and malignant melanoma according to Shahbazi et al. [Table 3,
9].

Table 3: Melanoma data

In situ Control Total
AA 6 32 38
AG 8 47 55
GG 10 20 30
Total 24 99 123

The linear statistic T, its conditional expectation µ and the standard deviations σ =√
diag(Σ) and the corresponding standardised CA statistics are given in Table 4. In
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addition, we immediately are provided with the covariance matrix

Σ =

 4.1579 5.6255 1.4675
5.6255 10.6845 5.0590
1.4675 5.0590 3.5915


and corresponding correlation matrix

cor(Σ) =

 1.0000 0.8440 0.3798
0.8440 1.0000 0.8167
0.3798 0.8167 1.0000


those values are rather similar to the correlations between the three different CA test
statistics as reported by Freidlin et al. [2].

Table 4: MAX test for Melanoma data

T µ σ (T− µ)/σ pasympt pstep-down

dominant 18 16.5854 2.0391 0.6938 0.3906 0.3302
additive 28 22.4390 3.2687 1.7013 0.0868 0.0654
recessive 10 5.8537 1.8951 2.1879 0.0303 0.0359

The MAX test has a test statistic equal to 2.1879 and its asymptotic p-value is 0.0303
(the minimum of pasympt in Table 4) which is roughly the same p-value as shown in Table 8
of Freidlin et al. [2]. However, this global p-value does not give any information about the
underlying genetic model. Multiplicity-adjusted p-values (pasympt in Table 4) for each of
the dominant, additive, and recessive tests, indicate which mode of inheritance describes
the data best (see Section 3.2 in addition): It seems that the recessive model is appropriate
for the Melanoma data.

We might want to check whether the asymptotics work well enough in this situation.
The exact conditional p-value is approximated by a conditional Monte-Carlo procedure with
49999 random permutations of the data and the corresponding step-down multiplicity-
adjusted p-values [12] are given as pstep-down in Table 4. The small differences between
the asymptotic and approximated p-values indicates that using asymptotic distribution is
adequate.

2.3 Generalisations

A straightforward generalisation is the consideration of 3×k tables instead of 3× 2 tables,
where sub-types of cases are compared with a control. For example, the genotype distribu-
tion of healthy control can be compared the genotype of cases with early and late onset of a
certain disease. A score can be attached to each group, for example 1 to the control group
and −1/2 for both the early and late onset cases leading to a linear-by-linear association
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test. Alternatively, a trend in the onset of the disease can be described by scores 0, 1, 2 for
the three groups.

In stratified designs, only permutations within each stratum, gender or family history,
say, are admissible; so the expectation µ and covariance Σ has to be computed separately
for each stratum and is then aggregated over all possible strata.

Finally, it is interesting to consider multiple loci, i.e., multiple genotype distributions,
simultaneously. For two loci, we can look at all six CA tests by defining a linear statistic
T containing the three CA tests for the first as well as the three CA tests for the second
locus. As a consequence, we can compute the complete covariance matrix and take the
underlying correlations between the two loci as well as between the three genetical models
into account.

2.4 Computational Details

The coin add-on package [3, 4] to the R system for statistical computing [6] provides
an implementation of the conditional inference framework sketched in this section. The
analysis of an association study by the MAX test only requires to set-up the score function
g. Then, the function independence_test can be used to perform the MAX test and to
compute multiplicity-adjusted p-values. For the Melanoma data, the most important parts
of such an analysis are given in the Appendix. All analyses presented in this paper are
reproducible by means of the MAXtest package vignette accessible from within R via

R> vignette("MAXtest", package = "coin")

3 Results

3.1 Illustration and Application

Reich et al. [7] investigate the association between psoriasis and polymorphisms of genes
encoding tumor necrosis Factor-α and Interleukin-1β where for the IL1B 511 locus the
related 3 × 2 table data are given in Table 5. A control group and two groups of affected
people with early and late onset of the disease are under test. One is interested in detecting
any deviation from independence of genotype distribution for both loci and the three groups
in either females and / or males. Attaching scores 1,−1/2,−1/2 to the control, early and
late onset group results in a linear statistic T with six elements: three models for each of
the two loci.

The multiplicity-adjusted p-values in Table 6 indicate that there is a strong deviation
from independence for the TNFA 238 locus. The recessive model has the largest p-value
and thus it is not likely that this model is true. The p-values for the dominant and the
additive are extremely small, so either of these models could have generated the data.
We can simultaneously reject the null hypothesis of independence between the genotype
distribution of the IL1B 511 locus and the three groups. Here, the dominant model seems
to explain the data best.
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Table 5: Psoriasis data

IL1B 511 locus

Male Control Early Onset Late Onset Total
CC 75 54 29 158
CT 93 44 13 150
TT 14 7 4 25
Total 182 105 46 333

Female Control Early Onset Late Onset Total
CC 76 26 17 119
CT 69 20 10 99
TT 18 5 2 25
Total 163 51 29 243

TNFA 238 locus

Male Control Early Onset Late Onset Total
GG 170 71 40 281
GA 12 33 6 51
AA 0 1 0 1
Total 182 105 46 333

Female Control Early Onset Late Onset Total
GG 146 43 24 213
GA 17 8 5 30
AA 0 0 0 0
Total 163 51 29 243
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Table 6: MAX test for psoriasis data: Asymptotic adjusted p-values

TNFA 238 IL1B 511
dominant < 0.0001 0.0407
additive < 0.0001 0.1051
recessive 0.7241 0.9819

Our analysis improves upon the original analysis of these data by Reich et al. [7] with
respect to three points: All three groups and the stratification by gender are taken into
account and and the new test makes use of the correlation between the two loci instead of
applying a Bonferroni correction in order to maintain an overall significance level.

3.2 Simulation Experiments

It might be questioned if the minimal p-value can be observed for the correct mode of
inheritance and thus how good the ‘estimator’ is under practical circumstances. The fre-
quency of correct model identifications and the power of the MAX test is investigated in
some simple situations in the following.

Many different patterns of penetrances fi, disease prevalence p, sample size of cases and
controls R, S can be investigated in a simulation study. We will focus on a high prevalent
disease (i.e. p = 0.5), penetrances according to a additive, recessive and dominant genetic
model (as well as no association characterising the null hypothesis) for a total sample size
of N = 400 divided into the balanced R = S = 200 and several unbalanced sampling
schemes. Unbalanced data are of interest because real data examples exist with seriously
more controls, see e.g. the data in Table 3, or with seriously more cases, see e.g. the
IL13 polymorphism in atopic dermatitis [5], Table 4. For the proposed MAX test both the
global power πglobal(the decision rate in favour of any alternative) and the correct model
identification rates ψadd,ψrec,ψdom are compared with the power of the individual genetic
model tests πadd, πrec, πdom in Table 7.

Per definition all tests control the type I error rates. Clearly, the power is maximal
for the individual, unadjusted tests when the genetic model is known (bold marked). But
the a priori knowledge of the genetic model is commonly unrealistic. For balanced samples
sizes the power of the MAX test is independent of the underlying genetic model and non-
inferior smaller compared with the maximum power for the known model. Additionally to
the global decision that a significant association exists, the MAX test provide an adjusted
p-value for the most likely genetic model. In this case, the identification of the additive
model is most difficult because of the both equal competitors, where the identification of
the dominant or recessive model is easier (and equal) because the additive model is the
only competitor. For unbalanced designs the power decreases although the total sample
size remains constant.
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Table 7: Type I error rate and empirical power estimates: prevalence p = 0.5, 10000 runs

Model R S πglobal ψadd ψrec ψdom πadd πrec πdom

Null 200 200 0.048 0.012 0.017 0.019 0.051 0.047 0.049
Dom 200 200 0.85 0.13 0.01 0.71 0.75 0.23 0.91
Add 200 200 0.84 0.53 0.10 0.21 0.88 0.71 0.78
Rec 200 200 0.86 0.16 0.69 0.01 0.80 0.91 0.28
Dom 100 300 0.72 0.16 0.01 0.55 0.63 0.21 0.80
Add 100 300 0.73 0.43 0.14 0.16 0.78 0.60 0.65
Rec 100 300 0.77 0.16 0.60 0.01 0.67 0.82 0.22
Dom 300 100 0.76 0.11 0.01 0.64 0.66 0.19 0.82
Add 300 100 0.75 0.42 0.09 0.24 0.79 0.59 0.69
Rec 300 100 0.75 0.17 0.55 0.01 0.69 0.82 0.24

4 Conclusions

We propose a flexible approach to permutation tests for association of a bi-allelic marker
with a disease in population-based case-control studies. The joint conditional asymptotic
distribution of the three underlying linear association tests, i.e., Cochran-Armitage tests
with optimal scores for additive, dominant, and recessive modes of inheritance, is known
and can be used to approximate the distribution of the corresponding maximum statistic.
Not only a global p-value can be derived this way but also multiplicity-adjusted p-values for
each of the individual models. When the mode of inheritance is unknown, remarkably high
correct model selection rates can be achieved. Based on a general framework for conditional
inference we extend the MAX test to stratified designs, 3 × k tables as well as multiple
endpoints, i.e., multiple loci. Correlations between loci and corresponding association tests
are taken into account leading to more powerful multiple test procedure. For small sample
sizes, a better approximation of the p-values can be obtained from Monte Carlo resampling
techniques. The proposed procedures are easily applicable using the computational tools
provided by the R add-on package coin as illustrated in the Appendix and a dedicated
package vignette. A future modification will be the use of model-specific genomic-control
corrected tests analogously to Zang et al. [13] in the possible case of population stratifica-
tion.
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Appendix

The Melanoma data are be represented by a table object in R as follows:

R> me <- as.table(matrix(c( 6, 8, 10,

32, 47, 20), byrow = TRUE, nrow = 2,

dimnames = list(Group = c("In situ", "Control"),

Genotype = c("AA", "AG", "GG"))))

R> me <- t(me)

R> me

Group

Genotype In situ Control

AA 6 32

AG 8 47

GG 10 20

The function g is implemented by the following function:

R> add <- c(0, 1, 2)

R> dom <- c(0, 1, 1)

R> rec <- c(0, 0, 1)

R> g <- function(x) {

x <- unlist(x)

cbind(dominant = dom[x], additive = add[x], recessive = rec[x])

}

which then sets up the MAX test for the Melanoma data:

R> library("coin")

R> it <- independence_test(me, xtrafo = g, alternative = "greater")

R> it

Asymptotic General Independence Test

data: Group by Genotype (AA, AG, GG)

maxT = 2.1879, p-value = 0.03047
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The multiplicity-adjusted p-values for both inference and estimating the underlying mode
of inheritance are computed via:

R> pvalue(it, method = "single-step")

dominant additive recessive

0.39065589 0.08686888 0.03034629
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