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Abstract

Here, cmvnorm, a complex generalization of the mvtnorm package is presented. An
application in the context of a complex Gaussian process as fitted to the Weierstrass sigma
function is given
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1. Introduction

The multivariate Gaussian distribution is well supported in R (R Core Team 2014; Genz,
Bretz, Miwa, Mi, Leisch, Scheipl, and Hothorn 2014), having density function
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Here, = Ex € R” is the mean vector and ¥ = E (x — p) (x — )" the variance of random
variable X; we write X ~ A (u,X). One natural generalization would be to consider Z ~
NC (u,T), the complex multivariate Gaussian, with density function
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where z* denotes the Hermitian transpose of complex vector z. Now pu € C™ is the complex
mean and ' = E (Z — p) (Z — p)* is the complex variance; I is a Hermitian positive definite
matrix. Note the simpler form of equation 2, essentially due to Gauss’s integral operating
more cleanly over the complex plane than the real line:
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A zero mean complex random vector Z is said to be circularly symmetric (Goodman 1963)
if EZZ" = 0, or equivalently Z and e'*Z have identical distributions for any a € R. Equation 2
clearly has this property.

Most results from real multivariate analysis have a direct generalization to the complex case,
as long as “transpose” is replaced by “Hermitian transpose”. For example, X ~ N (0,X)
implies BX ~ N (0, BTSB) for any constant matrix B, and analogously Z ~ NC(0,T)
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implies BZ ~ NC (0, B*T'B). Similar generalizations operate for Schur complement methods
on partitioned matrices.

Also, linear regression works without modification. Specifically, consider y € R". If y =
XB+ € where X is a n x p design matrix, 8 € RP a vector of regression coefficients and € ~
N (O, O'QA) is a vector of errors, then B = (XTA’lX) XT A=y is the maximum likelihood
estimator for 3. The complex generalization is B = (X*A’lX)f1 X*A~1z, where A itself
may be complex.

This short vignette introduces the cmvnorm package which furnishes some functionality for
the complex multivariate Gaussian distribution, and applies it in the context of a complex
generalization of the emulator package.

2. The package in use

Random complex vectors are generated using the remvnorm () function, analogous to rmvnorm():

> set.seed(1)
> require(cmvnorm,quietly=TRUE)
> cm <- c(1,11i)
> ¢v <- matrix(c(2,1i,-1i,2),2,2)
> (z <- rcmvnorm(6, mean=cm, sigma=cv))

[,1] [,2]
[1,] 0.9680986+0.5525419i 0.0165969+2.9770976i
[2,] 0.2044744-1.4994889i 1.8320765+0.8271259i
[3,] 1.0739973+0.2279914i -0.7967020+0.17360711
[4,] 1.3171073-0.9843313i 0.9257146+0.5524913i
[5,] 1.3537303-0.80862361 -0.0571337+0.3935375i1
[6,] 2.9751506-0.1729231i 0.3958585+3.3128439i

Function dcmvnorm() returns the density according to equation 2:
> dcmvnorm(z,cm,cv)

[1] 5.103754e-04 1.809636e-05 2.981718e-03 1.172242e-03 4.466836e-03
[6] 6.803356e-07

So it is possible to determine a maximum likelihood for the mean using direct numerical
optimization

> helper <- function(x){c(x[1]+1i*x[2], x[3]+1i*x[4])}
> objective <- function(x){-sum(dcmvnorm(z,mean=helper (x),sigma=cv,log=TRUE))}

> optim(c(1,0,1,0),0bjective)$par

[1] 1.3154087 -0.4478625 0.3857039 1.3727617
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(helper functions are needed because optim() optimizes over R™). This shows reasonable
agreement with the true value of the mean and indeed the analytic value of the MLE, specif-
ically

> colMeans (z)

[1] 1.315426-0.447472i 0.386068+1.3727841

3. The Gaussian process

In the context of the emulator, a (real) Gaussian process is usually defined in terms of a
random function n: RP — R which, for any set of points {xi,...,X,} in its domain the
random vector {n (x1),...,n(x,)} is multivariate Gaussian.

It is convenient to define means and variances as En (x)| 8 = h (x) 3, conditional on the (un-
known) vector of coefficients 3 and h (+), the ¢ known regressor functions of x = (x4, ..., :zrp)T;

a common choice is h (x) = (1,21, ... ,asp)T, but one is free to choose any function of x. The
covariance is typically given by

cov (n(x), n(x')) =V (X — X’)

where V': R — R must be chosen so that the variance matrix of any finite set of observations
is always positive-definite. Bochner’s theorem (Feller 1971, chapter XIX) shows that V (+)
must be proportional to the characteristic function of a symmetric probability Borel measure.

3.1. Complex Gaussian processes

The complex case is directly analogous, with n: C» — C and 8 € C%. Writing COV (7 (z1), ...

Q, so that element (i, )" of matrix Q is COV (1 (2;) ,...,n (zj)), we may relax the reqirement
that €2 be symmetric positive definite to requiring only Hermitian positive definiteness. This
allows one to use the characteristic function of any, possibly non-symmetric, random variable
with support over CP. That () remains Hermitian positive definite may be shown by evaluating
a quadratic form with it and w € C” and establishing that it is real and non-negative:

1(2n)) =
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This motivates the characteristic function of a complex multivariate random variable Z is
defined as Ee¢‘®e(t"Z)  Thus the covariance matrix is Hermitian positive definite: although its
entries are not necessarily real, its eigenvalues are all nonnegative.

In the real case one typically chooses V (-) to be the characteristic function of a Gaussian
distribution; in the complex case one can use the complex multivariate distribution 2 which
has characteristic function

exp (z Re (£ 1) — it*l“t) (3)

and following Hankin (2012) in writing B = I'/4, we can write the variance matrix as a
product of a (real) scalar o2 term and

c(t) = exp (i Re (t* ) — t*Bt). (4)

In equation 4, 5 has the same meaning as in conventional emulator techniques and controls
the modulus of the covariance between 7 (z) and 7 (z'); p governs the phase.

Given the above, it seems to be reasonable to follow Oakley (1999) and admit only diagonal B;
but now distributions with nonzero mean can be considered. Such a parametrization gives 3p
(real) hyperparameters; compare 2p if CP is identified with R??.

4. Functions of several complex variables

Analytic functions of several complex variables are an important and interesting class of
objects; Krantz (1987) motivates and discusses the discipline. Formally, consider f: C* — C,
n > 2 and write f(z1,...,2,). Function f is analytic if it satisfies the Cauchy-Riemann
conditions in each variable separately, that is 0f/0z; =0, 1 < j < n.

Such an f is continuous (due to a “non-trivial theorem of Hartogs”) and continuously differ-
entiable to arbitrarily high order. Krantz goes on to state some results which are startling if
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one’s exposure to complex analysis is restricted to functions of a single variable: for example,
any isolated singularity is removable.

5. Numerical illustration of these ideas

The natural definition of complex Gaussian process above, together with the features of
analytic functions of several complex variables, suggests that a complex emulation of analytic
functions of several complex variables might be a useful technique.

The ideas presented above, and the cmvnorm package, can now be used to sample directly
from an appropriate complex gaussian distribution and estimate the roughness parameters:

> val <- latin.hypercube(40,2,names=c('a','b'),complex = TRUE)
> head(val)

a b
[1,] 0.7375+0.2375i 0.2375+0.7125i
[2,] 0.6875+0.5875i 0.1375+0.3375i
[3,] 0.4625+0.5375i 0.9875+0.5875i
[4,] 0.7875+0.0625i 0.0625+0.78751
[5,]1 0.3875+0.0375i 0.5875+0.7625i
[6,] 0.2125+0.5625i 0.7625+0.9625i

and now specify a variance matrix using simple values for the roughness hyperparameters %5 =
(49) and p = (1,4)":

> true_scales <- c¢(1,2)

> true_means <- c(1,11i)

> A <~ corr_complex(val, means=true_means, scales=true_scales)
> round(A[1:4,1:4],2)

[,1] [,2] [,3] [,4]
[1,] 1.00+0.00i 0.59-0.27i 0.25-0.10i 0.89+0.11i
[2,] 0.59+0.27i 1.00+0.00i 0.20+0.00i 0.42+0.26i
[3,] 0.25+0.10i 0.20+0.00i 1.00+0.00i 0.10+0.06i
[4,] 0.89-0.11i 0.42-0.26i 0.10-0.06i 1.00+0.001

Function corr_complex() is a complex generalization of corr(); matrix A is Hermitian
positive-definite. It is now possible to make a single multivariate observation d of this process,
using B = (1,1 44,1 —2)":

> true_beta <- c(1,1+1i,1-2i)
> d <- drop(rcmvnorm(n=1,mean=regressor.multi(val) J*), true_beta,sigma=4))
> head(d)

[1] 3.212719+1.5949011i 1.874278+0.345517i 3.008503-0.7676181 3.766526+2.0718821
[5] 3.712913+0.8009831 3.944167+0.9248331
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thus d is a single observation from a complex multivariate Gaussian distribution. Most of the
functions of the emulator package operate without modification:

> betahat.fun(val,solve(4),d)

const a b
0.593632-0.01286551 0.843608+1.09204371i 1.140372-2.50537511

but the interpolant () functionality is implemented in the cmvnorm package (the likelihood
function is different). So for example it is possible to evaluate the posterior distribution of
the process at (0.5,0.3 + 0.17), a point at which no observation has been made:

> interpolant.quick.complex(rbind(c(0.5,0.3+0.1i)),d,
+ val,solve(A),scales=true_scales,means=true_means,give.Z=TRUE)

$mstar.star
[1] 1.706402-1.0086011i

$z
[1] 0.203295

$prior
[1] 1.608085-0.104419i

Thus the posterior distribution for the process at this point is Gaussian with a mean of
about 1.73 + 1.03¢ and a variance of about 0.16.

5.1. Analytic functions

These techniques are now used to emulate an analytic function of several complex variables. A
complex function’s being analytic is a very strong restriction; Needham (2004) uses ‘rigidity’
to describe the severe constraint that analyticity represents.

Here the Weierstrass sigma function is chosen as an example, on the grounds that Little-
wood considers the o-function to be a “typical” entire function. The elliptic package (Hankin
2006) is used for numerical evaluation. The o-function takes a primary argument z and two
invariants g1, g2, so a three-column complex design matrix is required:

require("emulator")
require("elliptic")
valsigma <-
2+1i + round(latin.hypercube(30,3,names=c("z","gl","g2"),complex=TRUE)/4,2)
head(valsigma)

vV + Vv Vv Vv

z gl g2
[1,] 2.17+1.15i 2.09+1.22i 2.21+1.09i
[2,] 2.11+1.01i 2.04+1.031 2.25+1.15i
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[3,] 2.10+1.04i 2.15+1.00i 2.22+1.20i
[4,] 2.13+1.10i 2.24+1.21i 2.01+1.16i
[5,] 2.20+1.00i 2.20+1.06i 2.08+1.08i
[6,] 2.05+1.10i 2.19+1.04i 2.11+1.03i

An offset to latin.hypercube() is needed because o (z,¢1,92) = z + O (25) The sigma
function can now be evaluated at the points on the design matrix:

> dsigma <- apply(valsigma,1,function(u){sigma(ul1],g=ul2:3]1)})

Function scales.likelihood.complex() can be used to return the log-likelihood for a spe-
cific set of roughness parameters:

> scales.likelihood.complex(scales=c(1,1,2),means=c(1,1+11i,1-2i),
+ zold=valsigma,z=dsigma,give_log=TRUE)

[1] 144.5415

Numerical methods can then be used to find the maximum likelihood estimate. Because
function optim() optimizes over R™, helper functions are again needed which translate from
the optimand to scales and means:

> scales <- function(x){exp(x[c(1,2,2)])}
> means <- function(x){x[c(3,4,4)] + 1i*x[c(5,6,6)]}

Because the diagonal elements of %6 are strictly positive, their logarithms are optimized,
following Hankin (2005); it is implicitly assumed that the scales and means associated with g
and go are equal.

objective <- function(x){
-scales.likelihood.complex(scales=scales(x),means=means(x),zold=valsigma,z=dsigma)
}
start <-
c(-0.538, -5.668, 0.6633, -0.0084, -1.73, -0.028)
jj <- optim(start,objective,method="SANN",control=list(maxit=100))
(u <- jj$par)

VvV VvV + Vv + + V

[1] -0.5380 -5.6680 0.6633 -0.0084 -1.7300 -0.0280
> Asigma <- corr_complex(zl=valsigma,scales=scales(u),means=means (u))
So now we can compare the emulator against the “true” value:

> interpolant.quick.complex(rbind(c(2+1i,2+1i,2+1i)), zold=valsigma,
+ d=dsigma,Ainv=solve (Asigma),scales=scales(u),means=means (u))
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[1] 3.078956+1.259993i
> sigma(2+1i,g=c(2+1i,2+1i))
[1] 3.078255+1.257819i

showing reasonable agreement. It is also possible to test the hypothesis Hr that the variance
matrix A is real, by calculating the likelihood ratio of the full model 4 and that obtained
by Hp, that is, performing the optimization constrained so that p € R2:

ob2 <- function(x){
-scales.likelihood. complex(scales=scales(x),means=c(0,0,0),zold=valsigma,z=dsigma)

>

+
+ }
> jjr <- optim(ul1:2],0b2,method="SANN",control=1list(maxit=1000))
> (ur <- jjr$par)

[1] 0.2136577 -4.2640825

so the test statistic D is given by

> LR <- scales.likelihood.complex(scales=scales(ur),means=c(0,0,0),zold=valsigma,z=dsigma)
> LC <- scales.likelihood.complex(scales=scales(u),means=means (u),zold=valsigma,z=dsigma)
> (D <- 2*(LC-LR))

[1] 22.17611

Observing that D is in the tail region of its asymptotic distribution, x3, the hypothesis Hg
may be rejected.

6. Conclusions

The cmvnorm package for the complex multivariate Gaussian distribution has been intro-
duced and motivated. The Gaussian proces has been generalized to the complex case, and a
complex generalization of the emulator technique has been applied to an analytic function of
several complex variables. The complex variance matrix was specified using a novel param-
eterization which accommodated non-real covariances in the context of circulary symmetric
random variables. Further work might include numerical support for the complex multivariate
Student ¢t distribution.
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