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Abstract

Nonparametric tests such as Wilcoxon rank sum test and Wilcoxon signed rank test are
widely used in the situation where the underlying distribution of the population is far from
normal or simply unknown. One necessary assumption for the appropriateness of the null
distribution of the test statistic is that each observation is independent, however, this is also
an assumption which is violated quite often in practice. For instance, in the study of human
eyes, each person is the unit of randomization, whereas the data is collected from both eyes,
therefore we sould expect correlation between the data collected from the two eyes from
the same person. To account for the clustering effect, modifications of these two tests have
been proposed by Rosner, Glynn, and Lee (2003) and Rosner, Glynn, and Lee (2006). The
modified tests work for both balanced and unbalanced data, i.e., cluster size is idential or
variable. In addition, the modified rank sum test can also deal with stratified data. No R
package is available so far for nonparametric tests for clustered data. The package clusrank

is a realization of the test procedures from the two papers mentioned above with both small
and large sample tests.

Keywords: Wilcoxon rank sum test, Wilcoxon signed rank test.

1. Introduction

Clustered data often arise in biomedical studies, e.g., when the research objects are eyes, ears,
teath, etc. In these cases, the observations can be classified into a number of distinct groups
or "clusters", where the observations are more similar within each cluster than when they are
from different clusters. For instance, when measurements are taken from both eyes of each
patient, the measurments from the same person should be correlated whereas measurements
taken from different patients should be independent. Quite often, the goal of study is to compare
the measurements on the response variable from the control group and the treatment group or
the measurements before and after a treatment to see if the treatment effect is present. The
parametric statistical tests which explicitly account for clustering include an adjusted version of
the standard two-sample t test which account for the intracluster correlation (i.e., correlation
among obervations within the clusters) when the response variable follows a normal distribution
and a adjusted χ2 statistic when the response variable is binary (Donner and Banting 1988).

When the response variable is neither normal or binary, e.g., the observations are ordinal, the
aforementioned tests are no longer suitable. An attractive alternative is non-parametric test.
However, standard non-parametric tests requires the observations to be independent, which is
violated when the data is clustered. If the intracluster correlation is positive, then the variance
of the standard test statistic will be underestimated. Rosner et al. (2003) proposed a Wilcoxon
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rank sum test for clustered data to compare two groups assuming that the members within each
cluster is exchangeble and objects from the same cluster belong to the same group.Their method
is able to deal with unbalanced data (i.e., data with variable cluster sizes) and stratified data
(e.g., data from a multi-center study which is stratified by centers). Another modified rank sum
test for clustered data was proposed by Datta and Satten (2005), their method is valid even when
the members of the same cluster came from different groups, or when the intraclulster correlation
is determined by the group membership. To compare paired observations, an adjusted version
of wilcoxon signed rank test was proposed by Larocque (2005) which invovles an estimate of
variance based on certain sum of square over independent clusters, but this test procedure is not
distribution free. Rosner et al. (2006) proposed another modified signed rank test assuming a
common intercluster correlation and estimate it from absolute rank of observations. Datta and
Satten (2008) proposed a signed rank test procedure based on the principle of general with-in
cluster resampling and this test can handle the case when the cluster size is informative, i.e.,
cluster size depends on the group.

Despite the popularity of clustered data in a wide range of contexts such as clinical trials,
longitudinal study, social science, etc, there is no available R package nor function publically
available for non-parametric test for clustered data yet. Therefore a package pacted with functions
for this purpose will help researchers and scientists in related areas as a ready tool for testing
clustered data. In this paper we present the clusrank package, a realization of test procedures
presented in Rosner et al. (2003) and Rosner et al. (2006). Large-sample inference based on
asymptotic distribution of test statistics and small-sample inference based on permutation are
provided for both rank sum test and signed rank test. The tests provided can also handel
unbalanced data when there are clusters with different sizes, in addition, for rank sum test, the
effect of stratification as an extra cofounding variable can also be accounted for.

The order of this paper is as following, section 2 introduces Wilcoxon rank sum test and Wilcoxon
signed rank test for clustered data, when data is balanced or unbalanced. In addition, the
modification of rank sum test when data is stratified is also discussed. Section 3 is a real data
analysis for a eye study. The article is summarized in section 4.

2. Tests

2.1. Wilcoxan Rank Sum Test for Clustered Data

Hypothesis

Suppose there are two groups under different treatments, X and Y , the null hypothesis of the rank
sum test is that the probability of an observation from a treatment X exceeding an observation
from treatment Y is the same as an observation from treatment Y exceeding an observation from
treatment X. Specifically, assume the data came in clusters and let Xij denote the score for the
jth subunit from the ith cluster in the first group, i = 1, . . . , m; j = 1, . . . , gi and Ykl denote the
score for the lth subunit from the kth cluster in the second group, k = 1, . . . , n; l = 1, . . . , hk.
The clustered Wilcoxon rank sum statistic Wc,obs is defined as

Wc,obs =
m∑

i=1

gi∑

j=1

Rank(Xij) (1)

where ranks are determined based on the combined sample of all subunits over the X and Y
clusters. Subunits for a given cluster are assumed to be exchangeable and each cluster only
contains members from one treatment group.
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Balanced data

Under balanced designs, the cluster sizes are the same. Since the score assigned to clusters
under treatments X and Y are identically distributed under the null hypothesis, we can pool
X and Y clusters together and refer to a combined set of Z clusters, where Zij =score for the
jth subunit of the ith cluster, j = 1, . . . , g, i = 1, . . . , m + n = N . Under H0, suppose that m
of the N clusters are assigned at random to the X treatment and the remaining n clusters to
the Y treatment. Let δi be an indicator function that equals 1 when the ith cluster is assigned
to the X group and 0 when the ith cluster is assigned to the Y group. The distribution of the
clustered rank sum statistic Wc,obs is

Wc =
N∑

i=1

δiRi+ where Ri+ =
g∑

j=1

Rij (2)

where Rij =rank of the jth subunit in the ith cluster among all gN subunits over all Z clusters.
It is shown that under H0,

E(Wc) = gm(gN + 1)/2 (3)

and

Var(Wc) = [mn/{N(N − 1)}]
N∑

i=1

{Ri+ − g(1 + gN)/2}2 (4)

So a natural large sample test statistic based on (2), (3), and (4) is

Zc = {Wc − E(Wc)}/{Var(Wc)}1/2 (5)

Zc is asymptotically normal if both m → ∞ and n → ∞. When the sample size is small,
permutation test can be performed.

Unbalanced data

For unbalanced designs, the null distribution of the sum of rank assigned to each cluster are not
identically distributed across clusters with different sizes. Let (mg, ng) = number of clusters of
size g assigned to the X and Y treatment respectively. Denote Ng = mg + ng for g = 1, . . . , gmax

as the total number of clusters for clusters with size g, and N =
∑gmax

g=1 Ng as the total number
of clusters in the sample. Let Rij,g = rank for the jth subunit in the ith cluster of size g,
g = 1, . . . , gmax, i = 1, . . . , Ng, j = 1, . . . , g, where Rij,gs are computed based on the combined
sample. The rank sum statistic can then be written as:

Wc,obs =
gmax∑

g=1

∑

i∈Ig,obs

Ri+,g (6)

where Ri+,g = sum of ranks of all subunits in the ith cluster of size g, i = 1, . . . , Ng. The
distribution corresponding to Wc,obs is

Wc ==
gmax∑

g=1

=
gmax∑

g=1

Ng∑

i=1

δi,gRi+,g (7)

where δi,g = 1 if the ith cluster of size g is assigned to group X, and is 0 otherwise. The
corresponding E(Wc) and Var(Wc) are as following:

E(Wc) =
gmax∑

g=1

mg(R++,g/Ng) (8)
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Var(Wc) =
gmax∑

g=1

[mgng/{Ng(Ng − 1)}]
Ng∑

i=1

(Ri+,g − R++,g/Ng)2 (9)

A large-sample test statistics based on Wc is as following:

Zc = {Wc − E(Wc)}/{Var(Wc)}1/2 (10)

Again, when sample size is small, permutation test can be applied based on (7)

When applying the ranksum test for the clustered data, a formula is used as a interface where the
response variable is on the righthand side and covariates on the lefthand side. Special functions
group, cluster and stratum are used to indicate the function of each variable, group indicates
the id of the treatment group, cluster indicates the membership of an observation in a specific
cluster and stratum indicates the stratum an observation belongs to.

library(clusrank)

data(crd)

## Using large-sample test.

cluswilcox.test(z ~ group(group) + cluster(id), data = crd)

##

## Wilcoxon rank sum test for clutered data

##

## data: z from crd, cluster: id, group: group,

## Rank sum statistic = 19505

## Expected value of rank sum statistic = 20013

## Variance of rank sum statistic = 631030

## Test statistic = -0.63924, p-value = 0.5227

## difference in locations = 0

## The data is unbalanced

## alternative hypothesis: true difference in locations is not equal to 0

## For small sample, using the permutation test.

cluswilcox.test(z ~ group(group) + cluster(id), data = crd, permutation = TRUE)

##

## Wilcoxon rank sum test for clutered data

##

## data: z from crd, cluster: id, group: group,

## Rank sum statistic = 19505

## p-value = 0.556

## location = 0

## The data is unbalanced

## alternative hypothesis: true location is not equal to 0

Data with Stratification

Futher more, if the data is also stratified, the test statistic and its null distribution will need
modification to control for stratification as an extra confounding variable. Suppose there are
V strata, let (mg,v, ng,v) = number of clusters of size g in stratum v assigned to theX and Y
clusters of size g in stratum v respectively, g = 1, . . . , gmax, v = 1, . . . , V . Let Ri+,g,v be the rank
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sum for the subunits in the ith cluster of size g in the vth stratum. The rank sum statistic is
defined as

Wc,obs =
gmax∑

g=1

V∑

v=1


 ∑

i∈Ig,v,obs

Ri+,g,v


 (11)

where Ig,v,obs is the observed subset of mg,v unique indices selected from {1, . . . , Ng,v}, correspond-
ing to cluster of size g in stratum v that are assigned to the X treatment. The corresponding
expectation and variance of the null distribution of Wc,obs

E(Wc) =
gmax∑

g=1

V∑

v=1

mg,vR++,g,v/Ng,v

Var(Wc) =
gmax∑

g=1

V∑

v=1

[mg,vng,v/{Ng,v(Ng,v − 1)}]

×

Ng,v∑

i=1

(Ri+,g,v − R++,g,v/Ng,v)2

The large sample test statistic is then

Zc = {Wc − E(Wc)}/{Var(Wc)}1/2. (12)

Again, permutation test can be applied when sample size is small.

Following is an illustration of the rank sum test for the stratified data, the crdStr data is a test
data set comes with the package:

data(crdStr)

cluswilcox.test(z ~ group(group) + cluster(id) + stratum(stratum), data = crdStr)

##

## Wilcoxon rank sum test for clutered data

##

## data: z from crdStr, stratum: stratum, cluster: id, group: group,

## Rank sum statistic = 222250

## Expected value of rank sum statistic = 227660

## Variance of rank sum statistic = 20338000

## Test statistic = -1.198, p-value = 0.2309

## difference in locations = 0

##

## alternative hypothesis: true difference in locations is not equal to 0

2.2. Wilcoxon signed rank test for clustered data

Hypothesis

Let Xij(Yij) denotes the baseline (follow-up) score for the jth subunit in the ith cluster (subject)
and define Zij = Yij − Xij , j = 1, . . . , gi; i = 1, . . . , m. Within each cluster, the difference scores
are assumed to be independent and identically distributed. The signed rank test is used to find
out if the population is shifted after the treatment. Formally, hypothesis being tested is
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H0 : the difference score Z is symmetric about 0

vs
H1 : Z is symmetric about γ, γ 6= 0.

Rank |Zij | over the total of G =
∑m

i=1 gi subunits from the m clusters and let Sij = RijVij , where
Rij = rank of |Zij | within the total data set of G subunits over m clusters, and Vij = sign(Zij).

Balanced Data

If the data is balanced, the clustered Wilcoxon signed rank statistic is defined as following:

T (obs)
c =

m∑

i=1

Si+ ≡
m∑

i=1

g∑

j=1

RijVij , (13)

where Si+ =
∑g

j=1 Sij which is the sum of the rank within ith cluster and only consider nonzero
Zij in the computation of signed ranks. When considering the randomization distribution
corresponding to Tc, the unit of randomization is the cluster. Let δ1, . . . , δm be i.i.d. random
variables each taking on the values +1 and -1 with probability 1/2, then the distribution of
T

(obs)
c is:

Tc =
m∑

i=1

δiSi+. (14)

It is shown that under H0, E(Tc) = 0 and Var(Tc) =
∑m

i=1 S2
i+. Standarize T

(obs)
c with E(Tc)

and Var(Tc), the large sample test statistic is defined as

Zc = Tc

/(
n∑

i=1

S2
i+

)1/2

∼ N(0, 1) under H0. (15)

When the sample size is small, a permutation test can be applied.

For the signed rank test, the input should be a numeric vector which contains the difference
between the paired observations, or two vectors, where vector x contains observations before the
treatment, and y contains observations after the treatment. This manner of input is restricted
to the signed rank test.

## Large sample signed rank test for clustered data

data(crsd)

cluswilcox.test(z, cluster = id, data = crsd)

##

## Wilcoxon signed rank test for clutered data

##

## data: z, cluster: id from crsd

## rank statistic = -110

## Variance of rank statistic = 30178

## test statistic = -0.63321, p-value = 0.5266

## total number of observations = 40, total number of clusters = 20

##

## alternative hypothesis: true location shift is not equal to 0
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## Small sample test

data(crsd)

cluswilcox.test(z, cluster = id, data = crsd, permutation = TRUE)

##

## Wilcoxon signed rank test for clutered data using permutation

##

## data: z, cluster: id from crsd

## rank statistic = -110

## p-value = 0.444

## total number of observations = 40, total number of clusters = 20

##

## alternative hypothesis: true location shift is not equal to 0

Unbalanced Data

When the data is unbalanced the test statistic is defined as:

T (obs)
c =

m∑

i=1

wiS̄i (16)

where S̄i = Si+/gi, wi = 1/Var(S̄i) under H0. The randomization distribution corresponding to
T obs

c,s =
∑m

i=1 δiwiS̄i. δ is defined as in (14). The test statistic is defined as

Zc,s = Tc,s

/(
m∑

i=1

ŵ2
i S̄2

i

)1/2

∼ N(0, 1) under H0, (17)

where ŵi = gi/[V̂ ar(Sij){1+(gi −1)ρ̂s,cor}], ρ̂s,cor = ρ̂s

(
1 + 1−ρ̂2

s

m−5/2

)
,ρ̂s = max [σ̂2

A/(σ̂2
A + σ̂2), 0],

σ̂2 =
∑m

i=1

∑gi

j=1(Sij − S̄i)2/(G − m), σ̂2
A = max [{

∑m
i=1 gi(S̄i − ¯̄S)2/(m − 1) − σ̂2}/g0, 0], g0 =

[
∑m

i=1 gi −
∑m

i=1 g2
i /
∑m

i=1 gi]/(m − 1) and V̂ ar(Sij) =
∑m

i=1

∑gi

j=1(Sij − ¯̄S)2/(G − 1).

An illustration of use of the test is as following:

data(crsdUnb)

cluswilcox.test(z, cluster = id, data = crsdUnb)

##

## Wilcoxon signed rank test for clutered data

##

## data: z, cluster: id from crsdUnb

## adjusted rank statistic = -0.015709

## Variance of adjusted rank statistic = 0.00123

## test statistic = -0.44794, p-value = 0.6542

## total number of observations = 748, total number of clusters = 142

## The signed rank test statistics is adjusted since the data is unbalanced.

## alternative hypothesis: true location shift is not equal to 0

3. Real Data Analysis
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3.1. Data

To illustrate the usage of the package, we are going to perform the clustered Wilcoxon rank sum
test on a real data set in a study of eyes. Age-related macular degeneration (AMD) is a disease
that blurs the sharp centeral vision by affecting macula, a oval yellow spot near the center of
the retina of the human eye. The complement factor H R1210C is a large protein that circulates
in human plasma. The variant of this protein confers the strongest genetic risk for AMD and
earlier age at onset. The objective of the study is to characterize the observable traits of this
variant. The study was carried out by the Seddon Lab (Seddon, Sharma, and Adelman 2006;
Ferrara and Seddon 2015) with 143 patients (283 eyes) involved, including 62 patients with the
rare variant. The degree of severity of AMD was graded based on the Clinical Age-Related
Maculopathy Staging (CARMS) system for each enrolled eye. The CARMS system has a 5-step
scale, where 1 to 3 represent no symptom, earlier and intermediate severity respectively, 4 and 5
represent two different symptoms of the advanced AMD, geographic atrophy and neovascular
disease respectively. The CARMS grades were assessed separately for these two advanced stages,
i.e., we are going to carry out the analysis on two subsets of the observations respectively: the
subset of observations with CARMS grade 1, 2, 3, or 4, and the subset of observations with
CARMS grade 1, 2, 3, or 5. Since high correlation between eyes of the same patient is expected
while observations from different patients can be assumed as independent, the data is clustered
in pairs and each subject is a cluster. The data also provided information on age and sex,
and an extra variable combined age and sex, which could be used to stratify the data. In this
analysis, the CARMS grade is the response variable and treatment refers to the presence of
the complement factor H R1210C variant. The data set contains 7 variables: ID is the subject
identifier which is the cluster id.

## Carry out clustered rank sum test for the subset

## with CARMS grade 1, 2, 3 and 4.

data(sedlab)

cluswilcox.test(CARMS ~ cluster(ID) + stratum(Agesex) + group(Variant),

data = sedlab, subset = CARMS %in% c(1, 2, 3, 4))

##

## Wilcoxon rank sum test for clutered data

##

## data: CARMS from sedlab, stratum: Agesex, cluster: ID, group: Variant,

## Rank sum statistic = 8792

## Expected value of rank sum statistic = 10867

## Variance of rank sum statistic = 258650

## Test statistic = -4.0797, p-value = 4.509e-05

## difference in locations = 0

## The data is unbalanced

## alternative hypothesis: true difference in locations is not equal to 0

## Carry out clustered rank sum test for the subset

## with CARMS grade 1, 2, 3 and 5.

data(sedlab)

cluswilcox.test(CARMS ~ cluster(ID) + stratum(Agesex) + group(Variant),

data = sedlab, subset = CARMS %in% c(1, 2, 3, 5))

##

## Wilcoxon rank sum test for clutered data
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##

## data: CARMS from sedlab, stratum: Agesex, cluster: ID, group: Variant,

## Rank sum statistic = 14502

## Expected value of rank sum statistic = 15583

## Variance of rank sum statistic = 340860

## Test statistic = -1.8519, p-value = 0.06404

## difference in locations = 0

## The data is unbalanced

## alternative hypothesis: true difference in locations is not equal to 0

When controlled for the stratification covariate Agesex, the p-value for CARMS grades 1-4 is
less than 0.001, which implies strong correlation between the presence of the complement factor
H R1210C variant and the severity of AMD when treating geographic atrophy as the advanced
stage. The p-value for CARMS grades 1,2,3 and 5 is 0.06, again the evidence is relatively strong
the the presence of the variant does affect the severity of AMD when treating neovascular disease
as the advanced stage.

4. Summary

In this artical, Wilcoxon rank sum test and Wilcoxon signed rank test adjusted for the clustering
effect in the data are introduced. The usage of the R package clusrank carrying out the two tests
is illustrated with examples. Both the tests are able to handel unbalanced data. In addition, the
clustered Wilcoxon rank sum test also permits an extra covariate as stratification variable.
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