
An introduction of drawing genomic figures with circlize

Zuguang Gu <z.gu@dkfz.de>

September 1, 2014

1 Introduction

Since circos plots are mostly used in genomic research, the circlize package particularly provides functions
which focus on genomic plots. These functions are synonymous to the basic circos graphical functions
but expect special format of input data:

• circos.genomicTrackPlotRegion: create a new track and add graphics.

• circos.genomicPoints: low-level function, add points

• circos.genomicLines: low-level function, add lines

• circos.genomicRect: low-level function, add rectangles

• circos.genomicText: low-level function, add text

• circos.genomicLink: add links

The genomic functions are implemented by basic circos functions (e.g. circos.trackPlotRegion,
circos.points), thus, you can customize your own plots by both genomic functions and basic circos
functions.

2 Input data

Genomic circos functions expect input data as a data frame or a list of data frames in which there are at
least three columns. The first column is genomic category (e.g. chromosome), the second column is the
start positions in the genomic category and the third column is the end positions. Following columns
are optional where numeric values or other related values are stored. Such data structure is known as
BED format and is broadly used in genomic research.

circlize provides a simple function generateRandomBed which can generate random genomic data.
Positions are uniformly generated from human genome. In the function, nr and nc are number of rows
and numeric columns that users want. Please note nr are not exactly the same to the number of rows
which are returned by the function. fun is a self-defined function to generate random values.

> bed = generateRandomBed()

> bed = generateRandomBed(nr = 200, nc = 4)

> bed = generateRandomBed(fun = function(k) runif(k))

3 Initialize with cytoband data

Similar as general circos plots, the first step is to initialize the plot with genomic categories. In
most situations, genomic categories are measured by chromosomes. The easiest way is to used cir-

cos.initializeWithIdeogram:

> circos.initializeWithIdeogram()

By default, the function will initialize the plot with cytoband data of hg19. You can also use your own
cytoband data by specifying the path of your cytoband file (no matter compressed or not) or providing
your cytoband data as a data frame. An example for cytoband file is http://hgdownload.cse.ucsc.

edu/goldenpath/hg19/database/cytoBand.txt.gz.

1

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cytoBand.txt.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cytoBand.txt.gz

> cytoband.file = paste(system.file(package = "circlize"),

+ "/extdata/cytoBand.txt", sep = "")

> circos.initializeWithIdeogram(cytoband.file)

> cytoband.df = read.table(cytoband.file, colClasses = c("character", "numeric",

+ "numeric", "character", "character"), sep = "\t")

> circos.initializeWithIdeogram(cytoband.df)

If you want to read cytoband data from file, please explicitly specify colClasses arguments and
set the class of position columns as numeric. The reason is since positions are represented as integers,
read.table would treat those numbers as integer by default. In initialization of circos plot, circlize
needs to calculate the summation of all chromosome lengths. The sumation of such large integers would
throw error of data overflow.

For simple use, users can also specify abbreviation of the species and the function will download
cytoband file from UCSC server automatically (If it exists in UCSC).

> circos.initializeWithIdeogram(species = "hg18")

> circos.initializeWithIdeogram(species = "mm10")

By default, the function will use all chromosomes which are available in cytoband data to initialize
the circos plot. Users can also choose a subset of chromosomes by specifying chromosome.index. Please
note this argument is only used for subsetting but not for ordering.

> circos.initializeWithIdeogram(chromosome.index = c("chr1", "chr2"))

Initialization step is important for circos plot. It controls the order of chromosomes which is going to
be shown on the circle. There are several ways to control the order. If cytoband is provided as a data
frame, and if the first column is a factor, the order of chromosomes would be levels(cytoband[[1]]).
If the first column is not a factor, the order of chromosomes would be unique(cytoband[[1]]). If
sort.chr is set to TRUE, chromosomes will be sorted (first by numbers then by letters).

> cytoband = read.table(cytoband.file, colClasses = c("character", "numeric",

+ "numeric", "character", "character"), sep = "\t")

> circos.initializeWithIdeogram(cytoband, sort.chr = FALSE)

> cytoband[[1]] = factor(cytoband[[1]], levels = paste("chr", c(22:1, "X", "Y")))

> circos.initializeWithIdeogram(cytoband, sort.chr = FALSE)

> cytoband = read.table(cytoband.file, colClasses = c("character", "numeric",

+ "numeric", "character", "character"), sep = "\t")

> circos.initializeWithIdeogram(cytoband, sort.chr = TRUE)

If cytoband is specified as a file path, or species is specified, the order of chromosomes depends on
the original order in the source file.

circlize provides a function read.cytoband which can read/download and process cytoband data. In
fact, circos.initializeWithIdeogram calls read.cytoband internally. Please refer to the help page of
the function for more details.

> cytoband = read.cytoband()

> cytoband = read.cytoband(file)

> cytoband = read.cytoband(df)

> cytoband = read.cytoband(species)

After the intialization of the circos plot, the function will additionally create a track where there are
genomic axes and chromosome names, and create another track where there is an ideogram. plotType

can be used to control which graphics need to be plotted.

> circos.initializeWithIdeogram(plotType = c("axis", "labels"))

> circos.initializeWithIdeogram(plotType = NULL)

> # height of these pre-defined tracks can be set

> circos.initializeWithIdeogram(track.height = 0.05)

> circos.initializeWithIdeogram(ideogram.height = 0.05)

Similar as general circos plot, the layout of circos plot can be controlled by circos.par

2

> circos.par("start.degree" = 90)

> circos.initializeWithIdeogram()

> circos.clear()

> circos.par("gap.degree" = rep(c(2, 4), 11))

> circos.initializeWithIdeogram()

> circos.clear()

0MB

90MB

180MB

1

0MB

90MB

180M
B

2

0M
B

90M
B180M

B

30M
B

90M
B

18
0M

B

4

0M
B

90
M

B18
0M

B

5

0M
B

90
M

B6

0MB

90MB7

0MB

90MB8

0MB

90MB9

0MB

90MB

10

0MB

90MB11

0MB

90M
B12

0M
B

90M
B13

0M
B

90M
B14 0M
B

90
M

B15

0M
B

90
M

B16

0M
B 17

0M
B18

0M
B19

0M
B20

0MB21

0MB22

0MB

90MB

X

0MBY

default 0MB

50MB

100MB

150MB

200MB

1

0M
B

50M
B100M

B

150M
B

200M
B 20M

B

50
M

B10
0M

B15
0M

B

3

0M
B

50MB

100MB

150MB

4

0MB

50MB

100MB

150MB

5

0MB

50MB

100M
B

150M
B

6

0M
B

50M
B

100M
B 15

0M
B

7

0M
B

50
M

B

10
0M

B8

0M
B

50
M

B

100MB

9

0MB

50MB

100MB

10
subset of chromosomes 0MB

90MB

180MB

1

0MB

90MB 100MB

90M
B 110M

B

90M
B 12

0M
B90M

B 13

0M
B

90
M

B

14

0M
B90
M

B

15

0M
B90

M
B

16

0M
B17

0M
B

18

0MB

19

0MB

90MB

180MB

2

0MB

20

0MB2
1

0MB2
2

0MB

90MB

180MB

3

0MB

90M
B

180M
B

4

0M
B

90M
B

180M
B5

0M
B 90

M
B6

0M
B

90
M

B7

0M
B

90
M

B

8

0M
B

90MB

9

0MB

90MB

X

0MBY

read from cytoband file

0MB

22

0MB

210MB

200MB

190MB

180MB

170M
B

90M
B 160M
B

90M
B 15

0M
B90M

B 14

0M
B

90
M

B

130M
B

90
M

B

12

0M
B90

M
B

11

0M
B

90
MB10

0MB

90MB9

0MB

90MB8

0MB

90MB7

0MB

90MB6

0MB

90M
B

180M
B

5

0M
B

90M
B

180M
B4

0M
B

90M
B

18
0M

B3

0M
B

90
M

B

18
0M

B

2

0M
B

90
MB

180MB

1

0MB

90MB

X
0MBYread from cytoband file

first column converted to factor
levels = paste0('chr', c(22:1, 'X', 'Y'))

0MB

90MB

180MB

1

0MB

90MB

180M
B

2

0M
B

90M
B180M

B

30M
B

90M
B

18
0M

B

4

0M
B

90
M

B18
0M

B

5

0M
B

90
M

B6

0MB

90MB7

0MB

90MB8

0MB

90MB9

0MB

90MB

10

0MB

90MB11

0MB

90M
B12

0M
B

90M
B13

0M
B

90M
B14 0M
B

90
M

B15

0M
B

90
M

B16

0M
B 17

0M
B18

0M
B19

0M
B20

0MB21

0MB22

0MB

90MB

X

0MBY

read from cytoband file
sort.chr = TRUE

0MB

90MB

180MB

1

0MB

90MB

180M
B

2

0M
B

90M
B180M

B

30M
B

90M
B

18
0M

B

4

0M
B

90
M

B18
0M

B

5

0M
B

90
M

B6

0MB

90MB7

0MB

90MB8

0MB

90MB9

0MB

90MB

10

0MB

90MB11

0MB

90M
B12

0M
B

90M
B13

0M
B

90M
B14 0M
B

90
M

B15

0M
B

90
M

B16

0M
B 17

0M
B18

0M
B19

0M
B20

0MB21

0MB22

0MB

90MB

X

0MBY

plotType = c('axis', 'labels')

plotType = NULL

0M
B

90
M

B

18
0M

B1

0M
B

90
M

B

18
0M

B

2

0MB

90MB

180MB

3

0MB

90MB

180MB

4

0MB

90MB

180MB

5

0MB

90MB 6

0M
B

90M
B 70M

B90M
B 8

0M
B

90
M

B

9

0M
B90
M

B

10

0M
B

90
M

B

11

0M
B

90MB12

0MB

90MB13

0MB

90MB14

0MB

90MB15

0MB

90MB

16

0MB

17

0MB

18

0MB

19

0M
B
20

0M
B

210M
B

220M
B

90M
BX

0M
B

Y

'start.degree' = 90 0MB

100MB

200MB

1

0MB

100MB

200MB

2

0M
B

100M
B30M

B100M
B40M

B

10
0M

B

5

0M
B10

0M
B

6

0M
B

100MB

7

0MB

100MB8

0MB

100MB9

0MB

100MB

10

0MB

100MB

11

0MB

100MB

12

0M
B

100M
B13

0M
B

100M
B14

0M
B

100M
B15 0M
B

16

0M
B17

0M
B18

0M
B19

0M
B20

0MB21

0MB22

0MB

100MB

X

0MBY

'gap.degree' = rep(c(2, 4), 12)

Figure 1: Different ways to initialize genomic circos plot

Please refer to figure 1 for examples of different ways to initialize genomic circos plot.

4 Customize ideogram

The default style of ideogram can be changed. If plotType is set to NULL, circos layout is only initialized
but nothing is plotted. Then several new tracks can be created and new style of ideogram can be added
by users. In the following example, we use different colors to represent chromosomes and change the
style of chromosome names (figure 2).

3

> circos.initializeWithIdeogram(plotType = NULL)

> circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

+ chr = get.cell.meta.data("sector.index")

+ xlim = get.cell.meta.data("xlim")

+ ylim = get.cell.meta.data("ylim")

+ circos.rect(xlim[1], 0, xlim[2], 0.5,

+ col = rgb(runif(1), runif(1), runif(1)))

+ circos.text(mean(xlim), 0.9, chr, cex = 0.5, facing = "clockwise", niceFacing = TRUE)

+ }, bg.border = NA)

chr1

chr2

chr3

chr4

ch
r5

ch
r6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

ch
r1

6

ch
r1

7

ch
r1

8

ch
r1

9

ch
r2

0

ch
r21

chr22

chrX

chrY

Figure 2: Customize ideogram

5 Initialize with general genomic category

Cytoband data is just a special case of genomic category. circos.genomicInitialize can initialize
circos plot with any kind of genomic categories. In fact, circos.initializeWithIdeogram is imple-
mented by circos.genomicInitialize. The input data for the function is a data frame with at least

4

three columns. The first column is genomic category (for cytoband data, it is chromosome name), and
the next two columns are genomic positions in each genomic category. The range of each category will
be inferred from the minimun position and the maximum position in corresponding category. In the
following example, a circos plot is initialized with three genes.

> df = data.frame(

+ name = c("TP53", "TP63", "TP73"),

+ start = c(7565097, 189349205, 3569084),

+ end = c(7590856, 189615068, 3652765))

> circos.genomicInitialize(df)

Note it is not necessary that the record for each gene is one row.
As explained in previous section, the order of genomic categies is controlled by the first column of

df which depends whether it is a factor or a simple vector. Alternative names can be assigned to each
category and the order of alternative names correspond to the order of genomic categories.

> circos.genomicInitialize(df)

> circos.genomicInitialize(df, sector.names = c("tp53", "tp63", "tp73"))

> circos.genomicInitialize(df, plotType)

> circos.par(gap.degree = 2)

> circos.genomicInitialize(df)

Figure 3 initializes a circos plot with three genes and plots all alternative transcripts. The transcripts
are drawn by circos.genomicRect which will be explained in following sections.

6 Create plotting regions

In following sections, chromosome will be used as the type of genomic category.
Similar as circos.trackPlotRegion, circos.genomicTrackPlotRegion also accepts a self-defined

function panel.fun which is applied in every cell but with different form.

> circos.genomicTrackPlotRegion(data, panel.fun = function(region, value, ...) {

+ circos.genomicPoints(region, value, ...)

+ })

Inside panel.fun, users can use low-level genomic graphical functions to add basic graphics in each
cell. panel.fun expects two arguments region and value. region is a data frame containing start
position and end position in the current chromosome which is extracted from data. value is also a data
frame which contains other columns in data. There should be a third arguments ... which is mandatory
and is used to pass user-invisible variables to inner functions.

Since circos.genomicTrackPlotRegion will create a new track, it needs values to calculate range
of y-values to arrange data points. Users can either specify the index of numeric columns in data by
numeric.column (named index or numeric index) or set ylim. If none of them are set, the function will
try to look for all numeric columns in data (of course, excluding the first three columns), and set them
as numeric.column.

> circos.genomicTrackPlotRegion(data, ylim = c(0, 1),

+ panel.fun = function(region, value, ...) {

+ circos.genomicPoints(region, value, ...)

+ })

> circos.genomicTrackPlotRegion(data, numeric.column,

+ panel.fun = function(region, value, ...) {

+ circos.genomicPoints(region, value, ...)

+ })

6.1 Points

circos.genomicPoints is similar as circos.points. The difference is circos.genomicPoints expects
a data frame containing genomic regions and a data frame containing values. The data column for plotting

5

0KB

10KB

20KB

30KB

40KB

50KB

60KB

70K
B

80K
B

90K
B

10
0K

B

11
0K

B12
0K

B

13
0K

B

14
0K

B

150KB

160KB

170KB

180KB

190KB

200KB

210KB

220KB

230KB

240KB

250KB

260K
B

TP73

0K
B

10K
B 20

K
B

30
K

B

40
K

B

50
KB

60
KB

70KB

80KB

TP63

0KB

10KB

20KB

T
P

53

Figure 3: A circos plot with three genes

should be indicated by numeric.column. If the function is called inside circos.genomicTrackPlotRegion
and users have been already set numeric.column in circos.genomicTrackPlotRegion, proper value of
numeric.column will be passed to circos.genomicPoints through ... in panel.fun. Which means,
you need to add ... as the final argument in circos.genomicPoints to pass such information into it.
If numeric.column is not set, circos.genomicPoints will use all numeric columns detected in value.

> circos.genomicPoints(region, value, ...)

> circos.genomicPoints(region, value, numeric.column = c(1, 2))

> circos.genomicPoints(region, value, cex, pch)

> circos.genomicPoints(region, value, sector.index, track.index)

If there is only one numeric column, graphical parameters such as pch, cex can be of length one or
number of rows of region. If there are more than one numeric columns specified, points for each numeric
column will be added iteratively, and the graphical parameters should be either length one or number of
numeric columns specified.

6

6.2 Lines

circos.genomicLines is similar as circos.lines. The setting of graphical parameters is similar as
circos.genomicPoints.

> circos.genomicLines(region, value, ...)

> circos.genomicLines(region, value, numeric.column = c(1, 2))

> circos.genomicLines(region, value, lwd, lty = "segment")

> circos.genomicLines(region, value, area, baseline, border)

> circos.genomicLines(region, value, sector.index, track.index)

For lty, we additionally provide a new option segment by which each genomic interval will represent
as a ’horizontal’ line at corresponding value in value.

6.3 Text

For circos.genomicText, the position of text can be specified either by numeric.column or a separated
vector y. The labels of text can be specified either by labels.column or a vector labels.

> circos.genomicText(region, value, ...)

> circos.genomicText(region, value, y, labels)

> circos.genomicText(region, value, numeric.column, labels.column)

> circos.genomicText(region, value, facing, niceFacing, adj)

> circos.genomicText(region, value, sector.index, track.index)

6.4 Rectangle

For circos.genomicRect, the positions of top and bottom of the rectangles can be specified by ytop,
ybottom or ytop.column, ybottom.column.

> circos.genomicRect(region, value, ytop = 1, ybottom = 0)

> circos.genomicRect(region, value, ytop.column = 2, ybottom = 0)

> circos.genomicRect(region, value, col, border)

One of the usage of circos.genomicRect is to plot heatmap on the circle. circlize provides a simple
function colorRamp2 to interpolate colors. The arguments of colorRamp2 are break points and colors
which correspond to the the break points. colorRamp2 returns a new function which can be used to
generate new colors.

> col_fun = colorRamp2(breaks = c(-1, 0, 1), colors = c("green", "black", "red"))

> col_fun(c(-2, -1, -0.5, 0, 0.5, 1, 2))

[1] "#00FF00FF" "#00FF00FF" "#008000FF" "#000000FF" "#800000FF" "#FF0000FF"

[7] "#FF0000FF"

6.5 More details on circos.genomicTrackPlotRegion

The behavior of circos.genomicTrackPlotRegion and panel.fun will be different according to different
input data and different settings.

6.5.1 Normal mode

If input data is a simple data frame, region in panel.fun would be a data frame containing start
position and end position in the current chromosome which is extracted from input data. value is also
a data frame which contains columns in input data excluding the first three columns. Index of proper
numeric columns will be passed by So if users want to use such information, they need to pass ...
to low-level genomic function such as circos.genoimcPoints as well.

> bed = generateRandomBed(nc = 2)

> circos.genomicTrackPlotRegion(bed, numeric.column = 4,

+ panel.fun = function(region, value, ...) {

7

+ circos.genomicPoints(region, value, ...)

+ circos.genomicPoints(region, value)

+ circos.genomicPoints(region, value, numeric.column = 1)

+ })

If input data is a list of data frames, panel.fun is applied on each data frame iteratively. Under such
situation, region and value will contain corresponding data in the current data frame. The numeric
index for the current data frame can be get by getI(...). For numeric.column argument if input data
is a list of data frame, the length can only be one or the number of data frames, which means, there is
only one numeric column that will be used in each data frame.

> bedlist = list(generateRandomBed(), generateRandomBed())

> circos.genomicTrackPlotRegion(bedlist,

+ panel.fun = function(region, value, ...) {

+ i = getI(...)

+ circos.genomicPoints(region, value, col = i, ...)

+ })

> circos.genomicTrackPlotRegion(bedlist, numeric.column = c(4, 5),

+ panel.fun = function(region, value, ...) {

+ i = getI(...)

+ circos.genomicPoints(region, value, col = i, ...)

+ })

6.5.2 stack mode

circos.genomicTrackPlotRegion also support a stack mode. Under stack mode, ylim is re-defined
inside the function. The y-axis will be splitted into several parts with equal height and graphics will be
drawn on each ’horizontal’ lines (y = 1, 2, ...).

Under stack mode, when input data is a single data frame containing one or more numeric columns,
each numeric column defined in numeric.column will be treated as a single unit. ylim is re-defined to
c(0.5, n+0.5) in which n is number of numeric columns. panel.fun will be applied iteratively on each
numeric column. In each iteration, in panel.fun, region is still the genomic regions in current genomic
category, but value only contains current numeric column plus all non-numeric columns. All low-level
genomic graphical functions will be drawn on the ’horizontal line’ y = i in which i is the index of current
numeric column and the value of i can be obtained by getI(...).

> bed = generateRandomBed(nc = 2)

> circos.genomicTrackPlotRegion(bed, stack = TRUE,

+ panel.fun = function(region, value, ...) {

+ i = getI(...)

+ circos.genomicPoints(region, value, col = i, ...)

+ })

When input data is a list containing data frames, each data frame will be treated as a single unit.
The situation is quite similar as described previously. ylim is re-defined to c(0.5, n+0.5) in which n

is number of data frames. panel.fun will be applied iteratively on each data frame. In each iteration,
in panel.fun, region is still the genomic regions in current chromosome, and value contains columns
in current data frame excluding the first three columns. Still, graphics by low-level genomic graphical
functions will be added on the ’horizontal’ lines.

> bedlist = list(generateRandomBed(), generateRandomBed())

> circos.genomicTrackPlotRegion(bedlist, stack = TRUE,

+ panel.fun = function(region, value, ...) {

+ i = getI(...)

+ circos.genomicPoints(region, value, ...)

+ })

Please see figure 4, for examples of using different settings in circos.genomicTrackPlotRegion.

8

0M
B

30
M

B

60
M

B

90
M

B

12
0M

B

150MB

180MB

210MB

240MB

1

●
●

●

●
● ● ●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

A

● ●
●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

B

●

●

●
●

● ●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●
● ●

●
●

●
●

●
●

●
●

●

● ●
●

●
●

●

●

●
●

●

●

C

● ●

●
●

●

●
●

●
●

●
●

●

●
●●

●

●
●

●

●

●
●

●

● ● ●
●

● ● ●● ●

●
●

●

●

●
●
●

●
●

●

●
●

●

●

D

●
●● ●●

●

●
●

●
●

●
●

●
●

●

● ●
● ●

●

●●
●

●

●

●

●

●

●

●
●●

●

● ●

●
●
●

●

●
●

●
●
●

●●
●

●

●●
●

●

●
●●

●

● ●

● ●

●

●

● ●
●

●
●

●

●●
●

●

●●● ●
●

●●●
●

●
● ●

●
●

●

● ●
●
●

●

●●●

●

E

●●●●● ●●
●●

●
●
●●

●
●

●●

●●
●●●
●

●●●● ●●●●●
●●

●●
●

●●●

●
●

●●●
●

●●●●● ●●●●●
●
●

●●

●●●

●●
●●●
●

●●●●●●●● ●
●

●
●●

●
●

●●

●

●
●●●

●

F

0M
B

30
M

B

60
M

B

90
M

B

12
0M

B

150MB

180MB

210MB

240MB

1
A

B

C

D

E

F

0M
B

30
M

B

60
M

B

90
M

B

12
0M

B

150MB

180MB

210MB

240MB

1
A

B

C

D

Figure 4: Topleft: Plotting points from A) a data frame with one numeric column; B) a data frame with
one numeric column and under stack mode; C) a list of two data frames D) a list of two data frames
under stack mode; E) a data frame with four numeric column; F) a data frame with four numeric
column and under stack mode. Topright: Plotting lines in different ways. Plotting lines from A) a
data frame with one numeric column; B) a list of two data frames C) a list of two data frames under
stack mode; D) a data frame with four numeric column; E) a data frame with four numeric column and
under stack mode. F) a data frame with one numeric column and lty is set to segment. Bottomleft:
Plotting rectangles in differnet ways. Plotting lines from A) a data frame with four numeric column and
under stack mode. B) a list of two data frames under stack mode; C) and D) adding rectangles with
self-defined panel.fun.

6.5.3 Mixed use of general circos functions

panel.fun is applied on each cell, which means, besides genomic functions, you can also use general
circos functions to add more graphics. For example, some horizontal lines and texts are added to each
cell and axes are put on top of each cell:

> circos.genomicTrackPlotRegion(bed, ylim = c(-1, 1),

+ panel.fun = function(region, value, ...) {

9

+ circos.genomicPoints(region, value, ...)

+

+ cell.xlim = get.cell.meta.data("cell.xlim")

+ for(h in c(-1, -0.5, 0, 0.5, 1)) {

+ circos.lines(cell.xlim, c(0, 0), lty = 2, col = "grey")

+ }

+ circos.text(x, y, labels)

+ circos.axis("top")

+ })

6.6 links

circos.genomicLink expects two data frames and it will add links from genomic intervals in the first
data frame to corresponding genomic intervals in the second data frame (figure 5).

> circos.genomicLink(bed1, bed2)

> circos.genomicLink(bed1, bed2, col)

0MB

90MB

180MB

1

0MB

90MB

180M
B

2

0M
B

90M
B

180M
B 30M

B90M
B

18
0M

B

4

0M
B90

M
B

18
0M

B

5

0M
B

90
M

B

6

0MB

90MB7

0MB

90MB8

0MB

90MB

9

0MB

90MB

10

0MB

90MB

11

0MB

90M
B12

0M
B

90M
B13

0M
B

90M
B

14 0M
B 90

M
B15

0M
B

90
M

B

16

0M
B 17

0M
B 18

0M
B 19

0M
B 20

0MB21

0MB 22

0MB

90MB

X

0MB Y

Figure 5: Add links from two sets of regions.

6.7 Highlight chromosomes

highlight.chromosome provides a simple way to highlight chromosomes. Just remember to use trans-
parent filled colors. The position of the highlighted region and be fine-tuned by padding argument which
are percentages of corresponding height and width in the highlighted region. (figure 6)

10

> highlight.chromosome("chr1")

> highlight.chromosome("chr1", track.index = c(2, 3))

> highlight.chromosome("chr1", col = NA, border = "red")

> highlight.chromosome("chr1", padding = c(0.1, 0.1, 0.1, 0.1))

0MB

90MB

180MB

1

0MB

90MB

180M
B

2

0M
B

90M
B

180M
B 30M

B90M
B

18
0M

B

4

0M
B90

M
B

18
0M

B

5

0M
B

90
M

B

6

0MB

90MB7

0MB

90MB8

0MB

90MB

9

0MB

90MB

10

0MB

90MB

11

0MB

90M
B12

0M
B

90M
B13

0M
B

90M
B

14 0M
B 90

M
B15

0M
B

90
M

B

16

0M
B 17

0M
B 18

0M
B 19

0M
B 20

0MB21

0MB22

0MB

90MB

X

0MB Y

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●
●

●●
●

●
●●

●
●

●
●●

●
●

●
●●

●
●

●●

●

●●

●

●●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

● ●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●
●

●
●●●

●

●
●

●
●●

●●●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●
●

● ●
●

● ●

●
●

●
●

●

●● ● ●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●●

●
●

●
●

●●
●

●
●●

●

●

●●

●

●
●●

●●●
●

●
●

●

●
●

●
●

●
●

●

●
●

●●

●
●

●

●●
●

●

●

● ●

●●

●

●
●
●

●

●

●
●

●

●● ●

●

●

●
●

● ● ●

●

●●
● ●

●
●

●
●●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●

●
●

●

●
●

●

●●

●●
●

●●
●

●
●

●

●●

●
●

●
●

●

●

●●

●

●

●●

●●●
●

●●

●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●
●
●

●

● ●
●

●
●

●

●●

● ●

●

●●

●
● ●●

● ● ●
●

●
● ●

●●

● ●

● ● ●

●
●
●

●

●
●

●

●
●

●

●

Figure 6: Highlight chromosomes.

7 High-level genomic functions

circlize implements several high-level functions which may help to visualize genomic data.

7.1 Position transformation

This feature is experimental in current version, thus there may be errors when you using it.
There is one representative situation when genomic position transformation needs to be applied. For

example, there are two sets of regions in a chromosome in which regions in one set regions are quite
densely to each other and regions in other set are far from others. Heatmap or text is going to be drawn
on the next track. If there is no position transformation, heatmap or text for those dense regions would
be overlapped and hard to identify, also ugly to visualize. Thus, a way to transform original positions to
new positions would help for the visualization.

Low-level genomic functions such as circos.genomicPoints all accept an argument posTransform

to apply user-defined position transformation. Value for posTransform is a self-defined function which
only accepts at least one argument: a data frame with two columns (start position and end position).
There is only one requirement for position transformation: Number of rows of regions should be the

11

same before and after the transformation. In circlize, there already provides a position transformation
function posTransform.default which distributes positions uniformly in current chromosome.

Since position transformation function is always executed inside low-level genomic graphical functions,
You can use get.cell.meta.data to obtains meta information for the current chromosome.

Following code does the transformation. The points are plotted with the new transformed regions.

> circos.genomicTrackPlotRegion(data, panel.fun = function(region, value, ...) {

+ circos.genomicPoints(region, value, posTransform = posTransform.default, ...)

+ })

There is a function circos.genomicPosTransformLines which adds a line from untransformed re-
gions to transformed regions. Note circos.genomicPosTransformLines will create a new track. In the
function, direction controls whether the position transformation track is inside or outside the track
which is created by circos.genomicPosTransformLines. Please see figure 7 for examples.

> circos.genomicPosTransformLines(data, posTransform = posTransform.default)

> circos.genomicPosTransformLines(data, posTransform = posTransform.default,

+ horizontalLine = "top")

> circos.genomicPosTransformLines(data, posTransform = posTransform.default,

+ direction = "outside")

There is another position transformation function posTransform.text provided in circlize that can
smartly position text on the circle. Normally, we don’t want the text too away from the original position
and also we want to get avoid of text overlapping. posTransform.text calculates the height of text
and transform position properly. Since such text position transformation relies on font size of text
and which track the text is in, the usage of posTransform.text is a little bit complex. Currently,
posTransform.text only makes sense if it is called inside circos.genomicText and only works when
facing is set to clockwise or reverse.clockwise.

In following example code, using posTransform.text is quite similar as posTransform.default:

> bed = generateRandomBed(nr = 400, fun = function(k) rep("text", k))

> circos.genomicTrackPlotRegion(bed, ylim = c(0, 1),

+ panel.fun = function(region, value, ...) {

+ circos.genomicText(region, value, y = 0, labels.column = 1,

+ facing = "clockwise", adj = c(0, 0.5), posTransform = posTransform.text,

+ cex = 0.8)

+ }, track.height = 0.1, bg.border = NA)

For the next track, position transformation lines are going to be plotted. Now code will be a little
complex. Since such text position transformation relies on text settings (e.g. font size, font family) and
track for the text, we need to go back to the track where text position transformation happens. Such
information should be collected when plotting transformation lines. The solution by circlize is to save the
real call by quote and pass it to posTransform argument. Inside circos.genomicPosTransformLines,
posTransform.text will be called by panel.fun by eval, then text information will be recovered and
the transformation will be calculated in the correct track.

> i_track = get.cell.meta.data("track.index") # previous track

> circos.genomicPosTransformLines(bed,

+ posTransform = quote(posTransform.text(region, y = 0, labels = value[[1]],

+ cex = 0.8, track.index = i_track)), direction = "outside"

+)

If the track where text position is transformed is after the track where transformation lines are
plotted, things will be more complicated. Since circos.genomicPosTransformLines needs information
of the text, but at that moment, track which transforms text position has not be created. The solution
is first creating a empty track for position transformation lines, then creating and plotting the position
transformation track. Finally go back to the transformation line track to add transformation lines
afterwards.

12

0MB

90MB

180MB

1

0MB

90MB

180M
B

2

0M
B

90M
B

180M
B 30M

B90M
B

18
0M

B

4

0M
B

90
M

B

18
0M

B

5

0M
B

90
M

B

6

0MB

90MB

7

0MB

90MB

8

0MB

90MB

9
0MB

90MB

10

0MB

90MB

11

0MB

90M
B12

0M
B

90M
B13

0M
B

90M
B

14 0M
B 90

M
B

15

0M
B

90
M

B

16

0M
B

17

0M
B 18

0M
B 19

0M
B 20

0MB 21

0MB 22

0MB

90MB

X

0MB

Y

Figure 7: Transformation of genomic positions. Top: position transformed track is inside; Bottom:
Position transformed track is outside.

> circos.genomicTrackPlotRegion(bed, ylim = c(0, 1), track.height = 0.1, bg.border = NA)

> i_track = get.cell.meta.data("track.index") # remember this empty track, we'll come back soon

> circos.genomicTrackPlotRegion(bed, ylim = c(0, 1),

+ panel.fun = function(region, value, ...) {

+ circos.genomicText(region, value, y = 1, labels.column = 1,

+ facing = "clockwise", adj = c(1, 0.5),

+ posTransform = posTransform.text, cex = 0.8)

13

+ }, track.height = 0.1, bg.border = NA)

> circos.genomicPosTransformLines(bed,

+ posTransform = quote(posTransform.text(region, y = 1, labels = value[[1]],

+ cex = 0.8, track.index = i_track+1)),

+ direction = "inside", track.index = i_track

+)

Padding of text after transformation can be set through padding argument to adjust the space
between two neighbouring text.

> circos.genomicTrackPlotRegion(bed, ylim = c(0, 1),

+ panel.fun = function(region, value, ...) {

+ circos.genomicText(region, value, y = 0, labels.column = 1,

+ facing = "clockwise", adj = c(0, 0.5), posTransform = posTransform.text,

+ cex = 0.8, padding = 0.2)

+ }, track.height = 0.1, bg.border = NA)

> i_track = get.cell.meta.data("track.index") # previous track

> circos.genomicPosTransformLines(bed,

+ posTransform = quote(posTransform.text(region, y = 0, labels = value[[1]],

+ cex = 0.8, padding = 0.2, track.index = i_track)), direction = "outside"

+)

For examples and comparison between posTransform.default and posTransform.text when visu-
alizing text, please refer to figure 8.

7.2 Genomic density and Railfall plot

circos.genomicDensity calculate how much a genomic window is covered by regions in bed. The input
data can be a single data frame or a list of data frames.

> circos.genomicDensity(bed)

> circos.genomicDensity(bed, window.size = 1e6)

> circos.genomicDensity(bedlist)

Rainfall plot can be used to visualize distribution of regions. On the plot, y-axis corresponds to the
distance to neighbour regions (log10-based). So if there is a drop-down on the plot, it means there is
a cluster of regions at that area (figure 9). The input data can be a single data frame or a list of data
frames.

> circos.genoimcRainfall(bed)

> circos.genoimcRainfall(bedlist, col = c("red", "green"))

14

0M
B

30
M

B

60
M

B

90
M

B

12
0M

B

150MB

180MB

210MB

240MB

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

tex
t

tex
t

tex
t

tex
t

text
text
text
text
text
text
text
text
text
text
text

text
text
text

● ● ● ●● ●●
●

●
●

●●●
●
●●●●

●
●
●
●
●
●

●

●
●

posTransform.text
direction = 'outside'

0M
B

30
M

B

60
M

B

90
M

B

12
0M

B

150MB

180MB

210MB

240MB

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

tex
t

tex
t

tex
t

text

text

text

text

text

text

text
text
text
text
text

● ● ● ●● ●●
●

●
●

●●●
●
●●●●

●
●
●
●
●
●

●

●
●

posTransform.default
direction = 'outside'

0M
B

30
M

B

60
M

B

90
M

B

12
0M

B

150MB

180MB

210MB

240MB

● ● ● ●●
● ●

●

●
●

●●●

●
●
●
●●

●
●

●
●
●
●

●

●
●

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

tex
t

tex
t

tex
t

text
text
text
text
text
text
text
text
text
text
text
text
text
text
text

posTransform.text
direction = 'inside'

0M
B

30
M

B

60
M

B

90
M

B

12
0M

B

150MB

180MB

210MB

240MB

● ● ● ●●
● ●

●

●
●

●●●

●
●
●
●●

●
●

●
●
●
●

●

●
●

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

tex
t

tex
t

tex
t

text
text
text
text
text
text
text
text
text
text
text
text
text

posTransform.text
direction = 'inside'
padding = 0.2

Figure 8: Transformation of text positions

15

0MB

90MB

180MB

1
0MB

90MB

180M
B

2

0M
B

90M
B

180M
B 30M

B90M
B

18
0M

B

4

0M
B90

M
B

18
0M

B

5

0M
B

90
M

B

6

0MB

90MB7
0MB

90MB8

0MB

90MB

9

0MB

90MB

10

0MB

90MB

11

0MB

90M
B12

0M
B

90M
B13

0M
B

90M
B

14 0M
B 90

M
B15

0M
B

90
M

B

16

0M
B 17

0M
B 18

0M
B 19

0M
B 20

0MB21

0MB 22

0MB

90MB

X

0MB Y

Figure 9: Rainfall plot and genomic density

16

	Introduction
	Input data
	Initialize with cytoband data
	Customize ideogram
	Initialize with general genomic category
	Create plotting regions
	Points
	Lines
	Text
	Rectangle
	More details on circos.genomicTrackPlotRegion
	Normal mode
	stack mode
	Mixed use of general circos functions

	links
	Highlight chromosomes

	High-level genomic functions
	Position transformation
	Genomic density and Railfall plot

