
How to draw Chord Diagram

Zuguang Gu <z.gu@dkfz.de>

September 1, 2014

One unique feature of circular layout is the link (or connector) to represent relations between el-
ements (http://circos.ca/intro/tabular_visualization/). The name of such plot is sometimes
called Chord diagram (http://en.wikipedia.org/wiki/Chord_diagram). In circlize, it is easy to
plot it in a straightforward or customized way.

1 Start from ground

Normally, the relationship can be represented as a matrix in which value in ith row and jth column is
kind of strength for the relationship. We first generate an example data. In the example data, letters
in upper case is one measurement and letters in lower case is another measurement. The number in the
table is the amount of observations in the intersection of two measurements.

> set.seed(123)

> mat = matrix(sample(1:100, 18, replace = TRUE), 3, 6)

> rownames(mat) = letters[1:3]

> colnames(mat) = LETTERS[1:6]

> rn = rownames(mat)

> cn = colnames(mat)

> mat

A B C D E F

a 29 89 53 46 68 90

b 79 95 90 96 58 25

c 41 5 56 46 11 5

Sector names in circos plot correspond to the union of row names and column names in the matrix.
First let’s construct the factors variable and calculate xlim. Since row names and columns are different,
the data range is simply summation in rows or columns respectively.

> factors = c(letters[1:3], rev(LETTERS[1:6]))

> factors = factor(factors, levels = factors)

> col_sum = apply(mat, 2, sum)

> row_sum = apply(mat, 1, sum)

> xlim = cbind(rep(0, 9), c(row_sum, rev(col_sum)))

Then initialize the circular layout for this table (figure 1). We specify the width of gaps between two
measurements by gap.degree in circos.par. The colors for different measurements are specified by
bg.col in circos.trackPlotRegion.

> par(mar = c(1, 1, 1, 1))

> circos.par(cell.padding = c(0, 0, 0, 0),

+ gap.degree = c(2, 2, 10, 2, 2, 2, 2, 2, 10), start.degree = 10/2)

> circos.initialize(factors = factors, xlim = xlim)

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.border = NA,

+ bg.col = c("red", "green", "blue", rep("grey", 6)), track.height = 0.05,

+ panel.fun = function(x, y) {

+ sector.name = get.cell.meta.data("sector.index")

+ xlim = get.cell.meta.data("xlim")

+ circos.text(mean(xlim), 1.5, sector.name, adj = c(0.5, 0))

+ })

1

http://circos.ca/intro/tabular_visualization/
http://en.wikipedia.org/wiki/Chord_diagram


Finally the links are added to the plot.

> col = c("#FF000020", "#00FF0020", "#0000FF20")

> for(i in seq_len(nrow(mat))) {

+ for(j in rev(seq_len(ncol(mat)))) {

+ circos.link(rn[i], c(sum(mat[i, seq_len(j-1)]), sum(mat[i, seq_len(j)])),

+ cn[j], c(sum(mat[seq_len(i-1), j]), sum(mat[seq_len(i), j])),

+ col = col[i], border = "white")

+ }

+ }

> circos.clear()

a

b

c

F
E

D

C

B

A

Figure 1: Table in circular layout

2 The pre-defined chordDiagram function

A general function chordDiagram is already defined in the package.

2.1 Basic usage

We will still use mat object in previous section to demonstrate the usage of chordDiagram. The most
simple usage is just calling chordDiagram with mat (figure 2, top left).

> chordDiagram(mat)

The default Chord diagram consists of a track of labels, a track of grids, and links. Under default
settings, the grid colors are randomly generated. The link colors are same as colors for grids which
correspond to rows. The order of sectors is the order of union(rownames(mat), colnames(mat)).

2



a

b

c

A

B

C D

E

F

a

b

c

A

B

C D

E

F

a
b

cA

B

C

D

E

F

A

B

a

C

D

b
E

F

c

a

b

c

A

B

C D

E

F

a

b

c

A

B

C D

E

F

Figure 2: Basic settings for plotting Chord diagram. Top left: default style; Top right: set gap.degree;
Middle left: set start.degree; Middle right: set orders of sectors; Bottom left: set directional; Bottom
right: set directional and directionGridHeight

The gaps between sectors can be set through circos.par (figure 2, top right). It is useful when
rows and columns are different measurements (as in mat). Please note since you change default circos
graphical settings, you need to use circos.clear in the end to reset it.

> circos.par(gap.degree = c(rep(2, nrow(mat)-1), 10, rep(2, ncol(mat)-1), 10))

> chordDiagram(mat)

> circos.clear()

3



Similarly, the start degree of the first sector can also be set through circos.par (figure 2, middle
left).

> circos.par(start.degree = 90)

> chordDiagram(mat)

> circos.clear()

The order of sectors can be controlled by order argument (figure 2, middle right).

> chordDiagram(mat, order = c("A", "B", "a", "C", "D", "b", "E", "F", "c"))

In some cases, rows and columns represent information of direction. Argument directional can be
set to illustrate such direction. If directional is set to TRUE, the links will have unequal height of root
(figure 2, bottom). The type of direction can be set through fromRows and the difference between the
unequal root can be set through directionGridHeight.

> chordDiagram(mat, directional = TRUE)

> chordDiagram(mat, directional = TRUE, directionGridHeight = 0.06)

> chordDiagram(mat, directional = TRUE, fromRows = FALSE, directionGridHeight = 0.06)

2.2 Color settings

Setting colors is also flexible. Colors for grids can be set through grid.col. Values of grid.col should
be a named vector of which names correspond to sector names. If grid.col has no name index, the
order of grid.col corresponds to the order of sector names. As explained before, the default link colors
are same as colors for grids which correspond to rows (figure 3, top left).

> grid.col = NULL # just create the variable

> grid.col[letters[1:3]] = c("red", "green", "blue")

> grid.col[LETTERS[1:6]] = "grey"

> chordDiagram(mat, grid.col = grid.col)

Transparency of link colors can be set through transparency (figure 3, top middle). The value should
between 0 to 1 in which 0 means no transparency and 1 means full transparency.

> chordDiagram(mat, grid.col = grid.col, transparency = 0.5)

Colors for links can be customized by providing a matrix of colors which correspond to mat. In the
following example, col_mat already contains transparency, transparency will be disabled if it is set
(figure 3, top right).

> rand_color = function(n, alpha = 1) {

+ return(rgb(runif(n), runif(n), runif(n), alpha = alpha))

+ }

> col_mat = rand_color(length(mat), alpha = 0.5)

> dim(col_mat) = dim(mat)

> chordDiagram(mat, grid.col = grid.col, col = col_mat)

col argument can also be a self-defined function which maps values to colors. Here we use colorRamp2
which is available in this package to generate a function with a list of break points and corresponding
colors (figure 3, middle left).

> col_fun = colorRamp2(quantile(mat, seq(0, 1, by = 0.1)), rev(heat.colors(11)))

> chordDiagram(mat, grid.col = grid.col, col = col_fun, transparency = 0.5)

Sometimes you don’t need to generate the whole color matrix. You can just provide colors which
correspond to rows or columns so that links from a same row/column will have the same color (figure 3,
middle middle/right).

> chordDiagram(mat, grid.col = grid.col, row.col = 1:3, transparency = 0.5)

> chordDiagram(mat, grid.col = grid.col, column.col = 1:6, transparency = 0.5)

4



a
b

c

A

B
C D

E
F

a

b

c

A

B

C D

E
F

a

b
c

A

B

C D
E

F

a

b

c

A

B

C D

E
F

a
b

c

A

B
C D

E
F

a

b

c

A

B

C D

E
F

a

b
c

A

B

C D
E

F

Figure 3: Color settings for plotting Chord diagram. Top left: set grid.col; Top middle: set trans-

parency; Top right: set col as a matrix; Middle left: set col as a function; Middle middle: set row.col;
Middle right: set column.col; Bottom left: set row.col to highlight links from one row.

With setting row.col for example, we can highlight links from one specific sector (figure 3, bottom
left).

> chordDiagram(mat, grid.col = grid.col, row.col = c("#FF000080", "#00FF0010", "#0000FF10"))

Again, if transparency is already set in col or row.col or column.col, transparency argument will
be disabled if it is set.

2.3 Advanced usage

Although chordDiagram provides default style which is enough for most visualization tasks, still you can
have more fine-tune on the plot.

By default, there is a track for labels and a track for grids. These two tracks can be controlled by
annotationTrack. Available values for this argument are grid and name (figure 4, top left).

5



aaaaa
bbbbb

cc
cc

c

AAAAA

BBBBB C
C

C
C

C

D
D

D
D

D

EEEEE

FFFFF

0
60

12
0

18
0

24
0

300

360
0

60
120180

240

300

360

420

0

60

120

0

60
12

0
0

60

12
0

180
0

60
120 180 0 60

120

180 0

60

120
0

60
120

0
0.

25

0.
5

0.7
5

1
a

0

0.250.5

0.75

1

b

0

0.25

0.5

0.75
1

c
0

0.
25

0.
5

0.
75

1

A
0

0.
25

0.
5

0.7
5

1
B

0

0.25
0.5

0.75 1C 0 0.25
0.5

0.75

1

D
0

0.25

0.5
0.75

1

E
0

0.25
0.5

0.75
1

F

Figure 4: Advanced Chord diagram plotting

> chordDiagram(mat, grid.col = grid.col, annotationTrack = "grid", transparency = 0.5)

> circos.info()

All your sectors:

[1] "a" "b" "c" "A" "B" "C" "D" "E" "F"

All your tracks:

[1] 1

Your current sector.index is F

Your current track.index is 1

The height of annotation tracks can be set through annotationTrackHeight which corresponds to
values in annotationTrack (figure 4, top right). The value in annotationTrackHeight is the percentage
to the radius of unit circle.

> chordDiagram(mat, grid.col = grid.col, annotationTrack = "grid",

+ annotationTrackHeight = 0.01, transparency = 0.5)

6



> chordDiagram(mat, grid.col = grid.col, annotationTrack = c("name", "grid"),

+ annotationTrackHeight = c(0.03, 0.01), transparency = 0.5)

Several blank tracks can be allocated before Chord diagram is plotted. Then self-defined graphics
can be added to these blank tracks afterwards. The number of pre-allocated tracks can be set through
preAllocateTracks.

> chordDiagram(mat, annotationTrack = NULL, preAllocateTracks = 3)

> circos.info()

All your sectors:

[1] "a" "b" "c" "A" "B" "C" "D" "E" "F"

All your tracks:

[1] 1 2 3

Your current sector.index is F

Your current track.index is 3

The default settings for pre-allocated tracks are:

> list(ylim = c(0, 1),

+ track.height = circos.par("default.track.height"),

+ bg.col = NA,

+ bg.border = NA,

+ bg.lty = par("lty"),

+ bg.lwd = par("lwd"))

The default settings for pre-allocated tracks can be overwritten by specifying preAllocateTracks as
a list.

> chordDiagram(mat, annotationTrack = NULL,

+ preAllocateTracks = list(track.height = 0.3))

If more than one tracks need to be pre-allocated, just specify preAllocateTracks as a list which
contains settings for each track:

> chordDiagram(mat, annotationTrack = NULL,

+ preAllocateTracks = list(list(track.height = 0.1),

+ list(bg.border = "black")))

In chordDiagram, there is no argument to control the style of labels/sector names. But this can be
done by first pre-allocating a blank track and customizing the labels in it later. In the following example,
one track is firstly allocated and a Chord diagram is plotted without label track. Later, the first track is
updated with setting facing of labels (figure 4, bottom left).

> chordDiagram(mat, annotationTrack = "grid", preAllocateTracks = list(track.height = 0.3))

> circos.trackPlotRegion(track.index = 1, panel.fun = function(x, y) {

+ xlim = get.cell.meta.data("xlim")

+ ylim = get.cell.meta.data("ylim")

+ sector.name = get.cell.meta.data("sector.index")

+ label = paste0(rep(sector.name, 5), collapse="")

+ if(sector.name %in% rn) {

+ circos.text(mean(xlim), ylim[1], label, facing = "bending", adj = c(0.5, 0))

+ }

+ if(sector.name %in% cn) {

+ circos.text(mean(xlim), ylim[1], label, facing = "clockwise", adj = c(0, 0.5))

+ }

+ }, bg.border = NA)

Since how to add graphics in the blank tracks is determined by users, it would be flexible to customize
the Chord diagram with different styles. In figure 4 (bottom right), two axes are added in every sector.

7



2.4 Visualization of other matrix

Rows and columns in mat can also overlap. In this case, direction of the link is quite important in
visualization (figure 5, top left).

> set.seed(123)

> mat = matrix(sample(100, 25), 5)

> rownames(mat) = letters[1:5]

> colnames(mat) = letters[1:5]

> mat

a b c d e

a 29 5 87 77 72

b 79 50 98 21 55

c 41 83 60 4 90

d 86 51 94 27 85

e 91 42 9 78 81

> chordDiagram(mat, directional = TRUE, row.col = 1:5, transparency = 0.5)

chordDiagram can also be used to visualize symmetric matrix. If symmetric is set to TRUE, only
lower triangular matrix without the diagonal will be used (figure 5, top right). Of course, your matrix
should be symmetric.

> chordDiagram(cor(mat), symmetric = TRUE,

+ col = colorRamp2(c(-1, 0, 1), c("green", "white", "red")), transparency = 0.5)

If you don’t need self-loop for which two roots of a link is in a same sector, just set corresponding
values to 0 in mat (figure 5, bottom).

> for(cn in intersect(rownames(mat), colnames(mat))) {

+ mat[cn, cn] = 0

+ }

> mat

a b c d e

a 0 5 87 77 72

b 79 0 98 21 55

c 41 83 0 4 90

d 86 51 94 0 85

e 91 42 9 78 0

> chordDiagram(mat, directional = TRUE, row.col = 1:5, transparency = 0.5)

2.5 Compare two Chord Diagrams

Normally, values in mat are normalized to the summation, and each value is put to the circle according
to its percentage, which means the width for each link only represents kind of relative value. However,
when comparing two Chord Diagrams, it is necessary that unit width of links should represent in a same
scale. This problem can be solved by adding more blank gaps to the Chord Diagram which has smaller
summation.

First, let’s plot a Chord Diagram. In this Chord Diagram, we set larger gaps between rows and
columns for better visualization. Axis on the grid illustrates scale of the values.

> mat1 = matrix(sample(20, 25, replace = TRUE), 5)

> gap.degree = c(rep(2, 4), 10, rep(2, 4), 10)

> circos.par(gap.degree = gap.degree, start.degree = -10/2)

> chordDiagram(mat1, directional = TRUE, grid.col = rep(1:5, 2), transparency = 0.5)

> for(si in get.all.sector.index()) {

+ circos.axis(labels.cex = 0.5, sector.index = si, track.index = 2)

+ }

> circos.clear()

8



a

b

c

d

e

b
c

d

e
a

a

b
c

d
e

Figure 5: Chord diagram for other types of matrix. Top left: with directions; Top right: symmetric
correlation matrix; Top bottom: without self-loop

The second matrix only has half the values in mat1.

> mat2 = mat1 / 2

If the second Chord Diagram is plotted in the way as the first one, the two diagrams will looks
the same which makes the comparison not straightforward. Now what we want to compare is also the
absolute values. For example, if the matrix contains the amount of transmission from one state to another
state, then the interest is to see which diagram has more transmissions.

First we calculate the percentage of mat2 in mat1. And then calculate the degree which corresponds
to the summation difference. In the following code, 360 - sum(gap.degree) is the degree for summation
of mat1 and blank_degree corresponds the summation difference.

> percent = sum(mat2) / sum(mat1)

> blank_degree = (360 - sum(gap.degree)) * (1 - percent)

Since we have the additional blank gap, we can set it to circos.par and plot the second Chord
Diagram.

9



> gap.degree = c(rep(2, 4), blank_degree/2 + 10, rep(2, 4), blank_degree/2 + 10)

> circos.par(gap.degree = gap.degree, start.degree = -(blank_degree/2 + 10)/2)

> chordDiagram(mat2, directional = TRUE, grid.col = rep(1:5, 2), transparency = 0.5)

> for(si in get.all.sector.index()) {

+ circos.axis(labels.cex = 0.5, sector.index = si, track.index = 2)

+ }

> circos.clear()

Now the scale of the two Chord Diagrams (figure 6) are the same if you look at the scale of axes in
the two diagrams.

10



R
1

R2

R3

R4

R
5

C
1

C2

C3
C4

C
5

0
20

40

0

20

40

60020
0

20

40

60

0

20

40

0
20

40
0

20

40
0

20
40 0

20

40

60

0

20

40
60

R1

R2
R3

R4

R5

C1

C2
C3 C4

C5

0

20

0

20
00

20

0

20

0

20
0

20 0
20 0

20

0

20

Figure 6: Compare two Chord Diagrams and make them in same scale

11


	Start from ground
	The pre-defined chordDiagram function
	Basic usage
	Color settings
	Advanced usage
	Visualization of other matrix
	Compare two Chord Diagrams


