
Using the R package chngpt

Youyi Fong

September 2, 2020

1 Types of threshold effects supported by the package

We refer to models with a single threshold as two-phase models, models with two thresholds as
three-phase models, and models with more than two thresholds as multi-phase models.

1.1 Continuous two-phase models

The package support the following two-phase models that are continuous at the threshold.
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Figure 1.1: Types of continuous two-phase models supported in chngpt.
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Piecewise linear two-phase models are studied in Fong et al. (2017b) and Elder and Fong (2019),
two-phase polynomial models are studied in a manuscript under review. The two digits in the model
names refer to the highest order of polynomials before and after the threshold, respectively. If the
model name ends with ‘c’, the model is constrained and become smoother. The parameterization
are adopted in the package:
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where e denote the threshold parameter, x is the predictor with threshold effect, z denote a vector
of additional predictors, and (x− e)+ = x − e if x > e and 0 otherwise, and (x− e)− = x − e if
x ≤ e and 0 otherwise.

1.2 Continuous three-phase models
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Figure 1.2: A three-phase segmented model.

η = α1 + α
T
2 z + β1 (x− e)− + β2 (x− f)− + β3x (M111)
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1.3 Discontinuous two-phase models

The following discontinuous two-phase models are supported in the chngpt package:

step stegmented

Figure 1.3: Types of discontinuous threshold effects supported in chngpt.

The models can be written as

η = α1 + α
T
2 z + β1I (x > e) (step)

η = α1 + α
T
2 z + β1 (x− e)+ + γx+ β2I (x > e) , (stegmented)

where e denote the threshold parameter, x is the predictor with threshold effect, z denote a vector
of additional predictors, and

I (x > e) =

{
1 if x > e
0 if otherwise

.
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2 Estimation examples

Some general notes:

• The fitted model has a component named best.fit, which is the glm or coxph fit conditional
on the estimated threshold parameter.

• The recommended ci.bootstrap.size is 1000 in real problems.

• P values are not provided for the threshold estimates because it does not make sense to make
it a default null hypothesis that the threshold parameter is 0
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2.1 Continuous two-phase linear regression

For continuous two-phase linear regression, we have developed a grid search method for estimation
that is super fast (Fong, 2019; Elder and Fong, 2019). Together with the observation that bootstrap
confidence intervals have better coverage than robust analytical confidence intervals (Fong et al.,
2017b) for continuous two-phase linear regression, internally we set the default estimation method
to be fast grid search and the default variance method to be bootstrap.

2.1.1 Segmented model

To fit a segmented linear regression model, we call

fit=chngptm (formula.1=V3_BioV3B∼1, formula.2=∼NAb_score, dat.mtct.2, type="segmented", family="gaussian")
summary(fit)

Change point model type: segmented

Coefficients:
est p.value* (lower upper)

(Intercept) -22.33152 1.593423e-08 -30.07675 -14.58628
NAb_score 67.23925 2.212981e-14 49.98398 84.49452
(NAb_score-chngpt)+ -64.83129 3.692679e-14 -81.61413 -48.04845

Threshold:
est (lower upper)

0.4653923 0.4535000 0.4772845

In the output above, the row starting with (NAb_score-chngpt)+ corresponds to β1 in equation
(segmented, M11). In other words, it is the change in slope as the covariate NAb_score crosses
the threshold. Note that we there is an asterisk next to p.value. This is because bootstrap proce-
dures to generate confidence intervals do not readily lead to p values. The presented p values are
approximations, obtained assuming that the bootstrap sampling distributions are normal.

To get an estimate of the slope after threshold, we call

lincomb(fit, comb=c(0,1,1), alpha=0.05)

est lb ub
2.40795883 -0.06780353 4.88372120

To perform a likelihood ratio test, we call

library(lmtest)
fit.0=lm(V3_BioV3B∼1, dat.mtct.2)
lrtest(fit, fit.0)

Likelihood ratio test

Model 1: V3_BioV3B ~NAb_score + x.mod.e
Model 2: V3_BioV3B ~1
#Df LogLik Df Chisq Pr(>Chisq)

1 5 -354.95

5



2 2 -431.50 -3 153.1 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Calling plot(fit) makes the following figure.
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Figure 2.1: Scatterplot, profile likelihood plot, and bootstrap distribution of threshold estimates.
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2.1.2 M02 model

To estimate a M02 linear regression model, we call

fit=chngptm(formula.1=pressure∼1, formula.2=∼temperature, data=pressure,
type="M02", family="gaussian", var.type="bootstrap")
summary(fit)

Change point model threshold.type: hingequad

Coefficients:
est p.value* (lower upper)

(Intercept) 8.278463507 0.4733673 -14.35129837 30.9082254
(temperature-chngpt)+ 0.007124705 0.9944183 -2.00325636 1.9890069
I((temperature-chngpt)+^2) 0.039305656 0.3644561 -0.04564143 0.1242527

Threshold:
est (lower upper)
220 -680 240
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2.2 Continuous two-phase linear regression with random intercepts

The following code fits the linear mixed model:

Y = a+ αT z + γx+ β (x− e)+ + ε
a ∼ N(0, σa)

ε ∼ N(0, σε)

Variance estimates are being developed.

dat=sim.twophase.ran.inte(threshold.type="segmented", n=50, seed=1)
fit = chngptm (formula.1=y~z+(1|id), formula.2=~x, family="gaussian", dat,
type="segmented", est.method="grid", var.type="none")
summary(fit)
plot(fit, which=1, plot.individual.line=T, lcol="gray", lwd=.5)

No variance estimate available.

(Intercept) z x (x-chngpt)+ chngpt
2.7154145 0.3514853 1.7894006 2.5695986 5.1571429
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Figure 2.2: Each line correponds to one id.
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2.3 Continuous three-phase linear regression

The following code fits a three-phase linear regression model. The default estimation method is
fastgrid and the default variance type is bootstrap.

η = β1 + β2z + β3x+ β4 (x− e)+ + β5zx+ β6z (x− e)+

fit=chngptm (formula.1=pressure~1, formula.2=~temperature, pressure, type="M111",
family="gaussian", ci.bootstrap.size=20)
summary(fit)

Change point model threshold.type: M111

Coefficients:
est Std. Error* (lower upper) p.value*

(Intercept) -3310.976868 1006.428099 -5283.575941 -1338.3777950 1.002481e-03
temperature 11.417859 3.015001 5.508457 17.3272614 1.524670e-04
(temperature-chngpt1)- -3.862734 1.612508 -7.023249 -0.7022192 1.659850e-02
(temperature-chngpt2)- -7.425005 1.700649 -10.758278 -4.0917324 1.265528e-05

Threshold:
est Std. Error (lower upper) p.value

chngpt.1 240 30.61224 180 300 NA
chngpt.2 320 31.12245 259 381 NA
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2.4 Continuous two-phase logistic regression

For continuous two-phase logistic regression, a fast grid search method for estimation is not yet
available. In addition, we have observed that bootstrap confidence intervals have similar cover-
age as robust analytical confidence intervals (Fong et al., 2017b). Thus, we recommend either
var.type="bootstrap" or var.type="robust" in the call to chngptm. Note that when it is set
to robust, an auxiliary fit needs to be supplied, which is generally a smooth parametric model with
enough but not too many degrees of freedom.
To estimate a hinge logistic regression model, we call

library(splines)
fit=chngptm(formula.1=y∼birth, formula.2=∼NAb_SF162LS, dat.mtct,
type="hinge", family="binomial",
est.method="smoothapprox", var.type="robust",
aux.fit=glm(y∼birth + ns(NAb_SF162LS,3), dat.mtct, family="binomial"))
summary(fit)

Change point model type: hinge

Coefficients:
OR p.value (lower upper)

(Intercept) 0.7026523 0.341429662 0.3388366 1.4571044
birthVaginal 1.2397649 0.523159883 0.6393632 2.4039809
(NAb_SF162LS-chngpt)+ 0.6712371 0.001332547 0.5270730 0.8548327

Threshold:
26.3% (lower upper)

7.373374 5.472271 8.186464

The chngptm function supports the use of cbind in the formula, as the glm function does. For
example,

dat.2=sim.chngpt("thresholded", "step", n=200, seed=1, beta=1, alpha=-1,
x.distr="norm", e.=4, family="binomial")

dat.2$success=rbinom(nrow(dat.2), 10, 1/(1 + exp(-dat.2$eta)))
dat.2$failure=10-dat.2$success
fit.2a=chngptm(formula.1=cbind(success,failure)~z, formula.2=~x,
family="binomial", dat.2, type="step")
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2.5 Continuous two-phase Poisson regression

Only grid search method and bootstrap confidence intervals are supported, so getting the model
fit with confidence intervals could take some time.

counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- as.integer(gl(3,1,9))
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
fit.4=chngptm(formula.1=counts ~treatment, formula.2=~outcome, data=d.AD,
family="poisson", type="segmented", var.type="bootstrap")

summary(fit.4)
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2.6 Discontinuous two-phase GLM

Confidence interval for discontinuous threshold regression models can be constructed by m-out-of-n
bootstrap.

fit=chngptm(formula.1=mpg~hp, formula.2=~drat, mtcars, type="step",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=100, m.out.of.n=20)
summary(fit)

Change point model threshold.type: step

Coefficients:
est Std. Error* (lower upper) p.value*

(Intercept) 27.29298302 2.89102342 21.62657712 32.95938892 3.706663e-21
hp -0.05692654 0.01644498 -0.08915870 -0.02469439 5.369001e-04
drat>chngpt 5.24824935 2.72504835 -0.09284542 10.58934411 5.411325e-02

Threshold:
est Std. Error (lower upper) p.value

3.9200000 0.4693878 3.0000000 4.8400000 NA
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2.7 Two-phase Cox regression

The chngpt package also provides some support for estimation of threshold Cox regression models.
What is missing, though, is confidence intervals for parameter estimates and hypothesis testing
methods. See the help page on chngpt for an example.
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2.8 Models with interaction terms

In the following example we fit a model with an interaction term.

η = β1 + β2z + β3x+ β4 (x− e)+ + β5zx+ β6z (x− e)+

fit=chngptm(formula.1=mpg ~hp, formula.2=~hp*drat, mtcars, type="segmented",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=100)
summary(fit)

Change point model threshold.type: segmented

Coefficients:
est Std. Error* (lower upper) p.value*

(Intercept) 71.0423961 107.7931740 -140.2322250 282.3170173 0.5098559
hp -0.5714405 0.7521618 -2.0456777 0.9027967 0.4474155
drat -14.3708279 35.7034558 -84.3496013 55.6079456 0.6873122
(drat-chngpt)+ 21.6073593 73.6732299 -122.7921714 166.0068899 0.7693032
hp:drat 0.1658607 0.2482010 -0.3206132 0.6523346 0.5039730
hp:(drat-chngpt)+ -0.1970979 0.5108437 -1.1983515 0.8041557 0.6996239

Threshold:
est Std. Error (lower upper) p.value

3.2300000 0.4489796 2.3500000 4.1100000 NA

In the following example we fit a model with two interaction terms

η = β1 + β2z1 + β3z2 + β4I (x > e) + β5z1I (x > e) + β6z2I (x > e)

fit=chngptm(formula.1=mpg~hp+wt, formula.2=~hp*drat+wt*drat, mtcars, type="step",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=100)
summary(fit)

Change point model threshold.type: step

Coefficients:
est Std. Error* (lower upper) p.value*

(Intercept) 30.83332346 4.06186261 22.87207274 38.79457417 3.176122e-14
hp -0.02389962 0.02760935 -0.07801395 0.03021471 3.866903e-01
wt -2.58756410 1.17757075 -4.89560276 -0.27952543 2.799370e-02
drat>chngpt 11.69827186 28.02745000 -43.23553015 66.63207386 6.763959e-01
hp:I(drat>chngpt) -0.00894615 0.20736123 -0.41537415 0.39748185 9.655877e-01
wt:I(drat>chngpt) -3.22148003 21.48073350 -45.32371769 38.88075762 8.807878e-01

Threshold:
est Std. Error (lower upper) p.value

3.7000000 0.2806122 3.1500000 4.2500000 NA
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3 Testing examples

Testing methods are described in Fong et al. (2015) and Fong et al. (2017a).

An example in linear regression:

test=chngpt.test(formula.null=Volume∼1, formula.chngpt=∼Girth, trees,
type="segmented", family="gaussian")
test

Maximum of Likelihood Ratio Statistics

data: trees
Maximal statistic = 17.694, change point = 15.388, p-value = 0.00014
alternative hypothesis: two-sided

The first line gives the type of test carried out, and it is maximal likelihood ratio test here, which
is the default. In addition, a plot function can be called on the test object to show the score or
likelihood ratio statistic as a function of candidate change points.

An example in logistic regression:

test=chngpt.test(formula.null=y∼birth, formula.chngpt=∼NAb_SF162LS, dat.mtct,
type="hinge", family="binomial", main.method="score")
test

Maximum of Score Statistics

data: dat.mtct
Maximal statistic = 3.3209, change point = 7.0347, p-value = 0.00284
alternative hypothesis: two-sided

The first line gives the type of test carried out, and it may be maximal likelihood ratio test. In
addition, a plot function can be called on the test object to show the score or likelihood ratio
statistic as a function of candidate change points.
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4 Further considerations

4.1 Model choice

The choice of threshold effects is typically through a combination of domain knowledge and model-
ing. One modeling approach is to first examine the relationship using local polynomial regression.
For binary outcome, the binaryloess function in the kyotil package provides a way to examine the
relationship between a binary outcome and a predictor.
To choose among the segmented, hinge, and upper hinge models formally, we can use Wald tests.
For example, if the question is framed as choosing between segmented and hinge models, we can fit
a segmented model and then look at the slope before threshold in the summary function output.
If the estimate is not significantly different from 0, then it is justifiable to fit a hinge model. We
can also look at the slope after threshold, which is not displayed as part of the summary function
output, but can be obtained by calling lincomb (see example in Section 2.1.1). If this estimate is
not significantly different from 0, then it is justifiable to fit an upper hinge model. If the hinge or
upper hinge model is reasonable, it is preferred over the segmented model because the model can
be estimated with substantially higher precision (Fong et al., 2017b; Elder and Fong, 2019).

4.2 Estimation and inference methods

There are three types of search methods for finding the MLE (maximum likelihood estimator).
Users generally do not need to worry about setting the argument, which is est.method, since the
function chooses the most appropriate one by default. In the order of development, the three search
methods are grid, smooth approximation, and fastgrid. The grid method is the most general and
the slowest; it is recommended when other methods are not available. The smooth approximation
method (Fong et al., 2017a) involves approximating the likelihood function with a differentiable
function to allow gradient-based search; it is available for linear and logistic regression and mostly
recommended for logistic regression only. Fastgrid (Fong, 2019; Elder and Fong, 2019) is a new
method that is super fast and gives exact solutions; it is only available for certain threshold linear
regression models.

Robust confidence interval methods are described in Fong et al. (2017b).

Hypothesis testing methods are described in Fong et al. (2015) and Fong et al. (2017a).
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