THE STALKER SPLINE

SIMEN GAURE

ABSTRACT. The idea behind the stalker spline in package chebpol is outlined. It is designed as a one-dimensional
interpolation to be almost shape preserving in the sense that it attempts to honour monotonocity properties and local
extreme points in the data, though not entirely. There is no fancy theory behind, but it served a purpose for the author,
and here it is. The near monotonicity is achieved by somewhat non-traditional means, by sacrificing analyticity, and
in a corner case even differentiability. That is, the derivative is not well behaved. The name comes from the fact that
it follows the data frighteningly close, though it sometimes seems stupid with little foresight. chebpol contains higher
dimensional versions too, but they could as well be called wet paper spline. The interpolation isn’t a proper spline,
since it is not a polynomial. We also obtain a limit in intuitive geometric terms on how large the overshoot can be.
The stalker spline can be used when a little more smoothness than multilinear is required.

1. INTRODUCTION

The multilinear interpolation in chebpol is easy to understand. We have some points on the z-axis. At every point
we have a value, and we just draw straight lines between the “knots”:

04 06 0.8

0.2

There is another way to think about this, we can imagine that at each knot i there lives a function f;(x). Whenever
we are between two knots, the interpolated value is a convex combination of the two functions at each side. Say we
are in & = 3.3. We should have a part of f3(3.3), and a part of f4(3.3), the value should be 0.7 f3(3.3) + 0.3f4(3.3), or
more generally for 3 <z <4, tf5(x) + (1 —t) fa(x) where 0 < ¢ =4 —z < 1. In the multilinear case, all the functions
are constant, and equal to the value in the point where it lives.

Date: July 28, 2018.

2 SIMEN GAURE

0.8

0.6

0.4

0.2
|

When we make a convex combination of two constant values v; and v; 11, we obtain a straight line: tv; + (1 —¢)v;41.
This linear interpolation is faithful to the data in the sense that it honours local extrema as well as monotonicity.

In the stalker spline we replace these constant functions with non-constant functions. Ie. the function f;(x) should
not be constant, but pass through the 3 knots ¢ — 1,7 and ¢+ 1. A classical method is to let f; be the unique quadratic
which passes through the three knots.

1.0

0.8

0.6

0.4

0.2

The interpolated value between two knots is still a convex combination of the two functions living there. The result
is that the interpolant between any two points is a cubic, with a value between the two functions living there.

THE STALKER SPLINE 3

In the random points we have chosen, we have deliberately made the fourth and fifth points equal. The 7th and 8th
differ by only 0.00001. This accentuates a phenomenon which in some cases can be a problem, no polynomial except
for the constant can be constant on an interval. There is “overshoot” between knots 4 and 5. Indeed, many of the
functions overshoot, like between 7 and 8.

The idea behind the stalker spline is to reduce the overshoot, this is achieved by ensuring that if the knots ¢ — 1,4
and 7 + 1 are monotonic (either increasing or decreasing), then the function f;(z) will also be monotonic. Other
splines, like the Fritsch-Carlson spline in splinefun(. .. ,method="monoH.FC’) also does something similar, though
with proper polynomial spline. We achieve this by non-traditionally using a fractional degree, i.e. a function of the
form a + bz + c|z|", with 1 <7 < 2. Alternatively, we use a hyperbolic function a + bz + 7 fw. In this note we call
these functions defined by three points and a monotonicity constraint, basis functions. They are not basis functions
in the sense used in the spline literature; they are not glued together by scalar weights, but by linear functions.

2. THE STALKER SPLINE

To simplify, we consider a basis function f(x) on the interval [—1, 1]. We have its function values in the three knots
f(=1) =v_, f(0) = v, and f(1) = v4. We assume

(1) f(z) = a+bx+clx|".

Inserting our three points, we obtain three equations with three unknowns:
a—b+c =v_,

(2) a = Yo,

a+b+c =wvg.

The solution is

a = Vo,
1
(3) bzg(%*v—),

1
c= 5(1)4_ +v_) — vp.

These coefficients will work with any r. Typically we will pick » = 2, but this may destroy monotonicity. The
three knots are monotonic (either increasing or decreasing) whenever |¢| < |b|. This can be seen from equation (2).

Monotonicity occurs when vy — vy = b + ¢ has the same sign as vog — v— = b — ¢, which is precisely when |c| < |b].
If this is the case we will use monotonicity to find a suitable r. To be specific, we have
(4) (@) =b+crla["" sgn(@),
where sgn(z) is the sign function. We have a critical point f’(z) = 0 for |z|"~!sgn(z) = —b/(cr). This equation has

a solution in —1 < z < 1if |b| < r|c|. We pick an r so that the critical point disappears from the interior. More
specifically, if = 2 results in non-monotonicity, i.e. if [b| < 2|c|, we pick the largest r which will make f(2) monotonic.
That is, r = |b/c| < 2, this will relegate the critical point to one of the end points.

The same exercise with a non-uniform grid results in a non-linear equation in r which is solved numerically by

chebpol.
There are some special cases. What if ¢ = 07 This only happens when the knots are collinear, i.e. on a straight line,
but then r is irrelevant, so we do not need to compute it. What about the corner case |b| = |¢|? This happens if vy

equals either v_ or vy, i.e. if we have a horizontal region. In this special case, r = 1, and we have a non-differentiable
f(x) = a+ b(x + |z|), which is constant on one side of 0 and linear on the other.

At the outset, we only need to adjust r away from 2 when there is monotonicity which is violated by a quadratic,
i.e. when |c¢| < |b] < 2|¢|. If we stick strictly to this idea, it means that as soon as |b| < |c|, we will change the
degree r from 1 to 2 in a jump. That is, for |b| = |c| we have a constant/linear function, but if |b| decreases ever so
little, |b] = |c| — €, we suddenly shift to a quadratic which may have considerable overshoot. To make this transition
smoother, we (somewhat arbitrarily) set r = |¢/b|] whenever |¢/2| < |b] < |c], i.e. we gradually creep back to r = 2.

In figure [1}is a plot of some of the functions for the case v— =0, vy = 1, with varying v (the black dots).

The dark blue curves are quadratic. The blue curves are monotonic, but with lowered degree. The light blue curves
are non-monotonic with lowered degree. Every function except for the two obvious ones are continuously differentiable,
but not twice differentiable in 0. If we let |vg| grow further, the function will stay quadratic, and the extreme point
and the overshoot will converge to 0. Ideally, the non-monotonic curves should have an extreme point in z = 0, i.e.
no overshoot, but that is impossible with this function form.

If either v_ or vy grows, |b/c| converges to 1, so we will converge to the non-differentiable case. However, there is a
problem which becomes pressing when trying to use the stalker spline in two or more dimensions. If, as in ﬁgure v_

4 SIMEN GAURE

15

1.0

0.5

0.0
I

———————————————————— | } overshoot

-1.0 -0.5 0.0 0.5 1.0

FIGURE 1. ”Basis functions”

moves, the curve for < 0 moves down, but the curve for > 0 moves up or down depending on whether the degree
changes or not. This behaviour creates problems e.g. for surfaces with torsion, as we shall see later.

The stalker spline also contains hyperbolic functions of the type a + bz + ﬁ which are guaranteed to honour both
monotonicity and local extrema, but like the varying degree stalker it does not generalize well to higher dimensions,
more or less because “monotonic” isn’t such a simple concept there. Again we have four parameters and three
points. For monotonic points we use monotonocity as a fourth constraint, or more precisely we let b = 0. For non-
monotonic points, we use that the middle point should be a local extremum. Thus, the hyperbolic stalker respects
both monotonicity and local extrema, but still at the cost of non-differentiability in the case of completely flat regions.
In another special case, it reduces to a parabola. The hyperbolic stalker is specified in chebpol as a stalker with zero
degree.

3. OVERSHOOT AND BLENDING
To sum up, the function passing through (—1,v_), (0,v9) and (1,v4) is
(5) f(z) =a+bx+ clz|".
The coefficients a, b, and ¢ are as in . For ¢ # 0 the exponent r is chosen as follows:
b/el for le| < [b] < 2/c],
(6) r =1 l¢/b| for |b] < |c|] < 2|b],
2 otherwise.

It is clear that 1 < r < 2. The functions with 1 < r < 2 are everywhere differentiable, but for r < 2 the second
derivative is unbounded near 0, so the graph may turn arbitrarily abruptly in the knots.

We define the overshoot as 0 for monotonic knots, and as |vg — f(z¢)| where xq is the critical point of the function:
f'(x0) = 0. From equation we have by elementary calculus xg = — sgn(be)|b/(rc)|"/ "1, If |b| >= 2|c| then

THE STALKER SPLINE 5

o

2

L0

L

~ g

Lo

o' —

|

o

ri —

| I I I I I
-1.0 -0.5 0.0 0.5 1.0

X

FIGURE 2. ”Basis functions”

xo ¢ (—1,1), hence the min/max occurs in an end point, in which case it is not an overshoot. We look at the case
|b] < r|c|.

For r = 2 we must by definition have |c| > 2|b|. We have zg = —b/(2c). The function value in —b/(2¢) is a—b?/(4c),
the vertical distance from the point vy = a is d = |b?/(4c)| < |b|/8. Now, |b| is half the distance between v, and v_,
so the overshoot will always be smaller than |v; — v_|/16 for r = 2.

For r < 2, r is either equal to |b/¢|, in which case there is no overshoot, or r = |¢/b| when |¢/2| < |b] < |¢|. We have
xg = —sgn(be)|b/(re)|V/ =1 = —sgn(be)r2/ (-7,

The function value in the extreme point o is then a — |bsgn(c)r?/=") 4 ¢r2"/(1=7) " The distance to vy = a is
d, = HC\TQ’”/(l_T) — \b|r2/(1_r)’ = |b| ’r(l‘”)/(l_” — TQ/(l_T)|. Again, it is easy to show by elementary calculus that d,
is increasing in r, so d, < |b|/8.

We can prove more. If we have |b| < |c| it means that vy is the smallest or the largest of the three knots. To
simplify we assume that vy < v_ < vg, i.e. that 0 < b < ¢ < 2b. The situation is symmetric with the direction
reversed. We have that ¢ —b = v_ — vy, the amount that the middle knot is below the next lowest knot. We also have
¢—b=">b(r—1). If we compute the overshoot as a fraction of this “knot overshoot”: d,/(c —b) = d,./(b(r — 1)), again
we get d,./(v_ —vg) = [rAFT/A=r) _p2/(0=7)| /(1 — 1) < e72 ~ 0.135.

In short, the overshoot is always less than 14% of the vertical distance from the lowest/highest knot to the next
lowest/highest knot.

With f(0) = 0, the hyperbolic stalker is

(7) f(x):a+bx—1+cx.

6 SIMEN GAURE

B sigmoid
B linear
E cubic

00 0.2 04 06 08 1.0

Fi1GURE 3. Blending functions

When the points are monotonic, i.e. sgn(v_) # sgn(vy) the coefficients a,b and ¢ are computed as

 2v_vy
B v_ + V4
(8) b=0
v_ +v
c=—1*
V- — U4
For non-monotonic triples, we have
v_ + V4
a=—2v_v4 0 — 0.)?
v_v
(9) b=2-"t
V- — U4
v_ — v
c=—+
v_ + vy

3.1. Blending and degree. There is a basis function in every knot, so we glue the functions f; and f; together
as a convex combination tfi(x) + (1 —¢)fa(x — 1) (z — 1 is the normalized coordinate for f5, the basis function in
the knot ;). We use a linear blender, t = 1 — z. Alternatively we could modify the ¢ with a sigmoid blender like
te€[0,1/2] —exp(2—1/t)/2 and t € (1/2,1] — 1 —exp(2 —1/(1 —¢))/2. A cubic blender is also available. These can
be selected by the argument blend="1linear", blend="sigmoid", or blend="cubic" to the stalker interpolant. The

three blending functions are shown in figure

sigmoid <- function(t) ifelse(t<0.5, 0.5*%exp(2-1/t), 1-0.5*%exp(2-1/(1-t)))
cubic <- function(t) -2*t~3 + 3*t~2

linear <- function(t) t

s <- seq(0,1,length=100)

plot(s,sigmoid(s),typ='1"',ylab='y"')

lines(s,linear(s), col='blue')

lines(s,cubic(s), col='green')

legend('topleft',legend=c('sigmoid', 'linear', 'cubic'),fill=c('black', 'blue', 'green'))

The interpolant can be given a "degree" argument, this can be a vector, a fixed degree for each dimension.

THE STALKER SPLINE 7

In more than one dimension, torsion can be a problem for stability. It can create striping artefacts. This can be
alleviated by having constant degree (different from NA), except possibly for the first dimension. We’ll see an example
later.

4. EXAMPLES

In this section we compare the stalker spline to the "natural" and "monoH.FC" spline from stats::splinefun.
We also illustrate the hyperbolic stalker spline with a cubic blender. With the hyperbolic stalker, the linear blender
is not able to smooth out the pole in the flat case, whereas the cubic is. The sigmoid blender will smooth out any
non-essential singularity, but the resulting curve may not be very pleasant. Plotting the derivative of these interpolants
is not for the faint-hearted.

- B stalker
E mono
g] B natural
m h%a@ﬁc
>] 1
<
3 4
o _|
© | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
X

Note that both the stalker and the "monoH.FC" spline honours the completely flat region between points 4 and
5, but between points 7 and 8 "monoH.FC" has considerable overshoot, even though the points are very close. The
reason is that point 8 is slightly lower than point 7, so that points 7-10 are not monotonic, and then the spline there
abandons its monotonicity constraint entirely. Mathematically, the stalker spline is differentiable except in points 4
and 5, even though it looks like a sharp corner in point 8 due to a very large second derivative.

We also illustrate the same splines on a monotonic set of points. If all the knots are monotonic, the Fritsch-Carlson
spline is superb, it ensures monotonicity and differentiability. The stalker spline does not in case there are completely
flat regions, then differentiability is abandoned.

8 SIMEN GAURE

_| B stalker
E mono
g - M natural
B hyperbolic
>
<
3
o _]
© | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
X

An interesting case is when the knots are pairwise constant. The stalker spline reduces to a linear interpolation. The
knots below are not exactly pairwise constant, they differ by 10716, This is sufficient to make "monoH.FC" overshoot.

stalker
mono
natural

hyperb%‘

EEON

.

0.4

0.0 0.2 0.4 0.6 0.8 1.0

5. HIGHER DIMENSIONS

The stalker spline in higher dimension NN is simplistic and problematic. It works on a Cartesian grid. When
evaluating the stalker in an x between grid points, the stalker is evaluated for the NV — 1 first dimensions on two grid
lines on each side of x in dimension N. On these four points in dimension N, two basis functions are found, evaluated
and blended. There is no guarantee that doing this with the dimensions in another order will yield exactly the same
result.

THE STALKER SPLINE 9

Everything comes at a price, the price for the stalker spline is that it does not work very well in higher dimensions.
The variable degree causes creasing artefacts.

We take a look at 2d-interpolation, first the Maungawhau volcano with exaggerated height in figure [It is quite
nice with the stalker interpolation.

data(volcano)

volc <- volcano[seq(1l,nrow(volcano),3),seq(l,ncol(volcano),3)]1/10 #low res wolcano

grid <- list(x=as.numeric(seq_len(nrow(volc))), y=as.numeric(seq_len(ncol(volc))))

ph <- ipol(volc, grid=grid, method='polyharmonic',Kk=2)

st <- ipol(volc, grid=grid, method='stalker',Kk=NA)

ml <- ipol(volc, grid=grid, method='multilinear')

g <- list(x=seq(1l,nrow(volc), len=71), y=seq(l,ncol(volc),len=71))

par (mar=rep(0,4)); col <- 'green'

light <- list(specular=0.2,ambient=0.0,diffuse=0.6)

plot3D: :persp3D(grid$x, grid$y, volc, colvar=NULL, lighting=light,
theta=45, ltheta=0, 1lphi=40, col=col, axes=FALSE, bty='n',scale=FALSE)

for(f in list(ml, st, ph)) {

plot3D: :persp3D(ghx, g$y, evalongridV(f,grid=g), colvar=NULL, lighting=light,

theta=45, ltheta=0, 1lphi=40, col=col, axes=FALSE, bty='n', scale=FALSE)

o

(A) low resolution (B) multilinear
(c) stalker (D) thin plate spline

FIGURE 4. Maungawhau

10 SIMEN GAURE

Then we interpolate some random points in figure [5} Incidentally, there are some plane areas, and some torsion.
Torsion is a problem for the stalker spline, the degree in one dimension goes down to 1, creating striped artefacts
in some regions. This is alleviated by using a constant degree. The hyperbolic stalker is remarkably faithful to the
points, but it also suffers from artefacts in certain areas where it is ill-conditioned. There is no advanced shading in
plot3D: :persp3D, so the 100 x 100 resolution can be seen if you zoom in.

set.seed(42); N <- 8
grid <- list(x=seq(0,1,length=N)+c(0,rnorm(N-2,sd=0.3/N),0),
y=seq(0,1,length=N)+c(0,rnorm(N-2,sd=0.3/N),0))

val <- matrix(runif (N*N,0,0.3),N)

st <- ipol(val,grid=grid, method='stalker',Kk=NA)

ph <- ipol(val,grid=grid, method='polyharmonic', k=2)

fh <- ipol(val,grid=grid, method='fh', k=0)

sthyp <- function(x) st(x,deg=0,blend='cubic')

g <- list(x=seq(0,1, len=70), y=seq(0,1,len=70))

par (mar=rep(0,4))

for(f in list(st, ph, sthyp, fh)) {
plot3D: :persp3D(gx, gy, evalongridV(f,grid=g), colvar=NULL, lighting=light,

theta=60, ltheta=30, 1lphi=45, col='green', axes=FALSE, bty='n', scale=FALSE,zlim=c(0,1))

pts <- evalongridV(f,grid=grid)+0.00
plot3D: :points3D(rep(grid$x,N) ,rep(grid$y,each=N) ,pts,add=TRUE, colvar=NULL,pch=20)

}

The torsion problem can be seen near the right corner. We can take a closer look at these portions of the surface
in figure [6] The striped artefacts are regions where the degree changes.

g <- list(x=seq(grid$x[5],grid$x[8],length=100),y=seq(grid$y[5],grid$y[8],length=100))
par (mar=rep(1,4))
plot3D: :persp3D(gx, gy, evalongridV(st,grid=g), colvar=NULL, lighting=light,
theta=120, ltheta=100, lphi=45, col='green', axes=TRUE)
subgrid <- list(x=grid$x[5:8],y=grid$y[5:8])
zval <- evalongridV(f,grid=subgrid)+0.005
plot3D: :points3D(rep(subgrid$x,4) ,rep(subgrid$y,each=4) ,zval,add=TRUE, colvar=NULL, pch=20)

What happens here is the following. The spline along the rightmost border (y = 1) is monotonic. The spline next
to it has a top, and at some point it crosses the level of the rightmost level. As we remember, a spline along the other
dimension will then reduce its degree all the way down to piecewise linear. It is in this process the lowering of the
degree on the right side causes reversal of the derivative between the grid points. We can see it clearly in figure [7] if
we plot the splines for the four y values, and the black one for a spline in between. The grey curve is the one with
constant degree 2 in the y dimension.

x <- seq(grid$x[[5]],grid$x[[8]1],1len=100)
pts <- c(grid$y[5:8])
pt <- mean(grid$y[6:7])
col <- c('green', 'magenta', 'blue','red')
plot(x,st(rbind(x,pt)),typ='1"',ylim=c(0,0.3),ylab="'z")
lines(x,st(rbind(x,pt) ,deg=c(1.5,2)), col='grey')
points(grid$x,st(rbind(grid$x,pt)) ,pch=20)
for(i in seq_along(pts)) {
v <- st(rbind(x,pts[i]))
lines(x,v,col=col[i],1lty=2)
points(grid$x,st(rbind(grid$x,pts[il)),pch=20,col=col[i])
}
legend('topright',title="y=",
legend=round(c(pts[1:2],pt,pts[3:4]1),3),
fill=c(col[1:2], 'black',col[3:4]))

Note that the black curve is always between the blue and the magenta, but erratic wherever any of the coloured
lines cross.

In figure [§]is the same part of the surface with hyperbolic stalker in the first dimension, and constant degree 1.5 in
the second.

THE STALKER SPLINE 11

IR

(a) stalker (B) thin plate spline
(c) hyperbolic stalker (D) Floater-Hormann

FIGURE 5. Random surface

par (mar=rep(1,4))

plot3D: :persp3D(g$x, gby, evalongridV(st,grid=g,degree=c(0,1.5)), colvar=NULL, lighting=light,
theta=120, ltheta=100, lphi=45, col='green', axes=TRUE)

plot3D: :points3D(rep(subgrid$x,4) ,rep(subgrid$y,each=4) ,zval,add=TRUE, colvar=NULL, pch=20)

6. SUMMARY
The stalker spline is created and used with

st <- ipol(val,grid=grid,method='stalker',k=1.5)
st(x,degree=1.2,blend="'1linear')

where k is the degree. k can be a vector, one degree for each dimension. It is possible to specify any nonzero degree,
though I see no use for degrees less than 1 other than for artful displays. A degree of zero is treated specially, with
hyperbolic functions a + bx + 1#%. Specifying k=NA makes the spline adjust the degree locally as described above. The
hyperbolic and varying degree stalker do not generalize very well to two or more dimensions, so for multidimenional
data varying degree or hyperbolic stalker is strongly discouraged, except possibly in the first dimension. Evaluation

12 SIMEN GAURE

FIGURE 6. Torsion problem in the wet paper spline

on a non-uniform grid currently involves solving a non-linear equation numerically, so this is slower than on a uniform
grid.

The spline is created with a default degree, be it NA or a numeric between 1 and 2. It is possible at evaluation
time to use a different degree, this incurs a time penalty. Ordinarily, basis functions are combined linearly. I.e. when
we approach a grid point more and more of the basis function living there is weighted in. This can be changed at
evaluation time, it can be done “faster” with a sigmoid map, i.e. so that near a grid point, the neighbouring basis
functions are not used at all. Use blend="sigmoid" or blend="cubic" to choose between two such sigmoid maps.

RAGNAR FRISCH CENTRE FOR ECONOMIC RESEARCH, OSLO, NORWAY

0.05 0.10 0.15 0.20 0.25 0.30

0.00

THE STALKER SPLINE

B 0.569
B 0.763
B 0.853
B 0.943

0.7

FIGURE 7. Torsion details

13

14

SIMEN GAURE

FiGURE 8. Constant degree 1.5

	1. Introduction
	2. The stalker spline
	3. Overshoot and blending
	3.1. Blending and degree

	4. Examples
	5. Higher dimensions
	6. Summary

