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Abstract
The blm package provides functions for fitting
flexible binomial models for cohort data with a bi-
nary outcome. The binomial linear model (BLM)
is a strictly linear model. The linear-expit (LEX-
PIT) model allows risk to be expressed as a func-
tion of linear and nonlinear effects, where non-
linear effects take the form of the inverse logit
function. Estimation of the model parameters is
based on constrained maximum likelihood, which
ensures that the fitted model yields feasible risk
estimates. In this vignette, the BLM and LEX-
PIT model classes and their methods are demon-
strated in risk models of type II diabetes among
Pima Indians.

Binomial linear model

Given the binary event yi, the probability that Yi = 1
under a binomial linear model (BLM) is a linear func-
tion of covariates xi,

πi = x′i β

Each β of nonconstant covariates represents the risk
difference associated with a unit change in the given
covariate, when all other factors are fixed.

Suppose that x̃ is the covariate pattern for a sub-
ject from the target population of the model whose
risk we want to estimate. To be a valid risk, x̃′β ∈
(0,1). In general, we might not be able to specify
all of the possible x̃ of our population. Instead, we
make use of the xi from our sample and require that
all x′i β ∈ (0,1). Thus, the set of covariate patterns of
the sample cohort defines the feasible region for β. To
ensure that the estimates for β are within the region
of feasibility, constrained maximum likelihood is used.
The default algorithm employed is an augmented La-
grangian method (Madsen et al., 2004) which is imple-
mented with the auglag function of the package al-

abama (Varadhan, 2011). An adaptive barrier method
can also be used by setting the argument augmented

to FALSE (Lange, 2010). In this case, the function
constrOptim.nl of alabama performs the optimiza-
tion. The function blm provides a wrapper for each
method in fitting the linear model.

As an illustration of the model syntax we consider
a model to estimate the risk of diabetes among Pima
indians based on the Pima.te dataset of the MASS

package.

We begin the R session by loading the pack-
ages with the binomial model fitters (blm) and the
dataset for the analysis (MASS). The dataset Pima.te
is loaded.

> library(blm)

> library(MASS)

> data(Pima.te)

> head(Pima.te)

npreg glu bp skin bmi ped age type

1 6 148 72 35 33.6 0.627 50 Yes

2 1 85 66 29 26.6 0.351 31 No

3 1 89 66 23 28.1 0.167 21 No

4 3 78 50 32 31.0 0.248 26 Yes

5 2 197 70 45 30.5 0.158 53 Yes

6 5 166 72 19 25.8 0.587 51 Yes

The sample consists of 332 adult women of the
Pima tribe in Phoenix, Arizona. There are eight de-
mographic/anthropometric measures. The outcome
of the analysis is type, which is a Yes/No indicator
for WHO criteria of diabetes.

The fitted model will examine the risk association
of age and body mass index on the probability of type
II diabetes. The syntax for blm is much like lm, con-
sisting of formula and data arguments.

> Pima.te$diabetes <- ifelse(Pima.te$type == "Yes", 1, 0)

> fit <- blm(diabetes ~ scale(age) + scale(bmi), Pima.te)

> fit

Call: diabetes ~ scale(age) + scale(bmi)

Coefficients:

estimates t-value std. err p-value

(Intercept) 3.280e-01 1.429e+01 2.296e-02 0.000e+00

scale(age) 1.173e-01 5.433e+00 2.159e-02 1.082e-07

scale(bmi) 1.186e-01 7.396e+00 1.603e-02 1.174e-12

Degrees of Freedom: 329

Run time (sec): 0.137

LogLik: -178.7 AIC: 363.5

The scale function standardizes each continuous
measure, subtracting each observation by its mean
and dividing by its standard deviation. For a normally
distributed variable, this standardization will result in
a covariate that is ∼ N(0,1); zero corresponds to the
mean and one unit change corresponds to a standard
deviation change from the mean.

Showing the result of fit returns point estimates,
t-values, standard errors, and p-values for β. We find
that all of the factors are statistically significant. The
average age of the Pima Indians in the sample cohort
was 31.3 years and the average BMI was 33.2. The
model suggests that a female Pima Indian of this age
and BMI has a 32.8% chance of being diabetic. The
risk of diabetes for a Pima woman that is a standard
deviation older than a Pima woman of the same BMI,
is increased by an absolute risk of 11.7%. The risk
difference for diabetes between Pima Indians of the
same age but who differ by a standard deviation in
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BMI is 11.9%, with the risk increasing with higher
BMI.

The log-likelihood, AIC, and degrees of freedom
are also reported, which can be useful for model com-
parison.

For more information about the convergence prop-
erties of the fit, we use the summary function.

> summary(fit)

$est

[,1]

(Intercept) 0.3280491

scale(age) 0.1173087

scale(bmi) 0.1185589

$gradient

[1] 45.24306 -35.80706 -79.38399

$feasible

[1] TRUE

$active

(Intercept) scale(age) scale(bmi)

1.0000000 -0.8758996 -1.9003085

$convergence

[1] 0

$message

NULL

$loglik

[1] -178.7356

$df

[1] 329

$AIC

[1] 363.4712

$null.deviance

[1] 420.2973

$seconds.to.run

[1] 0.137

This returns a list with elements with the follow-
ing elements. The element est are the regression co-
efficients, which could also be obtained by applying
coef. The element gradient is the first derivative of
the objective function with respect to β, where the
objective function for auglag is the log-likelihood in
addition to a first-order barrier term and a second or-
der penalty term of the inequality constraints. The
gradient should be close to zero at the maximum like-
lihood solutions. But, if the boundary is reached, the
gradient values could be large. The element feasi-

ble is a logical value indicating whether all of the
predicted risks in the sample are true probabilities.

The active element fives the covariate classes whose
risks are at the boundary of the parameter space. If
all constraints are inactive then active is NULL. Here,
we find that there is one active constraint which is as-
sociated with younger age and low BMI. The exact
predicted risk for this subject type can be obtained
as follows.

> fit@active.constraints$active %*% coef(fit)

[,1]

[1,] 2.694218e-09

The element convergence is a numerical value
indicating whether the algorithm successfully con-
verged. A value of 0 indicates success. Any other
number indicates a failure to converge and message

provides some description of the type of failure.
The remaining elements provide some assessments

of the model fit. As an exact test of the model fit we
can use a likelihood ratio test.

> LR <- summary(fit)$null.deviance - 2 * summary(fit)$loglik

> df <- length(coef(fit))

> 1 - pchisq(LR, df = df)

[1] 0

The global test is highly significant. As a further
diagnostic of the model fit, a Hosmer-Lemeshow type
test is appropriate, given that the model includes con-
tinuous covariates.

> gof(fit)

$chisq

[1] 8.811154

$p.value

[1] 0.3584765

There is no evidence that the linear model is a poor
fit. To investigate this further, a lattice plot of the
observed incidence of diabetes, binned by BMI and
age groups, against the predicted mean risk, is use-
ful. Figure 1 shows linear risk effects for the youngest
age groups but there is some discrepancy among the
oldest Pima Indians.

> library(lattice)

> y <- tapply(Pima.te$diabetes, list(cut(Pima.te$bmi, c(18, 25,

+ 30, 35, 40, 50)), cut(Pima.te$age, c(20, 30, 40, 50, 70))),

+ mean)

> pre <- tapply(predict(fit), list(cut(Pima.te$bmi, c(18, 25, 30,

+ 35, 40, 50)), cut(Pima.te$age, c(20, 30, 40, 50, 70))), mean)

> plot.data <- data.frame(obs = as.vector(y), pre = as.vector(pre),

+ age = rep(colnames(y), each = 5), bmi = rep(row.names(y),

+ 4))

> xyplot(obs + pre ~ bmi | age, data = plot.data, auto.key = TRUE,

+ type = "b")
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Figure 1: Graphical inspection of linearity assump-
tion for BLM model fit

Had the model consisted of only categorical vari-
ables, we would assess goodness of fit with deviance,
Pearson chi-square statistics, and a comparison of the
observed and expected event counts in each covariate
category.

> fit.categorical <- blm(diabetes ~ I(age > 50) + I(bmi > 30),

+ Pima.te)

> fit.categorical

Call: diabetes ~ I(age > 50) + I(bmi > 30)

Coefficients:

estimates t-value std. err p-value

(Intercept) 1.573e-01 4.768e+00 3.298e-02 2.801e-06

I(age > 50)TRUE 2.168e-01 1.875e+00 1.156e-01 6.165e-02

I(bmi > 30)TRUE 2.513e-01 5.277e+00 4.763e-02 2.389e-07

Degrees of Freedom: 329

Run time (sec): 0.018

LogLik: -195.7 AIC: 397.4

> dispersion(fit.categorical)

$observed

100 101 110 111

19 78 1 11

$expected

100 101 110 111

18.083969 79.670266 2.618417 9.380598

$deviance

[1] 391.4493

$pearson

[1] 1.361308

$pearson.df

[1] 1

$deviance.df

[1] 329

$pearson.p

[1] 0.243311

$deviance.p

[1] 0.01013852

The dispersion function provides the observed
and expected events in each covariate class, whose
pattern is indicated by the binary sequence corre-
sponding to the three parameters of the model: in-
tercept, age, BMI. Degrees of freedom and p-values
are given for the deviance and chi-square statistics.

Returning to our starting model, if we wanted to
use an adaptive barrier method for the optimization,
we would use the augmented argument.

> fit.barrier <- blm(diabetes ~ scale(age) + scale(bmi), Pima.te,

+ augmented = FALSE)

> fit.barrier

Call: diabetes ~ scale(age) + scale(bmi)

Coefficients:

estimates t-value std. err p-value

(Intercept) 3.263e-01 1.210e+01 2.697e-02 0.000e+00

scale(age) 1.169e-01 5.047e+00 2.317e-02 7.440e-07

scale(bmi) 1.178e-01 4.041e+00 2.915e-02 6.641e-05

Degrees of Freedom: 329

Run time (sec): 0.041

LogLik: -178.7 AIC: 363.5

The point estimates are quite similar but we note
that the t-value for bmi is nearly twice that of fit,
indicating that the standard error is ≈ 50% of what
was found for the fit with the augmented Lagrangian
method.

> sqrt(diag(vcov(fit)))/sqrt(diag(vcov(fit.barrier)))

[1] 0.8513155 0.9321175 0.5498353

The models differ because they use a different ap-
proach to determining the covariance-variance matrix
of the model estimates. In the augmented Lagrangian,
the active inequality constraints are included in the
objective function, its gradient, and Hessian. For the
barrier method, the standard unconstrained Hessian
is used. The models will give an equivalent standard
error when no constraints are active. But when the
boundary is hit, the unconstrained Hessian might be
inaccurate and a warning is thrown to caution users
against its use.
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Linear-Expit (LEXPIT) model

Suppose we expanded the BLM model to include the
effects of plasma glucose concentration > 100 mg/dl.

> fit <- blm(diabetes ~ scale(age) + scale(bmi) + I(glu > 100),

+ Pima.te)

> fit

Call: diabetes ~ scale(age) + scale(bmi) + I(glu > 100)

Coefficients:

estimates t-value std. err p-value

(Intercept) 2.022e-01 5.001e+00 4.043e-02 9.291e-07

scale(age) 8.755e-02 3.589e+00 2.439e-02 3.828e-04

scale(bmi) 7.412e-02 3.458e+00 2.144e-02 6.166e-04

I(glu > 100)TRUE 2.089e-01 3.628e+00 5.757e-02 3.306e-04

Degrees of Freedom: 328

Run time (sec): 0.131

LogLik: -171 AIC: 350

> summary(fit)

$est

[,1]

(Intercept) 0.20218407

scale(age) 0.08754867

scale(bmi) 0.07412256

I(glu > 100)TRUE 0.20890254

$gradient

[1] 75.142631 -56.984052 -114.478044 4.495058

$feasible

[1] TRUE

$active

(Intercept) scale(age) scale(bmi) I(glu > 100)TRUE

234 1 -0.9699179 -1.570769 0

271 1 -0.7818813 -1.804193 0

$convergence

[1] 9

$message

[1] "Convergence due to lack of progress in parameter updates"

$loglik

[1] -171.0021

$df

[1] 328

$AIC

[1] 350.0042

$null.deviance

[1] 449.231

$seconds.to.run

[1] 0.131

The introduction of the additional parameter re-
sults in two boundary cases and the augmented La-
grangian algorithm failed to converge. Although we
could consider adjusting the algorithm settings, if we
are unsure whether linearity applies to all of the risk
factors, we can fit a more flexible LEXPIT model that
allows us to consider a mixture of linear and nonlinear
effects.

The LEXPIT model describes the probability of
Yi = 1 as a function of linear and nonlinear effects,
where the nonlinear effects are the expit function (the
inverse of the logit), expit(x) = exp(x)/(1 + exp(x)).

πi = x′i β + expit(z′iγ)

The xi variables are linear effects and zi are the logis-
tic effects. The first component of zi is an intercept
term, so that when the remaining components are 0,
expit(γ0) is the baseline risk. As in BLM, β represent
risk differences for unit changes in xi. The coefficients
γ are odds ratios after baseline adjustment for the ef-
fects of x′i β.

The LEXPIT model provides a more flexible way
to estimate risk differences since it imposes fewer pa-
rameter constraints. This is possible because any z′iγ
yields a probability measure.

To illustrate the syntax of the lexpit function
and its potential utility, we fit the expanded model
for type II diabetes in Pima Indians with linear ef-
fects for age and logistic effects for BMI and plasma
glucose concentration.

> fit.lexpit <- lexpit(f.linear = diabetes ~ scale(age), f.expit = diabetes ~

+ scale(bmi) + I(glu > 100), Pima.te)

> fit.lexpit

Linear Call: diabetes ~ scale(age)

Expit Call: diabetes ~ scale(bmi) + I(glu > 100)

Coefficients:

estimates t-value std. err p-value

scale(age) 9.293e-02 4.874e+00 1.907e-02 1.705e-06

(Intercept) -1.596e+00 -7.295e+00 2.187e-01 2.257e-12

scale(bmi) 4.560e-01 4.115e+00 1.108e-01 4.896e-05

I(glu > 100)TRUE 1.297e+00 4.581e+00 2.831e-01 6.578e-06

Degrees of Freedom: 328

Run time (sec): 0.183

LogLik: -168.2 AIC: 344.4

> summary(fit.lexpit)

$est.linear

[1] 0.0929253

$est.expit

(Intercept) scale(bmi) I(glu > 100)TRUE

-1.595716 0.456040 1.297065

$baseline.risk
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(Intercept)

0.1685812

$OR

scale(bmi) I(glu > 100)TRUE

1.577813 3.658542

$gradient

[1] -37.270160 12.472267 -10.467269 5.860206

$feasible

[1] TRUE

$active

(Intercept) scale(bmi) I(glu > 100)TRUE

-0.9699179 1.0000000 -1.5707695 0.0000000

$convergence

[1] 0

$message

NULL

$loglik

[1] -168.222

$df

[1] 328

$AIC

[1] 344.444

$null.deviance

[1] 470.4549

$seconds.to.run

[1] 0.183

The LEXPIT model meets the criteria for conver-
gence with only one active constraint. Similar meth-
ods as shown for BLM are available for the lexpit

class which provide measures of model fit, methods to
compute confidence intervals, and make predictions.

> LR <- summary(fit.lexpit)$null.deviance - 2 * summary(fit.lexpit)$loglik

> df <- length(coef(fit.lexpit))

> 1 - pchisq(LR, df = df)

[1] 0

> gof(fit.lexpit)

$chisq

[1] 11.90896

$p.value

[1] 0.1553122

To estimate a confidence interval for the risk differ-
ence associated with 2 standard deviation difference
in age we could use the ci function and specify the
vector for the linear effects with the argument C.

> ci(fit.lexpit, C = 2, baseline = FALSE)

$est

[,1]

[1,] 0.1858506

$se

[,1]

[1,] 0.0381302

$lower

[,1]

[1,] 0.1111168

$upper

[,1]

[1,] 0.2605844

$CI

[1] "0.1859, (0.1111, 0.2606)"

The argument FALSE specifies that the expit com-
ponents are not included in the confidence interval
determination. If we wanted a confidence interval for
the absolute risk of diabetes for an Pima woman of
average age, BMI, and with a plasma glucose > 100
mg/dl, we would specify the expit components as fol-
lows.

> diabetic.risk <- ci(fit.lexpit, C = 0, C.expit = c(1, 0, 1))

> diabetic.risk

$est

[,1]

[1,] 0.4258872

$se

[,1]

[1,] 0.03387777

$lower

[,1]

[1,] 0.359488

$upper

[,1]

[1,] 0.4922864

$CI

[1] "0.4259, (0.3595, 0.4923)"

We find that the estimated risk of type II diabetes
for a Pima woman of this type is 42.6%.

Conclusion

The blm package provides two models, BLM and
LEXPIT, that can be used to obtain direct estimates
of absolute risk and risk differences for binary cohort
data. The instantiation and methods for the blm and
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lexpit classes are in keeping with other linear models
in R. The LEXPIT provides additional flexibility that
can be useful when estimates of the linear model are
near the boundary.
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