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Bivariate Probability Distributions

Abby Spurdle

May 24, 2019

Contains convenience functions for constructing, plotting and evaluating bivariate probabil-
ity distributions, including their probability mass functions, probability density functions
and cumulative distribution functions. Supports uniform (discrete and continuous), bino-
mial, Poisson, categorical, normal, bimodal and Dirichlet (trivariate) distributions, and kernel
smoothing and empirical cumulative distribution functions.

Pre-Intro

This package is based on function objects.

Some functions (constructors) return other functions (probability distributions), which can
be evaluated.

This is equivalent but different to (a subset of) the d, p, q, r approach used in R’s stats
package.

Introduction

This package contains convenience functions for constructing, plotting and evaluating bi-
variate probability distributions, including their probability mass functions, probability
density functions and cumulative distribution functions.

It supports the following parametric probability distributions:
1. Discrete bivariate Uniform distributions.
2. Bivariate Binomial distributions.

Bivariate Poisson distributions™.

Bivariate Categorical distributions*.

Continuous bivariate Uniform distributions.

Bivariate Normal distributions*.

N v w

Bivariate Bimodal distributions*.

8. Trivariate Dirichlet distributions*.
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And it supports the following nonparametric probability distributions:
1. Bivariate Kernel density estimates*.
2. Bivariate Empirical cumulative distribution functions*.

Some of these distributions are simply the product of their marginal distributions. Others,
marked with an * are not necessarily so.

In general, we can compute their probability mass function (PMF) or their probability
density function (PDF), and their cumulative distribution function (CDF).

The functions for constructing probability distributions take some parameters and return
functions which can be evaluated for x and y, except for kernel density estimates.

Note that discrete probability distributions convert their arguments to integers before eval-
uation.

The functions for plotting discrete distributions take a function object and can plot either
a heat map or a 3d bar plot. Most of the functions for plotting continuous distributions
take a function object and can plot either a contour plot or a 3d surface plot.

Refer to my barsurf package for information on how to customize plots, if required.

Note that my probhat package supports kernel smoothing, more generally.

Loading The Packages

I’'m going to load (and attach) the intoo, bivariate and MASS packages.

> library (intoo)
> library (bivariate)
> library (MASS)

Note that the bivariate package imports the intoo, barsurf, mvtnorm and KernSmooth
packages.

Discrete Bivariate Uniform Distributions

We can describe a bivariate uniform distribution as the product of two univariate uniform
distributions.

We can construct its probability mass function using the dubvpmf() function. It takes four
arguments, the a and b values of X and the a and b values of Y.

> f = dubvpmf (1, 4, 1, 4)
We can print the function, however, I will give an example later.
Also, we can plot it.

> plot (f, TRUE)
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To construct a cumulative distribution function, we can use the dubvedf() function. It
takes the same arguments as dubvpmf().

> F = dubvcdf (1, 4, 1, 4)
> plot (F, TRUE)

E- N

In both cases, we can evaluate the function for x and y.
>f (1, D
(1] 0.0625

The same applies to all the other probability distributions in this package, except for kernel
density estimates.
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Bivariate Binomial Distributions

One way to describe a bivariate binomial distribution is to say that we have n trials. In
each trial there are two independent events, each with a particular probability of success.
Like flipping two coins, n times.

Like the bivariate uniform distribution, we can describe a bivariate binomial distribution
as the product of two univariate binomial distributions with the same n parameter, so:

P(X = l',Y = y) = fX,Y(x7y;pX7pYan)
= fx(z;px,n)fy (y;py,n)

= KZ)%?O - px)”‘m} [(Z)p%(l - py)"‘y]

Where px is the probability of the first success and py is the probability of the second
success.

We can construct its probability mass function using the bnbvpmf() function. It takes
three arguments, the probability of the first success, the probability of the second success
and the number of trials.

> f = bnbvpmf (0.5, 0.5, 20)
> plot (£)
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> plot (f, TRUE)
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To construct a cumulative distribution function, we can use the bnbvedf() function. It
takes the same arguments as bnbvpmf().

> F = bnbvedf (0.5, 0.5, 20)
> plot (F, TRUE)

NN\
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Note that I’ve put the probabilities first, however, it’s customary for the number of trials
to be first.

If n is omitted, it defaults to one, giving a Bernoulli distribution.
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Bivariate Poisson Distributions*

Based on Karlis and Ntzoufras (2003), we can define the bivariate Poisson probability mass
function as:

P(X =2,Y =y) = fxyv(z,y; M, A2, A3)

k
_()\1+>\2+/\3 )\1 >\2 Z As
J" 1/' /\1/\2

Where k is in 0 to min(z,y).

And where:
E(X)=var(X) = A1 + A3
E(Y) = var(Y) =X+ A3
cov(X,Y) = A3

We can use the pbvpmf() or pbvpmf.2() functions.

The first takes three arguments, the three A parameters. The second also takes three
arguments, but the mean of X, the mean of Y and the covariance between X and Y.

> f = pbvpnf.2 (8, 8, 2)
> plot (£)
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> plot (f, TRUE)
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A B C D
0.03676471 0.02205882 0.102941176 0.09558824
0.04411765 0.07352941 0.007352941 0.05882353
0.06617647 0.08088235 0.014705882 0.02941176
0.08823529 0.11029412 0.051470588 0.11764706

QW=

\

f = cbvpmf (2)
> plot (f, TRUE)

Evaluation can use either integers or strings, and returns probabilities.
> f (1, 2)
[1] 0.02205882
> f ("A", "B")

[1] 0.02205882

Continuous Bivariate Uniform Distributions

Continuous bivariate uniform distributions are similar to discrete bivariate uniform distri-
butions. However, we have a probability density function instead of a probability mass
function.

We can use the cubvpdf() function. It takes four arguments, the a and b values of X and
the a and b values of Y.

> f = cubvpdf (0, 2, 0, 2)
> plot (f, TRUE)
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functions, both of which use the dmvnorm() function from the mvtnorm package,

We can construct a normal bivariate probability density function using the nbvpdf() or

nbvpdf.2()
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We can print the function.

> f
nbvpdf, 5
function (x, y)
{
= THAT(Q)
v = .val.numeric.args(x, y)
.nbvpdf.eval(., v$x, v$y)
¥
%$% vector.means, numeric, 2
[11 0O
%$% matrix.variances, matrix, 2 * 2

[,11 [,2]
[1,] 1 0
[2,] 0 1

And plot it.

> plot (£)

> plot (f, TRUE)

10
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We can construct a cumulative distribution function using the nbvedf() or nbvedf.2() func-
tions, both of which use the pmvnorm() function from the mvtnorm package, and take the
same arguments as nbvpdf() and nbvpdf.2().

> F = nbvecdf (0, 0, 1, 1, 0)
Once we have constructed our object we can plot it.

> plot (F)

> plot (F, TRUE)
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Note that there’s an appendix later that compares normal distributions with different
parameters.

Bivariate Bimodal Distributions*®

Here, a bimodal distribution isn’t an officially recognized distribution, however, it’s still of
interest.

One way to construct a bivariate bimodal probability density function is to construct two
bivariate normal probability density functions, then add their densities together, and then
divide by two.

We can construct such a probability density function using the bmbvpdf() or bmbvpdf.2()
functions, both of which take eight arguments.

The first function takes the mean of X, the mean of Y, the standard deviation of X and
the standard deviation of Y for the first component distribution, and the mean of X, the
mean of Y, the standard deviation of X and the standard deviation of Y for the second
component distribution. The second function is the same except we use variances instead
of standard deviations.

> f = bmbvpdf (3.5, 0, 1, 1, 6.5, 0, 1, 1)
> plot (f, npoints=40)



Spurdle, A. bivariate 0.4.1 13

> plot (f, TRUE, npoints=40)

S

We can construct a cumulative distribution function using the bmbvedf() or bmbvedf.2()
functions. They take the same arguments as bmbvpdf() and bmbvpdf.2().

> F = bmbvcdf (3.5, 0, 1, 1, 6.5, 0, 1, 1)
> plot (F, npoints=40)
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> plot (F, TRUE, npoints=40)

9

9

X0
0
‘N
00
A

00
K

’0

0
0

’0

)

0

0
OO0

0
DOOOOOOY

0

)
)
N

)

o"
A0
50

I
0

Note that this method is similar kernel smoothing, discussed later.
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Dirichlet distributions with three variables are similar to other probability distributions

with two variables.

We can construct one, using the dtvpdf() function, which takes three o parameters.

> £ = dtvpdf (2, 4, 6)
> plot (f)
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> plot (f, TRUE)

X2

Or using the log density.

> plot (f, TRUE, log=TRUE)

x1

15
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Note that Dirichlet distributes can take a large variety of shapes.

I’'ve provided some more examples in an appendix.

Bivariate Kernel Density Estimates*

We can construct bivariate kernel density estimates using the kbvpdf() function, which uses
the bkde2D() function from KernSmooth. It has four arguments. The first two arguments
are x and y vectors of data. The second two arguments are the bandwidths.

I've adapted the example from KernSmooth.

> data ("geyser")
> attach (geyser)

> f = kbvpdf (duration, waiting, 0.7, 7)
Again, once we have constructed our object we can plot it.

> plot (f, xlab="duration", ylab="waiting")
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100
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waiting
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|

40

duration

> plot (f, TRUE, xlab="duration", ylab="waiting")

WA

waiting duration

> detach (geyser)

Bivariate Empirical Cumulative Distribution Functions™®

Bivariate ECDF's are constructed in a similar way to bivariate kernel density estimates,
except they give us a CDF rather than a PDF.

rnorm (20)
rnorm (20)

> X
>y

> F = ebvcdf (x, y)
> plot (F)



18

bivariate 0.4.1

Spurdle, A.

TImrT I
0.390  1.500

-0.620

I
00T'T

T
09€°0

LU LI
081°0—

I
0ov'1-

-2.200

\ ////.(.%.e N

(PTG
\\&w\\\\ \\,h%/\\\\ )
) $§e

a

J

> plot (F, TRUE)

evaluated over the observations, with an extrapolated region. However, if the number of
observations is large, the function is plotted as a (continuous) surface, evaluated over a

Note that if the number of observations is small, the function is plotted as a step function,
regularly spaced grid.
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Appendix A:
Comparing Normal Distributions

We can compare different normal distributions using different correlation or covariance
parameters.

First, let’s consider the bivariate distributions from the earlier section with zero correlation.

> f1 = nbvpdf (0, 0, 1, 1, 0)
> f1 %$% matrix.variances

[,11 [,2]
[1,] 1 0
[2,] 0 1

> plot (f1, all=TRUE)

-1 0 1 2 3
| I |

-3

-1 0 1 2 3
(I

-3

Second, let’s consider bivariate distributions with positive correlation.

> f2 = nbvpdf (0, 0, 1, 1, 0.75)
> £2 %$% matrix.variances

(.11 [,2]
[1,] 1.00 0.75
[2,] 0.75 1.00

> plot (f2, all=TRUE)
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Third, let’s consider bivariate distributions

> £3 = nbvpdf (0, 0, 1, 1, -0.75)
> £3 %$J% matrix.variances

[,11 [,2]
[1,] 1.00 -0.75
[2,] -0.75 1.00

> plot (£3, all=TRUE)
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Note that currently, the all=TRUE option requires the PMF or PDF rather than the CDF.
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Appendix B:
Comparing Dirichlet Distributions

a=(1,1,1)

> plot (dtvpdf (1, 1, 1), TRUE)
v

a=(2,2,2)

> plot (dtvpdf (2, 2, 2), TRUE)
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x1

a = (0.5,0.5,0.5)

> plot (dtvpdf (0.5, 0.5, 0.5), TRUE)

23
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