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Abstract

The bigMap R-package integrates a mapping method (i.e. a multi-step unsupervised clustering
protocol) for large-scale structured data. The protocol follows three steps: a dimensionality reduction of
the data, a density estimation over the low dimensional representation of the data, and a final segmentation
of the density landscape. For the dimensionality reduction step we use a parallelized implementation
of the well-known t-Stochastic Neighbouring Embedding (t-SNE) algorithm that significantly alleviates
some inherent limitations, while improving its suitability for large datasets. For the clustering we use the
paKDE algorithm an adaptive Kernel Density Estimation particularly coupled with the t-SNE framework
in order to get accurate density estimates out of the embedded data, and the watertrack transform (WTT)
a variant of the rainfalling watershed algorithm to identify clusters within the density landscape.
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1 bigMap: Big data mapping with parallelized t-SNE

The bigMap R-package integrates an improved mapping method (MM (Todd, Kain, and Bivort 2017, Garriga
and Bartumeus (2018))) within R’s (R Core Team 2018) environment. The bigMap protocol is based on the
following three steps:

e dimensionality reduction down to 2D, based on a parallelized implementation of the t-Stochastic Neigh-
bouring Embedding algorithm (t-SNE (vdMaaten and Hinton 2008), ptSNE (Garriga and Bartumeus
2018));

o kernel density estimation (KDE (Terrell and Scott 1992)) over the embedding space, by means of the
perplexity-adaptive KDE (paKDE (Garriga and Bartumeus 2018)) with adaptive bandwidth;

o cluster identification by means of the water-track transform (WTT (Garriga and Bartumeus 2018)), a
variant of the watershed transform family of algorithms (Meyer 1994, Stoev and StraBer (2000), De
Bock, De Smet, and Philips (2005)) that figures out the water tracks (i.e the riverbeds) along the
valleys of the density landscape.

1.1 Package dependencies

The bigMap R-package is intended to be used in multi-core platforms. The most computationally expensive
parts of the algorithm are implemented using shared memory and C++ implementations. Thus, important
dependences of the bigMap package are:

e Rcpp, Seamless R and C++ Integration (Eddelbuettel and Frangois 2011);

o RcppArmadillo, Accelerating R with high-performance C++ linear algebra (Eddelbuettel and Sander-
son 2014);

o bigmemory, Scalable Strategies for Computing with Massive Data (Kane, Emerson, and Weston 2013);

« parallel, Support for Parallel computation in R (R Core Team 2018);

e snow, Simple Network of Workstations (Tierney et al. 2016).

Further dependencies of the package are:

« colorspace, (Zeileis, Hornik, and Murrell 2009);
« RColorBrewer, (Neuwirth 2014);

2 Using the package
library(bigMap)

The workflow of the package is structured around a central object (a common R’s list()) that represents
an instance of a mapping of a dataset. We name this object bdm from big data mapping and so we will do
throughout this document. The names of the commands in the package also stem from this acronym.

A bdm is initialized with an element containing the input data. Afterwards, each down-stream step in the
protocol attaches the output as a new element in the list, which, in turn, constitutes the input for the next
step. Consequently, the protocol is build up of an ordered sequence of steps that must be preserved.
Let’s load the example included in the package,

bdm. example ()

## Loading objects:
## exMap

This example illustrates the structure of a bdm object after going through all the protocol,



str (exMap)

## List of 9

## § dSet : chr "exMap"

## $ data : num [1:5000, 1:4] 0.0681 1.6987 8.7789 2.4453 2.4284 ...
##* $ 1lbls : num [1:5000] 1 5124863613 ...

## $ is.distance: logi FALSE

## $ Xdata :List of 2

## ..$ whiten : num 4

## ..$ input.dim: int 4

## $ Xbeta :List of 4

## ..$ B : num [1:5000] 7.97 1.84 4.93 3.09 7.6 ...

##  ..$ ppx: num 200

##  ..$ itr: num 100

## ..$ tol: num le-05

## $ ptsne :List of 9

## ..$ threads: num 10

## ..$ layers : num 2

##  ..$ rounds : int 2

## ..$ boost : num 1

## ..$ alpha : num 0.5

## 8y : num [1:5000, 1:4] -13.14 23.75 10.89 3.67 27.48 ...
## ..$ cost : num [1:10, 1:141] 0.916 0.916 0.919 0.915 0.916 ...
## ..$ size : num [1:2, 1:141] 2.81 2.81 2.81 2.81 3.04 ...

## ..$ bigCost: num [1:141] 0.932 0.932 0.943 0.951 0.954 ...

## $ pakde :List of 2

## ..$ :List of 6

## .. ..$ ppx : num 200

## .. ..$ beta : num [1:5000] 0.3668 0.0282 0.4195 0.3033 0.5556 ...
## .. ..$ g.exp: num 3

## o8 x : num [1:200] -37.2 -36.9 -36.5 -36.2 -35.8 ...

## .. ..$y : num [1:200] -33 -32.7 -32.4 -32.1 -31.7 ...

## R 4 : num [1:200, 1:200] 4.46e-61 1.62e-60 1.10e-59 1.33e-58 1.88e-57 ...
#Hit ..$ :List of 6

## .. ..$ ppx : num 200

## .. ..$% beta : num [1:5000] 0.346 0.028 0.504 0.224 0.477 ...

## .. ..$ g.exp: num 3

## o8 x : num [1:200] -37.5 -37.2 -36.8 -36.4 -36.1

## .. $y : num [1:200] -31.6 -31.3 -31 -30.7 -30.3 ...

#t .. ..$z : num [1:200, 1:200] 4.55e-55 1.30e-54 3.61e-54 9.95e-54 2.83e-53 ...
# $ wtt :List of 2

## ..$ :List of 5

## .. ..$ grid: num [1:2, 1:6] 200 200 -38 -34 34 ...

## ..$ P : num [1:16, 1] 35462 16620 25050 12712 8541

## .M : num [1:16, 1:2] 62 20 50 112 141 134 180 139 93 61
## ..$C : num [1:40000, 1] 10 10 10 10 10 10 10 10 10 10 ...
## .. ..$ s : int 16

## ..$ :List of 5

## ..$ grid: num [1:2, 1:6] 200 200 -38 -32 34 ...

## ..$ P : num [1:15, 1] 35462 7741 16220 24851 11912 ...

#it .8 M : num [1:15, 1:2] 62 141 20 51 112 134 139 180 94 61
## ..$C : num [1:40000, 1] 10 10 10 10 10 10 10 10 10 10 ...
## ..$ s int 15



2.1 Mapping data

A mapping instance has several blocks that result from the four main commands of the package. Let’s see
how we build it.

2.1.1 Initialization: bdm.init()

Let’s consider a matrix of raw data (here we take it from the exMap object itself). This is a small synthetic
dataset with n = 5000 observations drawn from a 4-variate Gaussian mixture model with 16 Gaussian
components,

X <- exMap$data # let's assume this ts our raw data matric
dim(X)

## [1] 5000 4
A bdm is initialized through the bdm.init() command with, at least, an input dataset (either a matriz or a
data.frame) and a name to identify the dataset (the utility of the dataset name is explained later in Section

3.1.2). So, in our case,

myMap <- bdm.init('myDataset', X)

str (myMap)

## List of 3

## $ dSet : chr "myDataset"

## $ data : num [1:5000, 1:4] 0.0681 1.6987 8.7789 2.4453 2.4284 ...

## § is.distance: logi FALSE

myMap is now a bdm instance with three basic elements: myMap$dSet a name identifying the dataset, a
matrix myMap$data with the raw data, and a logical value myMap$is.distance (FALSE by default) indicating
that the input matrix does not contain distances but raw observations. As the ptSNE algorithm works
with distances among observations, we can forward a matrix of precomputed distances as well including the
command’s argument is.distance = TRUE,

myDistMap <- bdm.init('myDataset', X, is.distance = TRUE) # don't run

In case (exceptional) of a supervised dataset, we can also supply a vector of labels. This is the case of our
synthetic dataset (again we will take the labels from the exMap instance),

L <- exMap$lbls # assume this is our wvector of labels

Then, we would use the argument labels = L in the initialization function,

myMap <- bdm.init('myDataset', X, labels = L)
str (myMap)

## List of 4

## § dSet : chr "myDataset"
## $ data : num [1:5000, 1:4] 0.0681 1.6987 8.7789 2.4453 2.4284 ...
##* $ 1lbls : num [1:5000] 1 5124863613 ...

## $ is.distance: logi FALSE



In vector L, we may supply any external labelling that we may want to map in the landscape. Labels can be
of whatever type that can be factorized. Labels are transformed by means of as.numeric(as.factor()) into a
vector of integer labels and attached afterwards as a new element myMap3$lbls.

2.1.2 First step: bdm.ptsne()

bdm.ptsne() performs the dimensionality reduction by means of the ptSNE algorithm. The ptSNE runs
several instances of the t-SNE on different chunks of the data (partial t-SNEs) using an alternating scheme of
short runs and mixing of the partial solutions. The performance of the ptSNE algorithm is governed by the
parameters described below. Further details can be found in (Garriga and Bartumeus 2018).

( . .
run and mixing scheme

Threads The number of partial t-SNEs to be run. The ptSNE splits the dataset into this number of
elementary chunks. The larger the number of threads, the faster the computation of the final solution but
the slower their convergence to a global solution. Note that the number of threads must not necessarily
match the number of physical cores available. Indeed, it can be higher (what is known as multi-threading).
Using multi-threading to run ptSNE on multiprocessor systems can yield significant reductions in the
computational times.

Layers Each one of the threads above does not run a single chunk of data. Instead, the threads are
chained cyclically such that each thread includes the number of chunks specified by layers sharing with
another thread as many chunks of data as specified by layers-1. This chained structure with overlapping
chunks of data creates a link between successive threads which facilitates convergence towards a global
solution. As a consequence of this overlapping each data-point is taking part in several partial t-SNEs
and thus, after pooling all partial solutions we have as many global solutions as layers. The relation
layers/threads determines the thread-size z = n layers/threads (where n is the dataset size). The
t-SNE algorithm is of order quadratic with respect to the size of the dataset. By making z < n we
overcome the unsuitability of the t-SNE algorithm for large-scale datasets.

Epochs The run and mixing scheme is cyclical and each cycle is structured in three phases involving a
master process and several worker processes (the threads): (i) the master process mixes the data and
defines the data chunks; (ii) each worker runs a partial t-SNE with the chunk of data that it has been
assigned; (ii) the master pools the partial solutions from the workers into a global solution. This sequence
is called an epoch. The global solution of one epoch is used as the starting condition for the new epoch.

Rounds The number of epochs is set to y/n (where n is the dataset size), and the number of iterations
per epoch (epoch length) is set to v/z (where z is the thread-size). Scaling the epoch length to the
thread-size avoids getting too divergent solutions from each partial t-SNE. This predetermined setup, with
v/n epochs and +/z iterations per epoch, is a round. In general, the algorithm reaches a stable solution
in one single round. If not, the ptSNE can run some extra rounds to refine the mapping, although the
\improvement achieved is usually low with respect to the computational time required.

J

( . . . . .
ycomputing similarities

Perplexity This parameter sets a balance between finding global and local structure in the data
(corresponding respectively to high and low values of perplexity). It does not exist any rule-of-thumb to
set this value. In general, we will have to perform several runs testing different values. A good advice is
to start with a high value of perplexity (about half or a quarter of the thread.size) to first
unveil the global structure and decrease it gradually in subsequent runs to refine the local
structure as long as the global structure is more or less preserved (depending on our requirements).




myMap <- bdm.ptsne(myMap, threads = 8, layers = 2, rounds = 2, ppx = 200)

+++ running 8 threads
+++ processing data
+++ Computing Betas, perplexity 200
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2163 0.2974 0.3514 0.3745 0.4367 0.8412
+++ computing ptSNE
... threads 8, size 1250, epochs 142, iters 36
+++ epoch 0000/0142 9.1793e-01 1.9914e+00
--- round 01/02 <Cost> <Size> epSecs time2End eTime

+++ epoch 0001/0142 9.3225e-01 1.9914e+00 1.7064 00:04:01 11:39
+++ epoch 0002/0142 9.4205e-01 2.0900e+00 1.5366 00:03:47 11:39
+++ epoch 0003/0142 9.4732e-01 2.2707e+00 1.5169 00:03:41 11:39
+++ epoch 0004/0142 9.4656e-01 2.3904e+00 1.5226 00:03:37 11:39
+++ epoch 0005/0142 9.3815e-01 2.5407e+00 1.5370 00:03:34 11:38
+++ epoch 0006/0142 9.2341e-01 2.7160e+00 1.5481 00:03:32 11:38
+++ epoch 0007/0142 9.0513e-01 3.4047e+00 1.5327 00:03:30 11:38

... (output suppressed)

+++ epoch 0070/0142 6.7653e-01 .1372e+01 1.5313 00:01:52 11:38
+++ epoch 0071/0142 6.7578e-01 4.1679e+01 1.5367 00:01:50 11:38
--- round 02/02 <Cost> <Size> epSecs time2End eTime
+++ epoch 0072/0142 6.7551e-01 4.1722e+01 1.5572 00:01:48 11:38
+++ epoch 0073/0142 6.7410e-01 4.1941e+01 1.5465 00:01:47 11:38
... (output suppressed)

+++ epoch 0141/0142 6.4650e-01 5.4606e+01 1.5350 00:00:02 11:38
+++ epoch 0142/0142 6.4643e-01 5.4385e+01 1.5537 00:00:00 11:38
... threads 8, size 1250, epochs 142, iters 36

+++ epoch 0142/0142 6.4643e-01 5.4385e+01 1.5499 00:03:40

KN

Note that the first parameter is myMap itself and the output value is a new bdm instance. This is the general
rule for most of the commands of the package: the command’s first parameter is a bdm (a list) and
the value returned is a copy of the input bdm but including the new output (a copy of the list
with a new element attached where the output of the command is included). As we did in the example above,
we can overwrite the input object with the output object, so that the resulting effect is a single list that keeps
growing as we go ahead with the protocol.

str(myMap$ptsne)

## List of 9

## $ threads: num 10

## § layers : num 2

## ¢ rounds : int 2

## $ boost : num 1

## $ alpha : num 0.5

## $Y : num [1:5000, 1:4] -13.14 23.75 10.89 3.67 27.48 ...

## ¢ cost : num [1:10, 1:141] 0.916 0.916 0.919 0.915 0.916 ...

## § size : num [1:2, 1:141] 2.81 2.81 2.81 2.81 3.04 ...

## $ bigCost: num [1:141] 0.932 0.932 0.943 0.951 0.954 ...

This command adds new elements to the list. The element myMap$ptsne includes a matrix

myMap$ptsne$Y (5000, 4) with the mapping positions (y},yf) The positions of the mapped data-



points are given by layers as succesive pairs of columns (7.e. columns 1 and 2 in myMap$ptsne$Y are the
mapped positions for layer 1).

We can visualize the embedding with bdm.plot() (Section 2.2.2),

bdm.plot (myMap)

20

10

§

-10
s
3

-20
|

-30 -20 -10 0 10 20 30

The elements myMap$ptsnedcost and myMap$ptsnedsize include the values of the embedding cost and the
embedding size functions (Garriga and Bartumeus 2018). These elements are matrices with one column per
epoch. The rows in myMap$ptsne$cost are the embedding cost values per thread (each partial t-SNE). The
rows in myMap$ptsnedsize are the embedding size per layer (each global t-SNE). The command bdm.cost()
(Section 2.2.1) plots the embedding cost and embedding size functions,

bdm. cost (myMap)
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It is important to note that the bdm.ptsne() silently performs a complex sequence of operations (Garriga and
Bartumeus 2018), therefore it has far more parameters than those shown in the example (though most of
them work well with default values for the most of the cases):

1. Setting up the running (parallel) environment (threads = 4, type = ‘SOCK’, layers = 2, boost = 2,
rounds = 2):

threads sets the number of partial t-SNEs that will be simultaneously running, each one with a
subset of data of size z (the thread size) that results from the combination of threads and layers,
given by nlayers/threads.

type sets the type of parallelization, intra-node parallelization (type = ‘SOCK’), or inter-node
parallelization (type = ‘MPI’). This is related with the makeCluster() command of the snow
R-package (Tierney et al. 2016). To use inter-node parallelization a version of the message passing
interface (MPI) must be up and running in the system (see section 3.2.2).

rounds sets the number of rounds.

boost changes the default run-and-mixing scheme. The number of epochs is set to 1/boost \/n
and the number of iterations per epoch to boost /z. The total number of iterations remains as
v/n z but the ptSNE running time is reduced in as much as the number of inter-epoch phases is
reduced (specially when using MPI parallelization). The counterpart is that convergence might be
compromised if boost > 1.

2. Pre-processing of the raw data (whiten = 4, input.dim = 30):

By default the command performs a whitening of the raw data (i.e. computing the principal
components and dividing them by the eigen values to equalize the variances).If whiten = 3, only
PCA is performed (with no whitening). In both cases, at most, a subset of the first input.dim
components is used. If whiten = 2 raw data is only centered and scaled. If whiten = 1 raw data is
only centered. If whiten = 0 no preprocessing of raw data is performed at all. With whiten < 3,
all dimensions are considered (input.dim has no effect).

3. Computing the variances of the input data kernels (ppz = 100, itr = 100, tol = 1e-05):

ppz sets the value of perplexity used to compute the input similarities (as explained above)
itr and tol refer to the precision in the computation of the variances and in general work well with
default values.

4. Running the partial t-SNEs (alpha = 0.5, Y.init = NULL):

alpha sets the momentum in the gradient function. The momentum is a fraction alpha of the
position gradient computed in the last iteration that is added to the position gradient computed
in the current iteration. In general, the momentum works well with the default value 0.5.

Y.init allows to start the embedding with a given initial mapping (by default, the starting positions
of the embedding are randomly initialized). If we deem that a ptSNE run has not yet reach a
stable solution, we can use the output of this run to initialize the embedding of a new run and
save computational time.

5. Showing intermediate information (info = 1):

info sets the level of intermediate information. At the lowest level (info = 0), the algorithm shows
the values of the cost and size of the embedding along with an estimation of the remaining time at
the end of each epoch. With info = 1 (default value) the algorithm saves the current state of the
embedding as an .RData file at the end of each round (Section 3.1.2). Thus we can forward some
insights about a long ptSNE run. For instance, we can detect that the current solution is already
stable or that the parameterization is not appropriate.

6. Close the parallel environment (no parameters).



2.1.3 Second step: bdm.pakde()
bdm.pakde() computes a density estimation over the embedding area based on the paKDE algorithm.

myMap <- bdm.pakde(myMap, threads = 4, ppx = 200, g.exp = 2)

+++ running 4 threads
+++ pakKDE for layer 1/2 +++
+++ Computing Betas, perplexity 200
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.7883 1.0309 1.2018 1.3939 1.4282 3.9641
computing grid cell densities ...
+++ cdf 0.9997

The output is attached to the list as a new element named myMap$pakde. This element is itself a list of lists
(with one element per layer). By default, the command computes the paKDE for layer one, which is attached
to myMap$pakde[[1]]. The argument layer = [ allows computing the paKDE for any other layer, and the
output, in this case, is attached to myMap$pakde/[l]].

str (myMap$pakde)

## List of 1

## $ :List of 6

## ..$ ppx : num 200

# ..$ beta : num [1:5000] 0.3668 0.0282 0.4195 0.3033 0.5556 ...

##* ..$ g.exp: num 3

## .8 0x : num [1:200] -37.2 -36.9 -36.5 -36.2 -35.8 ...

## by : num [1:200] -33 -32.7 -32.4 -32.1 -31.7 ...

## $ z : num [1:200, 1:200] 4.46e-61 1.62e-60 1.10e-59 1.33e-58 1.88e-57 ...

The element myMap3pakde[[1]] is a raster over the embedding area. The coordinates of the raster are saved
in myMap$pakde[[1]]$x and myMap$pakde[[1]]$y, and the density values are stored in myMap$pakde[[1]]$z.
We can visualize a heat-map of the density estimation with,

bdm.plot (myMap) # by default, bdm.plot() shows the output of the last step,
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The bdm.pakde() command performs a sequence of operations (Garriga and Bartumeus 2018) with corre-
sponding arguments:

1. Setting up the running environment (threads = 2, type = ‘SOCK’):

e threads and type specify the number of threads that will be spawned and the type of parallelization
used, intra-node parallelization (type = ‘SOCK’), or inter-node parallelization (type = ‘MPI’), (as
explained for the bdm.ptsne() command). In this case, multi-threading does not help to increase
efficiency as this algorithmic process is of O (n), so we would typically specify as many threads as
the number of physical cores available.

2. Computing the variances of the local kernels of the mapped data-points (ppz = 100, itr = 100, tol =
le-05):

 the meaning of these parameters is exactly as explained for the bdm.ptsne() command, though in
this case the perplexity refers to the computation of similarities in the low dimensional space (the
mapped data-points). A good advice is to start with the same value of perplexity used
in the high dimensional space (i.e. assume a similar degree of similarity in both, high
and low dimensional spaces) and lower it gradually if the density function does not
look reasonably tight to the shape of the mapping.

3. Computing the density estimation (g = 200, g.exp = 4):

o g defines the grid size (the length of the raster side in number of cells). The embedding tends to
be almost circular in general, thus we always consider a square grid of g times g cells.

e g.exp is a factor to expand the limits of the embedding size expressed in times o. By default
(g.exp = 4) the expansion is such to include 4 times o of the most extrem kernels (minimum
and maximum in both directions), that is 0.9999367 of the probability mass of the kernel. In the
example shown above, we set g.exp = 2 thus the cumulated density function does not add up to
one (note the last line in the command’s output, +++ cdf 0.9997375). If the input dataset
includes a few outliers, those data-points will likely be mapped far away from the
rest. This situation will force an unnecessary expansion of the limits and will cause
a distortion of the density estimation. We can overcome this using lower values of g.ezp.
With g.exp = 0 the limits of the grid will match those of the embedding.

4. Close the parallel environment (no parameters).

2.1.4 Third step: bdm.wtt()

bdm.wtt() identifies the clusters by means of the WTT algorithm (Garriga and Bartumeus 2018). This
algorithm figures out the water tracks (i.e. river beds) in the valleys of the density landscape. Clusters are
numbered following the height of the defining peaks. bdm.wtt() is a very fast command and has no parameters.

myMap <- bdm.wtt (myMap)

+++ WIT for layer 1/2 +++
clusters: 16

This command attaches a new element myMap$wtt to the list. This element is itself a list of lists (with an
element per layer). By default, the bdm.wtt() command computes only the WTT for the first layer which is
attached to myMap$wtt[[1]]. Using layer = I allows computing the WT'T for any other layer. In this case the
output is attached to myMapSwit/[l]].

str (myMap$wtt)

## List of 1
## $ :List of 5
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## ..$ grid: num [1:2, 1:6] 200 200 -38 -34 34 ...

## ..$P : num [1:16, 1] 35462 16620 25050 12712 8541 ...

## ¢ M : num [1:16, 1:2] 62 20 50 112 141 134 180 139 93 61 ...
## ..$C : num [1:40000, 1] 10 10 10 10 10 10 10 10 10 10 ...

#it ..$ s : int 16

At this stage the lines that delimit the clusters are added to the density heat-map image.

bdm.plot (myMap)

2.1.5 bdm.labels()

The bdm.wtt() identifies the clustering at grid cell levels (Section 2.1.4). The element myMapSwit/[1]/$C is
a numeric vector with clustering labels at grid cell level. To get a vector of data-point clustering
labels we use the bdm.labels() function,

myDatalabels <- bdm.labels(myMap)

This is a very fast function. By default the function computes the data-point labels from layer 1. We can get
the vector of labels for any other layer using the argument layer,

myDataLabels2 <- bdm.labels(myMap, layer = 2)

2.2 Visual assessment of the output.
2.2.1 bdm.cost()

bdm.cost() depicts the embedding cost and the embedding size as a function of the epochs (Garriga and
Bartumeus 2018):

e The cost of the embedding evaluates how well the low dimensional mapping matches the distances
between data-points in the high dimensional space. This is a normalized value such that the lower it is
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the cost the better it is the matching.

e The size of the embedding is the measure of the diagonal of the embedding area which keeps growing
as the mapping improves.

bdm.cost() has an offset argument (NULL by default) to better asses the last part of the curves,

bdm.cost (myMap, offset = 100)
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The shadowed area (scarcely visible in this case because of the strong convergence) around the solid blue line
depicts the embedding cost values by thread (each partial t-SNE). The solid blue line depicts the average
cost. The shadowed area (not visible in this case because of the strong convergence) around the solid red line
depicts the embedding size values by layers (each global t-SNE). The solid red line depicts the average size.

Both functions together assess the validity of the solution: if both achieve a stable value then the
solution is stable and the mapping will hardly improve for longer we keep iterating. Nonetheless, it is
possible that the size function keeps growing even though the cost function has reached a stable solution.
This occurs when the relative position of the mapped data-points is fairly correct but the embedding still
needs to grow to fairly represent the highest dissimilarities. In terms of clustering this is not significant
unless we are interested in the quantitative semantics of the density estimation. If this is the
case, we would be better off by letting the algorithm iterate until the size function reaches also a stable value.

bdm.cost() admits a list of bdms as input as well yielding a multi-plot to compare the output of different
parameterizations. Note that higher values of perplexity will inevitably lead to higher stabilization cost values
(Garriga and Bartumeus 2018).

2.2.2 bdm.plot()

bdm.plot() is a general command to depict the output after each step in the mapping protocol, plotting by
default the output of the last step computed. Please, refer to the package help to see some step specific
arguments to minimally tweak the plots (e.g colour, size). We just note the following:

1. In case that $Ibls is not NULL the function will use these labels to colour the data-points in the
bdm.ptsne() output plot. If not, the function will use the clustering labels (from bdm.labels()).
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2. Once the bdm.pakde() has been performed, we can still plot the bdm.ptsne() output setting the parameter
ptsne = TRUE.

3. An example of the bdm.ptsne() output plot with some tweaking to increase the size of the data-points
and using a different colour palette (see the package help for further information),

bdm.plot (myMap, ptsne = TRUE, ptsne.cex = 0.6, ptsne.pltt = rainbow(16), layer = 2)
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4. After bdm.pakde() or bdm.wtt() we get a heat-map image of the density function, in the latter case
including the water-track lines that delimit the clusters and the labels assigned to the clusters.

5. An example with some tweaking to change the colour palette and the number of levels of the heat-map
and hiding the labels of the clusters (see the package help for further information),

mypalette <- colorspace::heat_hcl(12, h = c(300, 75), c. = c(35, 95), 1 = c(15, 90),
power = c(0.8, + 1.2), fixup = TRUE, gamma = NULL, alpha = 1)[3:12]

bdm.plot (myMap, pakde.pltt = mypalette, pakde.lvls = 10, plot.peaks = FALSE)
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2.2.3 bdm.gMap()

bdm.qMap() maps numeric variables onto the embedding, depicting its value as a quantile-map. A quantile-
map is similar to a heat-map. The difference is that in a quantile-map colours indicate quantiles instead
of ranges. In this way we always get a clear depiction of the distribution of the variable throughout the
embedding. By plotting the input variables we can detect relevant/irrelevant features in determining the
clusters.

bdm.qMap() generates a multi-plot layout, with the first plot depicting the embedding (as with bdm.plot(. . .,
ptsne = TRUE)) and the rest depicting the mapping of one variable each (with a maximum of 15 variables).

By defaut, bdm.qMap() plots the input variables (the first 15 at most). In case we have more than 15 input
variables, the argument data allows passing a matrix with a selection of the variables that we may want to
map. This matrix can also include any numeric covariate of interest.

Using the argument subset we can restrict the mapping of the given variables to a subset of the input data,
given as a vector of row indexes of the input data matrix. The data-points that are not in subset are shown in
grey. This is useful to highlight the distribution of the given variables in relation to some discrete covariate
of interest.

bdm.gMap (myMap, data = myMap$datal, 2:4], subset = which(myMap$lbls %in% 1:8))
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2.2.4 bdm.dMap()

bdm.dMap() visualizes the distribution of a discrete covariate (or class variable) throughout the embedding.
In particular, bdm.dMap() computes the join distribution P (V = v;,C = ¢;) where V = {vy,..., v} is the
class/covariate and C' = {c1, ..., ¢4} are the grid cells of the paKDE raster. The result is a fuzzy distribution
of the class/covariate at each cell.
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Computing the join distribution P (V = v;,C = ¢;) entails an intensive computation. Thus bdm.dMap()
performs the computation and stores the result in a dedicated element named $dMap.

Afterwards the density maps can be visualized with the bdm.dMap.plot() function. The bdm.dMap.plot()
yields a multi-plot layout where the first plot shows the dominating value of the covariate (or dominating
class) in each cell, and the rest of the plots show the density map of each covariate value (or class) (see
details in the package help). The multi-plot layout can be limited to a subset of the values of the covariate
(or subset of classes).

# assume these are our class covariates
myclasses <- c('A', 'B', 'C', 'D', 'E') [(myMap$lbls %/% 4) +1]

myMap <- bdm.dMap(myMap, threads = 4, labels = myclasses)

+++ running 4 threads
+++ cdf 0.9997

We can now plot the class density maps,

bdm.dMap.plot (myMap, classes = c('B', 'D', 'E'))

class: E

2.2.5 bdm.boxp()
bdm.boxp() depicts a multi-plot layout with a box-plot with input variable statistics per cluster (for the first

25 clusters as a maximum). By default box-plots are grouped by cluster. Using byVars = TRUE box-plots
are grouped by input feature.

16



bdm. boxp (myMap)
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3 Submitting jobs in multiprocessor systems

3.1 Easy managing of ptSNE runs.

The bigMap mapping protocol entails a computationally intensive part (i.e. ptSNE, pKDE and WTT) and a
posterior visualization to analyze the results. The former imply strong hardware requirements and is likely
to be run in a mutiprocessor-system (e.g. a cluster of multiple inter-connected nodes with several physical
cores each). The latter requires easy graphical interactivity, which is not typically available when working
with remote multi-processor systems. Therefore, the bigMap package usually involves a cyclic process of
submitting a job to the remote system, pooling the result to the local machine, draw some conclusion and
start again with different parameters, until getting to a satisfactory result. In order to ease this task, the
bigMap package includes some simple functions to systematically save the results (Functions 3.1.1, 3.1.2,
3.1.3). Also, users working in a local machine with a secure file transfer client (scp) can set up the bigMap
environment so that the results are automatically transferred to the user’s local machine (Functions 3.1.4,
3.1.5).

3.1.1 bdm.mybdm()

This function sets/gets a default path to save results,

bdm.mybdm (' ~/myPath/"')

## [1] "~/myPath/"
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3.1.2 bdm.fName()

This function returns a default file name to save a bdm object (an *.RData file). The file name stems from the
dataset name stored in $dSet (Section 2.1.1) and keeps track of the main parameters used for the mapping,

bdm. fName (myMap)

## [1] "~/myPath/myDataset_z10_12_bl_r2_p200_k16.RData"

The name includes the number of threads (_zzz), the number of layers (_ lxz), the boost factor (__bzx),
the number of rounds (__rzz), the perplexity used for the ptSNE (_pzzz) and the number of clusters found
(__kzzz).

3.1.3 bdm.save()

This function saves a bdm object as an *.RData file with default file name (as given by bdm.fName()) and
default path (as given by bdm.mybdm()),

bdm. save (myMap)

## +++ saved to ~/myPath/myDataset_z10_12_bl_r2_p200_k16.RData

3.1.4 bdm.local()

This function sets/gets the IP address of the local machine to which we would like the remote system to send
the results,

bdm.local (' xxX.XXX.XXX.XXX"')

## [1] "XXX.XXX.XXX.Xxx"

3.1.5 bdm.scp()

This function saves and transfers a bdm object. The object is saved in the remote system with default path
and default file name, and is transfered to the local machine and saved again with default path and default file
name. The necessary condition is to keep the same path structure in both machines. A further
condition is to have ssh private key authentication access.

bdm. scp (myMap)

## +++ saved to ~/myPath/myDataset_z10_12_bl_r2_p200_k16.RData

3.2 Summary script

The bigMap mapping process can be summarized in a template of a simple R script (bdmScript.R),

library(bigMap)

# set bigMap environment

bdm.local ('xxxX.XXX.XXX.XxXX')
bdm.mybdm (' ~/myPath/"')

# load dataset

X <- read.csv('~/myPath/myDataSet.csv')
# mapping protocol
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myMap <- bdm.init('myDataSet', X)

myMap <- bdm.ptsne(myMap, threads = 64, type = 'SOCK', layers = 2, boost = 2,
rounds = 4, whiten = TRUE, input.dim = 10, ppx = 300, progress = 1)

myMap <- bdm.pakde(myMap, threads = 16, type = 'SOCK', ppx = 300)

myMap <- bdm.wtt (myMap)

# save and transfer to local machine

bdm. scp (myMap)

Let’s assume we have a dataset in file ~/myPath/myDataSet.csv with n = 64000 rows (and whatever
number m of dimensions). This bdmScript. R will run 64 processes (partial t-SNEs) with a thread-size of
z = 64000/64 * 2 = 2000. The raw data X will be preprocessed performing a PCA and a whitening and
only the first ten components (assuming m > 10) will be used as input data. The ptSNE algorithm will
perform 4 rounds of /64000 = 253 epochs per round and /2000 = 45 iterations per epoch. As we set
progress = 1, the program will save a bdm object with the current embedding, in folder ‘~/myPath/’ and file
name ‘myDataSet_z64 103 r01_p300.RData’ after the first round, ‘myDataSet_z64 103 _r02_ p300.RData’
after the second round, and so on. At the same time, the intermediate results are transferred to the
local machine with IP address xxx.xxx.xxx.xxx. After the last round, the program will run the pKDE
and the WTT. Finally, it will save a bdm object with the mapping protocol completed, with file name
‘myDataSet_z64_103_r02_p300_kss.RData’ (where ss stands for the number of clusters found). This file
will also be transferred and saved to the local machine (assuming that the path ‘~/myPath/’ exists in the
local machine).

Typically, the bdmScript. R would be submitted as a batch job to a multiprocessor-system via gsub or alike
(depending on the platform), specifying the type of parallelization interface to be used. Submitting jobs
to a multiprocessor-system is quite platform dependent.

3.2.1 Intra-node (socket) parallelization

When using intra-node (or socket) parallelization all worker processes (64 threads in our example) are spawned
within the same single node where the master process is submitted. With intra-node parallelization memory
access is super fast but computation power is limited to the number of physical cores available in that node
(usually 16, 20 or 64 at the best). For the case of our example (with 64 threads), submitting the job to
a node with 16 cores overloads each core with 4 processes, i.e each core will have to run 4 threads at the
same time. This is known as multi-threading and obviously results in longer running times in comparison
with single-threading (1 thread per core). Nonetheless, because of the quadratic complexity of the t-SNE
algorithm, multi-threading is in general a good choice, that is, given a fixed number of physical cores,
the higher it is the number of threads, the lower it is the thread-size accounting for significant
savings in computational time (Garriga and Bartumeus 2018).

In the following, we show how we would submit our example script using SOCK parallelization (this example
is for illustration purposes only and may work differently in many platforms):

1. We (typically) must set some path environment variables to point to the programs we need to run (this
is platform dependent),

# point to R
~$ export PATH=/home/soft/R-3.5.1/bin:$PATH

2. We submit the job with,
~$ qsub -pe make 16 -1 h_vmem=8G R -q --vanilla -f bdmScript.R

This command submits the job to a node with 16 cores with 8 GB of memory each and calls R to run the
bdmScript.R. Note that the argument -pe make 16 specifies the number of physical cores that we want
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available in our socket parallel environment, regardless of the number of threads that this set of cores will be
running simultaneously (64 in our case).

3.2.2 Inter-node (MPI) parallelization

The use of inter-node (or message passing interface, MPI) parallelization is somewhat more contrived
and subject to the existence of a low-latency/high-bandwidth system network (e.g. InfiniBand) and a
high performance MPI messaging module (e.g. ompi, mpich2) installed on the system. When using MPI
parallelization the worker processes are spawned through all the nodes of the cluster, independently of the
node where the master process resides, and sharing data between node implies message passing through the
network. Thus, memory access is much slower than in the case of socket parallelization. The counterpart is
that we can (potentially) make use of as many physical cores as we have in the cluster. In other words, if
we need to spawn 200 threads to map a large dataset we can set up an MPI parallel environment with 200
physical cores to bind one core per thread.

Using MPI we must make some major changes into our bdmScript. R (this example is for illutration
purposes only and may work differently in many platforms):

1. For technical reasons, an MPI cluster can be started only once per job. This means that we
must split the bdmScript. R into two parts:

e Part 1 (bdmScriptl.R)

library(bigMap)

# set bigMap environment

bdm.local ('XxXX.XXX.XXX.XXX')

bdm.mybdm( "' ~/myPath/")

# load dataset

X <- read.csv('~/myPath/myDataSet.csv')

# mapping protocol (step 1: ptSNE)

myMap <- bdm.init('myDataSet', X)

myMap <- bdm.ptsne(myMap, threads = 64, type = 'MPI', layers = 2, boost = 2,
rounds = 4, whiten = TRUE, input.dim = 10, ppx = 300, progress = 1)

# save and transfer to local machine

bdm. scp (myMap)

e Part 2 (bdmScript2.R)

library(bigMap)

# set bigMap environment

bdm.local ('XxX.XXX.XXX.XXX')

bdm.mybdm( ' ~/myPath/")

# load previously saved result

myMap <- load('~/myPath/myDataSet.RData')

# mapping protocol (steps 2 and 3: paKDE, WTT)
myMap <- bdm.pakde(myMap, threads = 16, type = 'MPI', ppx = 300)
myMap <- bdm.wtt (myMap)

# save and transfer to local machine
bdm. scp (myMap)

2. Note that we must change the argument type = ‘SOCK’ to type = ‘MPI’ in both commands,
bdm.ptsne() and bdm.pakde().
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3. To submit the jobs we must write a job-script file. We suggest to use a job-script template, namely
snow.sh, that we can use to submit any R script based on the snow R-package. This is our snow.sh
job-script template (this is platform dependent),

#!/bin/bash

# execute as:

# gsub -1 h_vmem=XG -pe ompi np snow path_to_myRscript/myRscript.R
# job name

#$ -N snowjob

# Use current working directory

#$ -cwd

# Set path environment variables

# MPI

export PATH=/home/soft/openmpi-2.1.5/bin:$PATH

export LD_LIBRARY_PATH=/home/soft/openmpi-2.1.5/1ib:$LD_LIBRARY_PATH
# R

export PATH=/home/soft/R-3.5.1/bin:$PATH

# snow R-package

export PATH=/home/soft/R-3.5.1/1ib64/R/library/snow:$PATH

# Execute

mpirun -np $NSLOTS RMPISNOW --no-save -q -f $1

3. We submit the first job with,

~$ qsub -pe ompi 65 snow.sh bdmScriptl.R

4. Once the first job is finished, we submit the second job with,

~$ gsub -pe ompi 65 snow.sh bdmScript2.R

The commands in 3 and 4 create an MPI parallel environment with 65 physical cores and run the RMPISNOW
script (from R-package snow) at each one. The RMPISNOW script is responsible to start an R environment
at each core. One of them is configured as the master process and runs the bdmScript.R and the rest (64)
are configured as worker processes to run one thread each one.
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