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Summary: A Bayesian approach for an accelerated failure time model with interval-

censored data is proposed. The model allows for structured correlated data by in-

clusion of a random effect part that might depend on covariates as in a linear mixed

model. The error distribution is modelled as a normal mixture with an unknown

number of components. Also the means and variances of the components are not pre-

specified to accommodate most continuous distributions which results, among other

things, in a nearly correct estimation of the shape of hazard and survivor curves.

A Markov chain Monte Carlo algorithm is described to sample from the posterior

distribution. The approach is evaluated using a simulation study and is illustrated

on modelling the emergence times of eight permanent teeth using the data from the

Signal Tandmobielr study.
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1 Introduction

Correlated survival data are encountered in many medical problems, for instance when the

observations are clustered. Moreover, in some problems, the occurrence of the event can only

be recorded at regular intervals leading to interval-censored data.

Correlated interval-censored survival times were encountered in the Signal Tandmobielr

study. This is a longitudinal prospective (1996–2001) oral health screening project performed

in Flanders, Belgium. The 4 468 school-children, born in 1989 were examined on a yearly

basis by one of 16 trained dental-examiners. The details of the study design can be found

in Vanobbergen et al. (2000). For oral health researchers, two research questions are of interest.

Firstly, what is the effect of decayed primary predecessors (described by a binarised dmft

score) on the emergence times of the permanent premolars (teeth 14, 15, 24, 25, 34, 35, 44,

45 in European dental notation)? The emergences were observed only in intervals of length

equal to 1 year. Secondly, what is the correlation between the emergence times of different

teeth? Leroy et al. (2003) have shown that there is horizontal symmetry, i.e. some information

concerning the correlation structure is available as the same emergence distribution can be

assumed at horizontally symmetric positions (e.g., for teeth 14 and 24). Further, it is known

that factors, like gender, have an impact on the emergence time and thus should be controlled

for.

In multicenter clinical trials, it is often necessary to control for center and to check the

center by treatment interaction when evaluating the treatment effect. An important center

effect or center by treatment interaction can be due to center differences in social-economics

characteristics of the patients, different training of the medical staff, differences in the admin-

istration of treatment, etc. To obtain a valid statistical conclusion on treatment efficacy, it

should be controlled for such effects. Furthermore, in situations when disease progression can
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only be revealed by a laboratory assessment (AIDS, some types of cancer), the observed event

times are interval-censored as well.

The paper is organized as follows. In Section 2, we review models for correlated censored

data. In Section 3 we propose a new approach – the Bayesian mixture MEAFT model. In Sec-

tion 4, a Markov chain Monte Carlo algorithm to sample from the posterior distribution is

discussed. The approach is evaluated using a simulation study in Section 5 and used to analyze

the Signal Tandmobielr data in Section 6.

2 Models for correlated censored data

Several approaches to analyze correlated right-censored survival times have been proposed. One

approach is to extend the Cox’s proportional hazards (PH) model (Cox, 1972) by including

a cluster-specific random effect, called frailty in the expression of the hazard function (see, e.g.,

Hougaard, 2000; Therneau and Grambsch, 2000). The frailty component is most often assumed

to have a parametric distribution such as gamma or log-normal. However, the frailty PH model

has some important drawbacks. Firstly, the implied correlation structure is too simple, e.g.,

in the analysis of the multicenter clinical trials only the center effect and not the center by

treatment interaction can be controlled for. Secondly, the choice of the frailty distribution

can have a crucial impact on the results for the regression parameters of interest (Hougaard,

2000, Chapter 7). Thirdly, the PH model is generally not robust towards neglected covariates

(Hougaard, 1999).

A possible alternative to the PH model is the accelerated failure time (AFT) model which

assumes that the covariates speed up or slow down the expected event time. We refer to Chap-

ter 7 of Kalbfleisch and Prentice (2002) for an extensive review of classical approaches to

the AFT model. In contrast to the PH model, in the AFT model, neglected covariates do not
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cause bias in estimating the regression parameters for the included covariates (Hougaard, 1999).

An extension of the AFT model – the mixed effects accelerated failure time (MEAFT) model –

takes into account the within-cluster correlations explicitly by including random effects in the

regression expression as in a classical linear mixed model of Laird and Ware (1982), namely

log(Ti,l) ≡ Yi,l = βTxi,l + bT
i zi,l + εi,l, i = 1, . . . , N, l = 1, . . . , ni, (1)

where Ti,l is the event time of the lth observation of the ith cluster, β = (β1, . . . , βp)
T is the un-

known regression coefficient vector, xi,l the covariate vector for fixed effects, bi = (bi,1, . . . , bi,q)
T ,

i = 1, . . . , N are i.i.d. random effects vectors with a density g(b), zi,l is the covariate vector

for random effects and εi,l, i = 1, . . . , N, l = 1, . . . , ni are i.i.d. error random variables with

a density f(ε). As the roles of the regression parameters and dispersion parameters are clearly

separated in the MEAFT, the regression parameters are robust against misspecification of the

random effects distribution g(b) (Keiding et al., 1997; Lambert et al., 2004). Model (1), re-

stricted to the case of zi,l ≡ 1, has been studied by Pan and Louis (2000); Pan and Connett

(2001) for right-censored data. They make a working assumption concerning the normality of

both εi,l and bi and use frequentist techniques for uncensored data combined with Monte Carlo

EM algorithm and multiple imputation, respectively to overcome the problem of censoring.

Assume now that the (i, l)th true log-event time yi,l is only known to lie in the interval

(yL
i,l, y

U
i,l], −∞ ≤ yL

i,l ≤ yU
i,l ≤ ∞. For an uncensored observation: yL

i,l = yU
i,l, for a right-

censored observation: yU
i,l = ∞ and for a left-censored observation: yL

i,l = −∞. The likelihood

contribution of the ith cluster is given by

Li =

∫

Rq

{

ni
∏

l=1

∫ yU
i,l

yL
i,l

f(y − βTxi,l − b
Tzi,l) dy

}

g(b) db, (2)

where the convention
∫ a

a
f(s) ds ≡ f(a) applies to accommodate also uncensored observations.

Due to multiple integration in the likelihood (2), it is rather cumbersome to use maximum-

likelihood based methods for the MEAFT model with interval-censored observations even with
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f(ε) and g(b) being parametrically specified. While stochastic versions of standard estimation

techniques can be used, as was done by Pan and Louis (2000) or Pan and Connett (2001), we

believe that a Bayesian approach is more natural and easier to use here.

Furthermore, for small samples or in situations when prediction and not only regression

parameters themselves are of interest, it is desirable to avoid full parametric assumptions (like

normality) concerning the error density f(ε) since it determines the shape and character of

resulting survival and hazard curves which are to be estimated from the data. For that reason,

we sought after a method that offers enough flexibility in specifying the error density f(ε)

while being computationally tractable for both interval-censored data and a general covariate

vector zi,l.

3 A Bayesian mixture MEAFT model

To our best knowledge, the MEAFT model with a general q-variate random effects covariate

vector zi,l being inevitable to solve problems outlined in the introduction and a flexible density

f(ε) has not been considered in the literature yet. To model unknown distributional shapes,

finite mixture distributions have been advocated by, e.g., Titterington, Smith, and Makov

(1985, Section 2.2) as appealing semi-parametric structures. However, until the last decade

the statistical analysis of mixtures has not been straightforward. The reversible jump MCMC

algorithm (Green, 1995) to estimate unknown mixture parameters, suggested by Richardson and

Green (1997) is a breakthrough in this area. We adopt their approach to model the error density

f(ε) in the MEAFT model and argue that this extension of the simple normal distribution

for f(ε) offers a rich family of distributions of various shapes suitable to model practically

any survival data. See Section 5 for some examples of densities and corresponding hazard or

survivor functions approximated by a normal mixture.
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At the same time, the MCMC methodology easily overcomes a problem of the difficult

likelihood, expression (2). Indeed, there is no need to maximize this likelihood since the sample

from the posterior distribution obtained using the MCMC method is used to draw the inference.

Furthermore, MCMC replaces both integrals in (2) by sampling exact event times and values

of latent random effects from appropriate, ease-to-sample distributions as will be shown in

Sections 4.1 and 4.4.

We assume a Bayesian mixture MEAFT model (1) with a hierarchical structure graphically

represented by a directed acyclic graph (DAG) given in Figure 1 where the usual convention of

graphical models is used, i.e. square boxes represent fixed or observed quantities and circles the

unknown parameters, solid lines represent stochastic while dashed lines express deterministic

dependencies, respectively. The joint prior distribution is given by the product of the condi-

tional distributions of each node given its parents which we discuss in this section. As the DAG

indicates, the unknown parameters can be split into two parts connected only through the node

of true log-event times.

[Figure 1 about here.]

3.1 Prior specification of the error part

The density f(ε) of the error term εi,l in model (1) is specified as

f(ε) =

k
∑

j=1

wj ϕ(ε | µj, σ
2
j ), (3)

with ϕ(· | µj, σ
2
j ) ≡ density of N1(µj, σ

2
j ). Note that the number of mixture components, k,

is unknown as well as the mixture weights w = (w1, . . . , wk)
T , means µ = (µ1, . . . , µk)

T , and

variances σ2 = (σ2
1, . . . , σ

2
k)

T . It is well known (McLachlan and Basford, 1988, Chapter 2)

that a heteroscedastic mixture (3) leads to the likelihood which is unbounded if the parameter
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space for variances is unconstrained. In a Bayesian analysis, this difficulty is solved by using

an appropriate prior distribution for the variances which plays the role of constraints.

To improve the computation of the posterior distribution, it is useful to assume that εi,l,

i = 1, . . . , N, l = 1, . . . , ni come from a heterogeneous population consisting of groups j =

1, 2, . . . , k of sizes proportional to wj and introduce latent allocation variables ri,l denoting the

label of the group from which each random error variable εi,l is drawn. The corresponding DAG

conditional distributions are then given by

εi,l |µ, σ
2, ri,l ∼ N1(µri,l

, σ2
ri,l

), i = 1, . . . , N, l = 1, . . . , ni, (4)

Pr(ri,l = j | k, w) = wj, j = 1, . . . , k. (5)

DAG conditional distributions of the remaining parameters of the error part of the model

are inspired by the work of Richardson and Green (1997) (with some change in notation). We

give a brief summary. For the number of mixture components, k, we experimented with (1)

a Poisson distribution with mean equal to a hyper-parameter λ truncated at some prespecified

(relatively large) value kmax and (2) a uniform distribution on {1, . . . , kmax} (the node λ in the

DAG in Figure 1 becomes redundant then). The prior for the mixture weights w is taken to

be a symmetric k-dimensional Dirichlet with prior ‘sample size’ equal to k δ, i.e. w |k, δ ∼

D(δ, δ, . . . , δ), where δ is a fixed hyper-parameter. Further, the mixture means µj and variances

σ2
j , respectively are a priori all drawn independently with normal and inverse-gamma priors

µj | k, ξ, κ ∼ N(ξ, κ) and σ2
j | k, ζ, η ∼ IG(ζ, η), respectively. As in Richardson and Green

(1997) we let η have a gamma distribution G(g, h) with fixed hyper-parameters g and h, see

Section 3.4 for more details.

Since the error model is invariant to permutations of labels j = 1, . . . , k, the joint prior

distribution of a vector µ is restricted to the set {µ : µ1 < · · · < µk} for identifiability reasons,

see Stephens (2000) for other approaches to establish identifiability. The joint prior distribution
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of the mixture means and variances is thus k! times the product of the individual normal and

inverse-gamma densities, restricted to above mentioned set of increasing means.

3.2 Prior specification of the regression part

The regression part of the model has the structure of a classical Bayesian linear mixed model

(see, e.g., Gelman et al., 2004, Chapter 5).

Let X be an
∑N

i=1 ni × p matrix with vectors xT
1,1, . . . ,x

T
N,nN

as rows. Similarly, let Z be

an
∑N

i=1 ni × q matrix with vectors zT
1,1, . . . , z

T
N,nN

as rows. Further, we will assume that the

matrix (X,Z) is of full column rank (p+ q). In other words, covariates included in xi,l are not

included in zi,l and vice versa. This gives rise to hierarchical centering which in general results

in a better behavior of the MCMC algorithm (Gelfand, Sahu, and Carlin, 1995). Finally, since

f(ε) does not have zero mean we do not allow a column of ones in the matrix X to avoid

identifiability problems.

The prior distribution for each regression coefficient βj is assumed to be N(νβ,j, ψβ,j), j =

1, . . . , p and the βj are assumed to be a priori independent. The vectors νβ = (νβ,1, . . . , νβ,p)
T

and ψβ = (ψβ,1, . . . , ψβ,p)
T are fixed hyper-parameters.

The prior distribution for the random effect vector bi is assumed to be (multivariate) normal,

i.e.

bi | γ,D ∼ Nq(γ,D), independently for i = 1, . . . , N, (6)

where γ = (γ1, . . . , γq)
T . The prior distribution for each γj, is N(νγ,j, ψγ,j), independently for

j = 1, . . . , q. The vectors νγ = (νγ,1, . . . , νγ,q)
T and ψγ = (ψγ,1, . . . , ψγ,q)

T are fixed. Special

care is needed when the random intercept is included in the model (i.e. when Z contains

a column of ones, let say its first column). Hierarchical centering cannot be applied in this case

since the overall intercept is given by the mean of the mixture (3). For that reason, γ1 is fixed
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to zero (or equivalently, νγ,1 = 0, ψγ,1 = 0).

The prior distribution for the covariance matrix D of random effects is assumed to be

an inverse-Wishart IW(τ, S) (parametrized such that the mean is (τ − q − 1)−1S), where τ

denotes ‘degrees of freedom’ (τ > q − 1) and S is a scale matrix.

Finally, the DAG conditional distributions of the (unknown) log-event times, i.e. nodes that

connect the regression and error parts of the DAG, are all deterministic given by the MEAFT

model (1).

3.3 Censoring

To complete the specification of the DAG we need to specify p(yL
i,l, y

U
i,l | yi,l, censoring). Firstly,

the censoring mechanism in this paper is assumed to be non-informative about the failure distri-

bution. A box called ‘censoring’ in the DAG represents a realization of the random variable(s)

causing the censoring. Note that there is no need to specify a measurement model for the

censoring mechanism since the inference relies on the posterior distribution of parameters given

the data and the data consist of the realized censoring variables as well.

After omitting subscripts i, l for clarity, the form of p(yL, yU | y, censoring) is rather obvious

for most censoring mechanisms. In the case of right censoring driven by a censoring random

variable C, p(yL, yU | y, c) is a discrete density with P
[

(yL, yU) = (y, y)
∣

∣y, c
]

= I[y ≤ c],

P
[

(yL, yU) = (c,∞)
∣

∣ y, c
]

= I[y > c]. For interval censoring resulting from a realization of ran-

dom variables C1, . . . , Cm representing the times when a failure status was checked the density

p(yL, yU | y, c1, . . . , cm) is again a discrete density with P
[

(yL, yU) = (cj, cj+1)
∣

∣ y, c1, . . . , cm
]

=

I[cj < y ≤ cj+1], j = 0, . . . , m with c0 = −∞, cm+1 = ∞.
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3.4 Weak Prior Information

In this paper, we have opted for specifying weak prior information on the parameters of interest.

When a priori information is available, our prior assumptions could be appropriately modified.

For the regression part of the model, we use non-informative, however proper distributions,

that is, the prior variances of regression parameters β (ψβ) and γ (ψγ) are chosen such that

the posterior variance of the regression parameters is at least 100 times lower (which must be

checked from the results). Prior hyper-parameters for the covariance matrix D giving a weak

prior information correspond to choices of τ = q − 1 + d and S = diag(d, . . . , d) with d being a

small positive number.

In the error part of the model, it is not possible to be fully non-informative, i.e. to use priors

p(µ,σ2 | k) ∝ 1 ×
∏k

j=1 σ
−2
j and to obtain proper posterior distributions (Diebolt and Robert,

1994; Roeder and Wasserman, 1997). Richardson and Green (1997) offer, in the context of

i.i.d. observations, for say e1, . . . , en, the following alternative: A rather flat prior N(ξ, κ) for

µj is achieved by letting ξ equal to ē = n−1
∑n

j=1 ej and setting κ equal to a multiple of R2,

where R = max(ei) − min(ei). They further point out that it might be restrictive to suppose

that knowledge of the range or variability of the data implies much about the size of each

single σ2
j and therefore introduced an additional hierarchical level by allowing η to follow a

gamma distribution with parameters g and h. They further recommend taking ζ > 1 > g to

express the belief that the σ2
j are similar which is necessary to avoid a problem of unbounded

likelihood, without being informative about their absolute size. Finally they suggest setting

the parameter h to a small multiple of 1/R2. Here, the residuals yi,l − β
Txi,l − b

T
i zi,l play

the role of the observations ei. A rough estimate of their location and scale can be obtained

through a maximum-likelihood fit of the AFT model, even without random effects. (the scale

of residuals can only increase), with an explicitly included intercept and scale parameters in the
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model. This can be done using standard software packages as R, Splus, SAS. The estimated

intercept from this model can then be used instead of ē and a multiple of the estimated scale

parameter instead of R.

4 Markov chain Monte Carlo algorithm

Details of the implementation of the MCMC algorithm for the parameters of the error part of

the model are given in Richardson and Green (1997). Their guidelines, now based on residuals

εi,l = yi,l−β
Txi,l−b

T
i zi,l can be immediately applied with some obvious changes in notation. For

the actual implementation of the reversible jump MCMC algorithm we additionally employed

the auxiliary variable (AV) method of Brooks, Giudici, and Roberts (2003, Section 9) for the

dimension changing steps (split-combine and birth-death moves).

For the regression part of the model, each iteration of the MCMC is conducted using the

Gibbs sampler (Geman and Geman, 1984). The full conditional distributions needed to imple-

ment the Gibbs sampler are given below. The notation | . . . indicates that conditioning is done

on all remaining parameters.

4.1 True log-event times yi,l

The full conditional distribution of each yi,l is a truncated normal, i.e.

yi,l | · · · ∼ N(µri,l
+ βTxi,l + bT

i zi,l, σ
2
ri,l

) truncated on (yL
i,l, y

U
i,l]. (7)

4.2 Fixed effects β

Let β(S) be an arbitrary sub-vector of vector β, and xi,l(S) the corresponding sub-vectors of

covariate vectors xi,l, and further let xi,l(−S) be their complementary sub-vectors. Similarly, let
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further νβ(S) and ψβ(S) be appropriate sub-vectors of hyper-parameters νβ and ψβ, respectively.

Finally, let Ψβ(S) = diag(ψβ(S)). Then

β(S) | · · · ∼ N
(

E[β(S) | · · · ], var[β(S) | · · · ]
)

, (8)

with var[β(S) | · · · ] =
(

Ψ−1
β(S) +

N
∑

i=1

ni
∑

l=1

σ−2
ri,l
xi,l(S)x

T
i,l(S)

)

−1

,

E[β(S) | · · · ] = var[β(S) | · · · ] ×
{

Ψ−1
β(S)νβ(S) +

N
∑

i=1

ni
∑

l=1

σ−2
ri,l
xi,l(S)e

(F )
i,l(S)

}

,

where e
(F )
i,l(S) = yi,l − µri,l

− βT
(−S)xi,l(−S) − b

T
i zi,l.

4.3 Means of random effects γ

There is no loss of generality to assume that γ = (γT
(S),γ

T
(−S))

T . Further, let bi(S), bi(−S), νγ(S),

ψγ(S) the corresponding sub-vectors or complementary sub-vectors of indicated quantities and

Ψγ(S) = diag(ψγ(S)). Furthermore, let the inversion of the matrix D be decomposed in the

following way

D
−1 =

(

V(S) V(S,−S)

VT
(S,−S) V(−S)

)

, (9)

then

γ(S) | · · · ∼ N
(

E[γ(S) | · · · ], var[γ(S) | · · · ]
)

, (10)

with

var[γ(S) | · · · ] =
(

Ψ−1
γ(S) +N V(S)

)

−1

,

E[γ(S) | · · · ] = var[γ(S) | · · · ] ×
{

Ψ−1
γ(S)νγ(S) + V(S)

N
∑

i=1

bi(S) + V(S,−S)

N
∑

i=1

(

bi(−S) − γ(−S)

)

}

.

4.4 Random effects bi

For the random effects vectors bi :

bi | · · · ∼ N
(

E[bi | · · · ], var[bi | · · · ]
)

, i = 1, . . . , N, (11)
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with var[bi | · · · ] =
(

D
−1 +

N
∑

i=1

ni
∑

l=1

σ−2
ri,l
zi,lz

T
i,l

)

−1

,

E[bi | · · · ] = var[bi | · · · ] ×
{

D
−1γ +

N
∑

i=1

ni
∑

l=1

σ−2
ri,l
zi,l(yi,l − µri,l

− βTxi,l)
}

.

4.5 Covariance matrix of random effects D

Finally, D | · · · is an inverse-Wishart distribution with degrees of freedom equal to τ +N and

a scale matrix equal to S +
∑N

i=1(bi − γ)(bi − γ)T .

4.6 Software

Programs in C++ have been written with an interface to the R language (R Development

Core Team, 2005) as a contributed package bayesSurv and can be downloaded together with

a comprehensive description of how to perform analyzes presented in this paper from the Com-

prehensive R Archive Network (CRAN) on http://www.R-project.org.

5 Simulation study

A simulation study was carried out to explore the performance of the proposed method. The

setting mimics a typical multicenter study with a possible center by treatment interaction.

‘True’ uncensored data were generated according to the MEAFT model

log(Ti,l) = 1.5 + β xi,l + bi,1 + bi,2 zi,l + εi,l, i = 1, . . . , N, l = 1, . . . , ni, (12)

where β = 0.4, (bi,1, bi,2)
′ ∼ N1

(

(0, γ)′,D
)

, γ = −0.8, var(bi,1) = 0.52, var(bi,2) = 0.12,

corr(bi,1, bi,2) = 0.4. The covariate xi,l was generated according to the extreme-value distri-

bution of a minimum, with location equal to 8.5 and scale equal to 1 inspired more or less by

the log2(1 + CD4 count) covariate in the AIDS dataset analyzed by Komárek, Lesaffre, and
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Hilton (2005). The covariate zi,l (treatment vs. placebo) – was binary taking a value of 1 with

probability equal to 0.4. The error term εi,l was generated from a standard normal distribution,

from a Cauchy distribution, from a Student t2 distribution, from a standardized extreme value

distribution, and from a normal mixture 0.4N1(−2.000, 0.25)+0.6N1(1.333, 0.36), respectively.

Two sample sizes were considered: (1) N = 50, ni = 5 for all i (small sample size) and (2)

N = 100, ni = 10 for all i (large sample size). Each simulation involved 100 replications.

All event times were interval-censored by simulating 120 consecutive ‘assessment times’ for

each ‘patient’ in the dataset (the first assessment time was drawn from N1(7, 1), times between

each consecutive assessments from N1(6, 0.25)). At each assessment, between 0.2% and 0.6%

randomly selected patients were withdrawn from the study resulting in approximately 15% of

right-censored observations. For each dataset, the estimates were computed using the Bayesian

mixture MEAFT model, using the Bayesian MEAFT model with a normal error and using the

maximum-likelihood AFT model with a normal error and ignoring the random effects structure.

Table 1 shows the simulation results, i.e. average estimates of the regression parameters and

their mean squared errors. It is seen that, in most cases, the Bayesian mixture approach per-

forms better than the incorrectly specified models. A large difference in favour of the Bayesian

mixture model is seen in the case of a normal mixture or Cauchy for the error distribution.

Additionally, when the Bayesian mixture approach is used, also the error distribution and con-

sequently also the hazard or survivor functions are reproduced closely which is not always the

case when the Bayesian normal model is used. Figure 2 shows this behaviour of our model

on hazard functions of two heavy-tailed distributions estimated with the small sample size us-

ing either the Bayesian mixture or the Bayesian normal model. A similar comparison for the

survivor functions of the extreme value or mixture error is shown in Figure 3. Figure 4 shows

the behaviour of the Bayesian mixture method when the sample size increases for the extreme
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value distribution and mixture distribution.

[Table 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

6 Analysis of Signal Tandmobielr data

The first research question outlined in the introduction was already considered by Lesaffre,

Komárek, and Declerck (2005) who analyzed each tooth separately using the penalized AFT

model of Komárek et al. (2005). With the Bayesian MEAFT model of this paper we will analyze

all teeth jointly and will be able to answer also the second research question. A random sample

of 500 boys and 500 girls will be used for the inference.

For a better fit, we shifted the time origin of the MEAFT model to 5 years of age, i.e. by

replacing Ti,l by Ti,l − 5 in the model (1). The random effect vector bi = (bi,1, . . . , bi,4)
′ with

zi,l = (1, man4i,l, max5i,l, man5i,l)
′ where man4i,l, max5i,l, man5i,l, respectively are dummies

for the mandibular first premolars (teeth 34, 44), maxillary second premolars (teeth 15, 25)

and mandibular second premolars (teeth 35, 45), respectively is assumed in the model (1).

With such model specification, apart of the random variation given by the error term εi,l, the

terms di,max4 = bi,1, di,man4 = bi,1 + bi,2, di,max5 = bi,1 + bi,3, di,man5 = bi,1 + bi,4 determine how

the log-emergence time of a pair of horizontally symmetric teeth of a single child differ from

the population average. As the fixed effects we used gender ≡ girl, dmft and all two-way

interaction terms between girl, dmft and dummies for the pairs of horizontal symmetric teeth.
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The initial maximum-likelihood AFT model, for each tooth separately, with a normal er-

ror distribution and without random effects estimated the intercept as 1.8 and scale as 0.25.

According to the suggestions of Section 3.4 we used the following values of hyper-parameters:

ξ = 1.8, κ = (3 · 0.25)2, ζ = 2, g = 0.2, h = 0.1, δ = 1. For the number of mixture components,

k, a truncated Poisson prior with λ = 5 reflecting our prior belief that the error distribution

is skewed and kmax = 30 was used. All β and γ parameters were assigned a spread N(0, 100)

prior. For the covariance matrix D of random effects we used an inverse Wishart prior with

τ = 4 which is a minimal possible value for prior degrees of freedom. Though, due to the

fact that 1 000 clusters are involved in the data set, even a higher value could be used with

a negligible impact on results. Prior scale matrix S was equal to diag(0.002) (corresponding to

inverse-gamma(τ, 0.001) in the univariate case).

We sampled two chains, each of length 20 000 with 1:3 thinning which took about 27 hours

on a Pentium IV 2 GHz PC. The first 1 500 iterations of each chain were discarded. The

convergence was evaluated by a critical examination of the trace and autocorrelation plots and

using the method of Gelman and Rubin (1992).

6.1 Regression parameters

In this analysis, the main interest lies in the effect of dmft on emergence. This can be evaluated

from Table 2 that shows posterior summary statistics for the effect of dmft > 0 (appropriate

linear combinations of β parameters) for the two genders and the four pairs of horizontally sym-

metric teeth. As point estimate we report the posterior median which can easily be obtained

from an MCMC sample and still corresponds roughly to the maximum-likelihood estimate, the

most frequently used estimate in the classical statistics. Indeed, if the (log-)posterior distri-

bution is unimodal and symmetric (which happened for practically all regression parameters)
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then the posterior median is the same as the posterior mode. For skewed posterior distributions

(the variance components), the log-posterior median is practically the same as the log-posterior

mode.

It is seen that caries on the primary predecessor accelerates significantly the emergence of

the permanent successor in the case of maxillary teeth. For the mandibular teeth, a slight effect

is observed only for the first premolar on boys. Additionally, besides the effect of dmft the

emergence process for girls is ahead of boys.

[Table 2 about here.]

6.2 Predictive emergence curves

Predictive cumulative distribution functions (cdf) are preferred in dentistry over the survivor

functions in the case of emergence and they are known as emergence curves. Let θ denote all

unknown quantities of the model. For a specific value of covariates, say xnew and znew, the

predictive cdf is given by

F (t | data) =

∫

F (t | θ, data) p(θ | data) dθ

for any t > 0. Further

F (t | θ, data) = F (t | θ) =

k
∑

j=1

wjΦ
{

log(t) − βTxnew − bTznew

∣

∣ µj, σ
2
j

}

,

where Φ(· | µj, σ
2
j ) is a cumulative distribution function of N1(µj, σ

2
j ). The MCMC estimate

of the predictive cdf is then given by F̂ (t | data) = M−1
∑M

m=1 F (t | θ(m)), where θ(m), m =

1, . . . ,M is the MCMC sample from the posterior (predictive) distribution. All components of

θ(m) are directly available except b(m). These must be additionally sampled from Nq(γ
(m),D(m)).

Predictive survivor or hazard curves can be obtained in an analogous manner.
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Predictive emergence curves for the maxillary first premolar are shown in Figure 5. As

a model check, Figure 5 shows also non-parametric estimates of the emergence curves computed

separately in each group using the classical method of Turnbull (1976).

[Figure 5 about here.]

6.3 Inter-teeth relationship

Finally, Table 3 shows posterior summary statistics for variances and correlations of above

defined tooth-specific linear combinations di,max4, di,man4, di,max5, di,man5 of random effects

bi,1, . . . , bi,4. It shows how the child effect is important and how the different teeth in one

mouth are strongly correlated. The posterior means of all variance parameters in Table 3 are

all about 0.2 which is much higher than the posterior mean of the variance of the error distri-

bution which was equal to 0.01. Posterior means of all correlation parameters lie between 0.79

and 0.91.

[Table 3 about here.]

7 Discussion

We have proposed a Bayesian accelerated failure time model whose error distribution is modelled

in a flexible way as a finite normal mixture. An advantage of the full Bayesian approach is the

fact that a general random effect vector can be easily included in the model. Subsequently, the

effect of covariates can be evaluated jointly with the association among clustered responses.

Further, interval-, right-, or left-censored data are easy to handle and finally, the MCMC

sampling-based implementation of the model offers a straightforward way to obtain credibility

intervals of model parameters as well as predictive survivor or hazard curves.
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Observe that the Bayesian approach is used here mainly for technical convenience. Indeed, in

practice likelihood (2) is hardly tractable using the maximum-likelihood method. On the other

hand, the Bayesian estimation using the MCMC does not pose any real difficulties. Further,

since all our prior distributions are non-informative (or close to, cfr. variance parameters)

and we use (on a proper scale) more or less posterior modes as point estimates the classical

maximum-likelihood estimation would lead to almost the same results.

The proposed methodology aims to contribute to the area of semi-parametric modelling

of correlated and at the same time interval-censored data. Furthermore, our approach allows

to bring in a structure into the dependencies between observations in one cluster. E.g., in

multicenter studies, the vector zi,l = (1, treatmenti,l)
′ in the model formula (1) allows to

consider not only the random center effect but also a random center-by-treatment interaction

which can sometimes be substantial.

According to our best knowledge, no approach is available which tackles this complex data

structure. With varying amount of effort some of the existing semi-parametric approaches, e.g.

Pan and Louis (2000); Pan and Connett (2001), mentioned in Section 2, could be, of course,

extended to handle regression with correlated interval-censored data.

Unfortunately, our approach cannot handle time-dependent covariates. However, the same

is true for any model where the distribution of the response is specified by the density and

not by the hazard function. To include also the time-dependent covariates, usually the Cox’s

proportional hazards model is used. E.g., Kooperberg and Clarkson (1997); Betensky et al.

(1999); Goetghebeur and Ryan (2000) consider independent interval-censored data. Vaida

and Xu (2000) offer an approach based on the proportional hazards linear mixed model with

right-censored data.

Finally, our approach can be quite easily extended along the lines presented in Komárek and
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Lesaffre (2005) to handle also doubly-interval-censored data, i.e. the data where the response

is given as the difference of two interval-censored observations.
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Table 1: Simulation study. Results for the regression parameters: average estimate, mean

squared error (×10−4) in brackets.

Bayesian mixture Bayesian normal ML, no random eff.

Setting

β = 0.4

Normal, small 0.3966 (26.3) 0.3973 (25.6) 0.3992 (34.7)

large 0.4016 (7.3) 0.4018 (7.3) 0.4022 (9.0)

Cauchy t1, small 0.4122 (52.5) 0.3832 (68.2) 0.3783 (124.6)

large 0.3921 (13.2) 0.3608 (41.8) 0.3571 (50.7)

Student t2, small 0.3933 (58.1) 0.3859 (49.6) 0.3823 (72.9)

large 0.3944 (11.5) 0.3794 (19.0) 0.3780 (21.6)

Extr. value, small 0.3928 (17.9) 0.3954 (20.9) 0.3952 (25.9)

large 0.4036 (4.3) 0.4035 (5.4) 0.4022 (6.8)

Mixture, small 0.3942 (17.6) 0.4324 (68.1) 0.4436 (127.3)

large 0.3997 (3.5) 0.4480 (45.6) 0.4505 (52.9)

γ = −0.8

Normal, small −0.8128 (240.4) −0.8105 (222.8) −0.8121 (235.7)

large −0.7981 (47.0) −0.7983 (48.2) −0.7982 (60.4)

Cauchy t1, small −0.7656 (512.7) −0.7192 (716.4) −0.7210 (704.0)

large −0.8097 (107.2) −0.7360 (234.5) −0.7383 (238.9)

Student t2, small −0.7777 (479.0) −0.7593 (401.3) −0.7614 (415.5)

large −0.7933 (99.9) −0.7610 (123.7) −0.7601 (132.1)

Extr. value, small −0.8150 (191.1) −0.8106 (192.4) −0.8094 (202.3)

large −0.7969 (47.4) −0.7999 (56.6) −0.8022 (66.9)

Mixture, small −0.7868 (95.7) −0.8693 (895.0) −0.8635 (840.5)

large −0.8040 (26.6) −0.9264 (366.8) −0.9227 (369.4)
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Table 2: Signal Tandmobielr data. Posterior medians, 95% equal-tail credibility intervals and

Bayesian two-sided p-values for the effect of dmft > 0 for the two genders and different teeth.

maxilla 4 maxilla 5

girl boy girl boy

−0.0352 −0.0457 −0.0212 −0.0317

(−0.0522, −0.0185) (−0.0631, −0.0284) (−0.0390, −0.0035) (−0.0500, −0.0135)

p < 0.001 p < 0.001 p = 0.019 p = 0.001

mandible 4 mandible 5

girl boy girl boy

−0.0098 −0.0201 0.0015 −0.0090

(−0.0267, 0.0070) (−0.0378, −0.0032) (−0.0162, 0.0193) (−0.0283, 0.0098)

p = 0.255 p = 0.021 p = 0.870 p = 0.353

Table 3: Signal Tandmobielr data. Posterior medians, 95% equal-tail credibility intervals for

variances and correlations between tooth-specific linear combinations of random effects.

var(dmax4) var(dman4) var(dmax5) var(dman5)

0.042 0.039 0.042 0.041

(0.037, 0.047) (0.035, 0.045) (0.036, 0.049) (0.035, 0.048)

cor(dmax4, dman4) cor(dmax4, dmax5) cor(dmax4, dman5) cor(dman4, dmax5)

0.887 0.914 0.842 0.793

(0.856, 0.914) (0.887, 0.938) (0.804, 0.874) (0.749, 0.832)

cor(dman4, dman5) cor(dmax5, dman5)

0.895 0.847

(0.864, 0.923) (0.810, 0.880)
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Figure 1: DAG for the Bayesian AFT model.
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Figure 2: Simulation study – hazard functions. Results for a small sample size (N = 50, ni = 5)

and Cauchy and Student t2 error distributions. Left column: estimates based on the Bayesian

mixture model, right column: estimates based on the Bayesian normal model. Solid line:

Estimate of the hazard function for x = 8.13 – median value and z = 0, gray region: simulation

based 95% point-wise confidence interval, dashed line: true hazard function.
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Figure 3: Simulation study – survivor functions. Results for a small sample size (N = 50, ni =

5) and extreme value and normal mixture error distributions. Left column: estimates based

on the Bayesian mixture model, right column: estimates based on the Bayesian normal model.

Solid line: estimate of the survivor function for x = 8.13 – median value and z = 0, gray region:

simulation based 95% point-wise confidence interval, dashed line: true survivor function.
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Figure 4: Simulation study – error densities. Results for both sample sizes and extreme value

and normal mixture error distributions, estimates based on the Bayesian mixture model. Solid

line: estimate of the standardized error density, gray region: simulation based 95% point-wise

confidence interval, dashed line: true standardized error density.
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Figure 5: Signal Tandmobielr data. Predictive emergence curves (solid lines) compared to the

non-parametric estimate of Turnbull (dashed lines) for maxillary first premolars.
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