
bayesGDS: an R Package for Generalized Direct

Sampling

Michael Braun

SMU Cox School of Business

Southern Methodist University

December 11, 2013

Abstract

The bayesGDS package implements the Generalized Direct Sam-

pling (GDS) algorithm that is presented in Braun and Damien (2013).

Generalized Direct Sampling (GDS, Braun and Damien 2013) is a method of sam-

pling from multivariate distributions. It is particularly useful for simulating from

high-dimensional, complex, bounded posterior distributions that arise from Bayesian

hierarchical models. GDS is intended to replace MCMC as the preferred sampling

algorithm for many, but not all, classes of hierarchical models, especially if the pos-

terior is continuous and smooth. The advantages of GDS over MCMC are:

1. all samples are collected independently, so there is no need to be concerned

with autocorrelation, convergence of estimations chains, and so forth;

2. there is no particular advantage to choosing model components that maintain

conditional conjugacy, as is common with Gibbs sampling;

3. GDS generates samples from the target posterior entirely in parallel, which

takes advantage of the most recent advances in grid computing and placing

multiple CPU cores in a single computer; and

1

4. GDS permits fast and accurate estimation of marginal likelihoods of the data.

The derivation and justification for GDS are explained in Braun and Damien (2013)

and the reader should start there for the details. The latest version of the paper is

available in the doc folder in the source code of this package. The purpose of this

article is to show how to sample from a posterior density in R using the bayesGDS

package. We also highlight some practical issues in using GDS, and show an example

of GDS in action.

Although the trustOptim (Braun 2013c), plyr (Wickham 2011), sparseHes-

sianFD (Braun 2013a), sparseMVN (Braun 2013b), and Matrix (Bates and

Maechler 2013) packages are not dependencies for bayesGDS, the example at the

end of this note does use them. Therefore, the reader is encouraged to install those

packages before proceeding.

1 The GDS Algorithm

From Braun and Damien (2013), Algorithm 1 summarizes the GDS procedure, step-

by-step. Notation is consistent with that paper: π(θ|y) is the target posterior from

which we want to sample; D(θ, y) is the joint density of the data and the prior; and

g(θ) is the proposal density.

2 Example: Hierarchical Binary Choice

To illustrate the use of bayesGDS, we will work through a simple example. Suppose

there is a dataset of N households, each with T opportunities to purchase a particular

product. Let yi be the number of times household i purchases the product, out of the

T purchase opportunities. Furthermore, let pi be the probability of purchase; pi is

the same for all T opportunities, so we can treat yi as a binomial random variable.

The purchase probability pi is heterogeneous, and depends on both k continuous

2

Algorithm 1 The GDS Algorithm to collect R samples from π(θ|y)

1: R← number of required samples from π(θ|y)
2: M← number of proposal draws for estimating q̂v(v).
3: θ∗ ← mode of D(θ, y)
4: c1 ← D(θ∗, y)
5: FLAG← TRUE

6: while FLAG do
7: Choose new proposal distribution g(θ)
8: FLAG←FALSE

9: c2 ← g(θ∗).
10: for m := 1 to M do
11: Sample θm ∼ g(θ).
12: log Φ(θm|y)← logD(θm, y)− log g(θm)− log c1 + log c2.
13: vm = − log Φ(θm|y)
14: if log Φ(θm|y) > 0 then
15: FLAG← TRUE

16: break
17: end if
18: end for
19: end while
20: Reorder elements of v, so 0 < v1 < v2 < . . . < vM < ∞. Define vM+1 := ∞
21: for i := 1 to M do
22: q̂v(vi)← ∑M

j=1 1
[
vj < vi

]
.

23: vi ← q̂v(vi) [exp(−vi)− exp(−vi+1)].
24: end for
25: for r = 1 to R do
26: Sample j ∼ Multinomial(v1 . . . vM).
27: Sample η ∼ Uniform(0,1).
28: v∗ ← vj − log

[
1− η

(
1− exp

(
vj − vj+1

))]
.

29: p← 0
30: nr ← 0. {Counter for number of proposals}
31: while p > v∗ do
32: Sample θr ∼ g(θ).
33: p← − log Φ (θr|y).
34: nr ← nr + 1.
35: end while
36: end for
37: return θ1 . . . θR (plus n1 . . . nR and v1 . . . vM if computing a marginal likelihood).

3

covariates xi, and a heterogeneous coefficient vector βi, such that

pi =
exp(x′i βi)

1 + exp(x′i βi)
, i = 1 . . . N (1)

The coefficients can be thought of as sensitivities to the covariates, and they are

distributed across the population of households following a multivariate normal dis-

tribution with mean µ and covariance Σ. We assume that we know Σ, but we do not

know µ. Instead, we place a multivariate normal prior on µ, with mean 0 and covari-

ance Ω, which is determined in advance. Thus, each βi, and µ, are k−dimensional

vectors, and the total number of unknown variables in the model is (N + 1)k.

The log posterior density, including normalization constants, is

log π(β1:N , µ|Y, X, Σ0, Ω0) =
N

∑
i=1

log
(

T
yi

)
+ yi log pi + (T − yi) log(1− pi) (2)

− N
2

(log |Σ|+ k log (2π))− 1
2

N

∑
i=1

(βi − µ)′ Σ−1 (βi − µ) (3)

− 1
2

(
log |Ω0|+ k log(2π) + µ′Ω−1

0 µ
)

(4)

where pi is defined in Equation 1 as a function of βi. The functions that com-

pute the log posterior and its gradient, demo.get.f and demo.get.grad are in the

R/demo_funcs.R. This file also includes a function, get.hess.struct, that returns

the sparsity structure of the Hessian. These functions depend on the Matrix and

sparseHessianFD packages.

In the sections that follow, I will discuss the code in the file demo/choice_gds.R.

This example generates batches of samples in parallel. The user may need to modify

the way in which the code is parallelized, depending on available resources.

2.1 Preparing for GDS

At the top of the choice_gds.R file, we do some initial housekeeping, and set the

parameters of the GDS sampler. We also register multiple processors for running

some of the steps in parallel.

4

library(Matrix)

library(trustOptim)

library(sparseHessianFD)

library(sparseMVN)

library(plyr)

library(bayesGDS)

library(doParallel)

run.par <- TRUE

if(run.par) registerDoParallel(cores=12)

else registerDoParallel(cores=1)

set.seed(123)

The sparseMVN package includes functions for sampling from, and computing the

log density of, a multivariate normal (MVN) distribution when either the covariance

or precision matrix is sparse. To use these functions with bayesGDS, we need to

place them in wrappers. The params argument must be a list of parameters which

can then be passed to the proposal distribution functions. Of course, there is no

requirement that the proposal distribution has to be MVN.

rmvn.sparse.wrap <- function(n.draws, params) {

res <- rmvn.sparse(n.draws, params$mean, params$CH, prec=TRUE)

return(res)

}

dmvn.sparse.wrap <- function(d, params) {

res <- dmvn.sparse(d, params$mean, params$CH, prec=TRUE)

return(res)

}

2.2 Simulating data and setting priors

The code in the next section simulates some data from the model, and defines the

prior parameters.

5

N <- 100 ## number of heterogeneous units

k <- 3 ## number of covariates

T <- 40 ## number of "purchase opportunities per unit

nvars <- N*k + k ## total number of parameters

Simulate data and set priors

x.mean <- rep(0,k)

x.cov <- diag(k)

mu <- rnorm(k,0,10)

Omega <- diag(k)

inv.Sigma <- rWishart(1,k+5,diag(k))[,,1]

inv.Omega <- solve(Omega)

X <- t(rmvnorm(N, mean=x.mean, sigma=x.cov)) ## k x N

B <- t(rmvnorm(N, mean=mu, sigma=Omega)) ## k x N

XB <- colSums(X * B)

log.p <- XB - log1p(exp(XB))

Y <- apply(as.matrix(log.p), 1,function(q) return(rbinom(1,T,exp(q))))

This section should be self-explanatory, as the variables correspond to the model

specification above. The arguments X, Y, inv.Sigma and inv.Omega will be passed

to the functions that compute the log posterior and gradient.

2.3 Estimating the Hessian

Functions for computing the log posterior and its gradient are in the file R/demo_funcs.R.

To estimate the Hessian, we use the sparseHessianFD package. Since we assume

that household purchases are conditionally independent, the cross-partial derivatives

for βi across households are all zero. This means that the Hessian is sparse, with a

known sparsity pattern. The demo.get.hess.struct function returns this pattern.

The new.sparse.hessian.obj constructs an object with functions that return the

log posterior, gradient, and the full, sparse Hessian. The Hessian is returned in

dsCMatrix format, which can be used by both sparseMVN and trustOptim.

By exploiting the sparsity of the Hessian, we can find the posterior mode, and

6

construct MVN precision matrices, faster than if we treated the Hessian as dense.

See the documentation for sparseHessianFD for more details on how the Hessian is

estimated. One warning is that sparseHessianFD will not work well if the gradient

is not “exact”. Specifically, the gradient should not be estimated numerically using

finite differencing. The gradient should be either derived analytically (as we do in

this example), or use some kind of automatic differentiation.

Before setting up the sparse Hessian object, we sample a hypothetical starting value

from a vector of standard normal random variates.

start <- rnorm(nvars) ## random starting values

hess.struct <- bayesGDS::demo.get.hess.struct(N, k)

Setting up function to compute Hessian using sparseHessianFD package.

obj <- new.sparse.hessian.obj(start, fn=bayesGDS::demo.get.f,

gr=bayesGDS::demo.get.grad,

hs=hess.struct, Y=Y, X=X,

inv.Omega=inv.Omega,

inv.Sigma=inv.Sigma, T=T)

get.f.wrap <- function(x) return(obj$fn(x))

get.df.wrap <- function(x) return(obj$gr(x))

get.hessian.wrap <- function(x) return(obj$hessian(x))

2.4 Finding the posterior mode

Although one could use any number of methods to find the posterior mode, the

trust.optim function from the trustOptim package is a good choice for hierar-

chical models. This is because the Hessian of the log posterior is sparse. The

trust.optim function requires the user to supply a function that computes the ob-

jective function (fn) , the gradient (gr), and the Hessian (hs). In this example, these

functions are get.f.wrap, get.df.wrap, and get.hessian.wrap, respectively. See

the package manual and documentation for trustOptim for more information and

the various methods, arguments and control parameters.

7

opt <- trust.optim(start, fn=get.f.wrap,

gr = get.df.wrap,

hs = get.hessian.wrap,

method = "Sparse",

control = list(

start.trust.radius=5,

stop.trust.radius = 1e-7,

prec=1e-7,

function.scale.factor=-1,

report.freq=1L,

report.level=4L,

report.precision=1L,

maxit=500L,

preconditioner=0L

)

)

post.mode <- opt$solution

hess <- opt$hessian

2.5 Preparing the GDS sampler

With the posterior mode, and the Hessian at the mode, in hand, we can now start

the GDS sampler itself. In our example, we will collect 20 samples from the target

posterior, and we will estimate the marginal auxiliary parameter using 10,000 sam-

ples from the MVN proposal distribution. The proposal will have a mean at the

posterior mode, and a precision matrix of −.94, times the Hessian at the mode.

n.draws <- 20

M <- 50000

ds.scale <- 0.94

fn.dens.prop <- dmvn.sparse.wrap

fn.draw.prop<- rmvn.sparse.wrap

chol.hess <- Cholesky(-ds.scale*hess)

8

prop.params <- list(mean = post.mode,

CH = chol.hess

)

log.c1 <- opt$fval

log.c2 <- dmvn.sparse.wrap(post.mode, prop.params)

Next, we construct the empirical approximation to the density of the threshold

draws that we will use in the rejection sampling phase of the algorithm. After

taking M draws from the proposal distribution, we evaluate the log posterior and

MVN densities at each of those proposals, and compute log Φ(θi|y) for all proposals

θ1 . . . θM.

draws.m <- as(fn.draw.prop(M,prop.params),"matrix")

log.post.m <- aaply(draws.m, 1,get.f.wrap, .parallel=run.par)

log.prop.m <- fn.dens.prop(draws.m,params=prop.params)

log.phi <- log.post.m - log.prop.m +log.c2 - log.c1

If log Φ(θ|y) > 0 for any of these proposals, the proposal density is not valid, and

we need to try again. Typically, this adaptation will just mean a change in the scale

of the precision matrix of the proposal distribution.

invalid.scale <- any(log.phi>0)

cat("Are any log.phi > 0? ",invalid.scale,"\n")

2.6 Collecting posterior draws

Finally, we come to the rejection sampling phase of the GDS algorithm. Details of

the arguments are in the package documentation, and most of them have already

been discussed in this note.

The biggest advantage to using GDS is that samples can be collected in parallel. One

way to do is is to launch multiple instances of the sample.GDS with the routines in the

foreach package. For example, if we need 100 samples, and we have 10 processing

cores available, we can run 10 instances of sample.GDS, with each instance collecting

9

10 samples. In the function below, each of the n.batch instances of sample.GDS

collects batch.size samples per batch. Since foreach combines the results of each

instance into a single list, we use Map and Reduce to combine those results into a

single list.

n.batch <- floor(n.draws / batch.size)

draws.list <- foreach(i=1:n.batch, .inorder=FALSE) %dopar% sample.GDS(

n.draws=batch.size,

log.phi=log.phi,

post.mode=post.mode,

fn.dens.post = get.f.wrap,

fn.dens.prop = dmvn.sparse.wrap,

fn.draw.prop = rmvn.sparse.wrap,

prop.params = prop.params,

max.tries=max.tries,

report.freq=50,

announce=TRUE,

thread.id = i,

seed=as.integer(seed.id*i))

draws <- Reduce(function(x,y) Map(rbind,x,y), draws.list)

The list draws contains the following elements.

1. draws - the samples from the target posterior distribution. each column is a

draw.

2. counts - the number of proposals that it took to get an acceptance. If a draw

is accepted on the first proposal, the count is 1.

3. gt.1 - an indicator that the log.phi for that particular draw happened to be

greater than 0. In theory, this should not happen if the posterior is sufficiently

dominated by the proposal density.

4. log.post.dens, log.prop.dens - the log posterior and proposal densities for

the draws.

10

5. log.thresholds - the threshold that determines if the -log.phi from a proposal

is low enough to be accepted.

6. log.phi - the log Φ(θ|y) of the accepted draw

A note on gt.1: All of these values really should be zero. If there is a very small

proportion of ones, it’s probably not a big deal. It just means that the proposal

density is under-scaled, and does not fully dominate the target posterior over the

domain for reasonable values. This could be because of deviations from normality in

regions of high posterior mass, or because the tails of the proposal fall too quickly.

These are samples that you probably want to accept anyway. However, we have

not yet developed any theory to assess just how much error is introduced by an

underscaled proposal.

Also, we have found in practice that if the proposal density is not sufficiently diffuse,

the thresholds for acceptance can be quite high, leading to very low acceptance rates.

Therefore, we continue to recommend running the algorithm again with a different

proposal density if any elements of gt.1 are not zero.

If any of the posterior draws is NA, then none of the first max.tries proposals was

accepted as a sample from the target posterior. If this happens, either increase this

value, or adjust the proposal density.

2.7 Log marginal likelihoods

GDS algorithm also offers a straightforward way to estimate the log marginal like-

lihood. See Braun and Damien (2013).

if (any(is.na(dd$counts))) {

LML <- NA

} else {

LML <- get.LML(draws$counts, log.phi, post.mode,

fn.dens.post=get.f.wrap,

fn.dens.prop=dmvn.sparse.wrap,

prop.params=prop.params)

}

11

3 Practical advice

3.1 Exploiting sparsity

The advantages of GDS over MCMC are most evident when the Hessian of the

log posterior is sparse. This will occur when heterogeneous units are conditionally

independent, such that the cross-partial derivatives across unit-specific parameters

are zero. As discussed in depth in Braun and Damien (2013), GDS scales linearly in

the number of heterogeneous units under the conditional independence assumption.

There are a number of resources available in R for exploiting this sparsity. The

Matrix package provides classes to store sparse matrices in a compressed format.

The trustOptim package includes a trust region nonlinear optimizer that accepts

the Hessian is sparse format, and sparseHessianFD can estimate a sparse Hessian

efficiently when the sparsity pattern is known in advance (which it typically is). The

sparseMVN package samples from, and computes the log density of, a multivariate

normal distribution when either the covariance or precision matrix is sparse.

3.2 Choosing the mode-finding algorithm wisely

Since finding the posterior mode is a critical element in the GDS procedure, some

thought should go into the best way to find it. If the gradient is computed either

analytically or through automatic differentiation, and if the Hessian is sparse, the

trustOptim and sparseHessianFD packages are effective tools. Even for prob-

lems with dense Hessians, the advantage of trustOptim is that it uses the norm

of the gradient to determine when the algorithm has converged. Most (if not all)

other optimization routines in other packages like optim, optimx, Rcgmin, and

nloptwrap stop when the algorithm fails to make sufficient progress in terms of the

objective function or the parameters. In our experience, those algorithms stop pre-

maturely (i.e., the gradient is not flat at the solution). One approach we have taken

when the Hessian of the log posterior is dense has been to run one of these other

optimization algorithms until convergences, and then continue using trustOptim.

12

References

Bates D, Maechler M (2013). Matrix: Sparse and Dense Matrix Classes and Methods.
R package version 1.1-0.

Braun M (2013a). sparseHessianFD: an R package for estimat-
ing sparse Hessians. R package version 0.1.1, URL cran.r-

project.org/web/packages/sparseHessianFD.

Braun M (2013b). sparseMVN: an R package for MVN sampling with sparse
covariance and precision matrices. R package version 0.1.0, URL cran.r-

project.org/web/packages/sparseMVN.

Braun M (2013c). trustOptim: an R package from optimization using trust regions.
R package version 0.8.2, URL cran.r-project.org/web/packages/trustOptim.

Braun M, Damien P (2013). “Generalized Direct Sampling for Hierarchical Bayesian
Models.” www.cox.smu.edu/web/michaelbraun.

Wickham H (2011). “The Split-Apply-Combine Strategy for Data Analysis.” Journal
of Statistical Software, 40(1), 1–29.

13

