
Risk theory features of actuar

Christophe Dutang
ISFA, Université Claude Bernard Lyon 1

Vincent Goulet
École d’actuariat, Université Laval

Mathieu Pigeon
École d’actuariat, Université Laval

1 Introduction

Risk theory refers to a body of techniques to model and measure the risk
associated with a portfolio of insurance contracts. A first approach consists
in modeling the distribution of total claims over a fixed period of time using
the classical collective model of risk theory. A second input of interest to
the actuary is the evolution of the surplus of the insurance company over
many periods of time. In ruin theory, the main quantity of interest is the
probability that the surplus becomes negative, in which case technical ruin
of the insurance company occurs.

The interested reader can read more on these subjects in Klugman et al.
(2004); Gerber (1979); Denuit and Charpentier (2004); Kaas et al. (2001),
among others.

The current version of actuar contains four visible functions related to
the above problems: two for the calculation of the aggregate claim amount
distribution and two for ruin probability calculations.

2 The collective risk model

Let the random variable S represent the aggregate claim amount (or total
amount of claims) of a portfolio of independent risks over a fixed period
of time, random variable N represent the number of claims (or frequency)
in the portfolio over that period, and random variable Cj represent the
amount of claim j (or severity). Then, we have the random sum

S = C1 + · · · + CN , (1)

1



where we assume that C1, C2, . . . are mutually independent and identically
distributed random variables each independent from N . The task at hand
consists in evaluating numerically the cdf of S, given by

FS(x) = Pr[S ≤ x]

=
∞∑
n=0

Pr[S ≤ x|N = n]pn

=
∞∑
n=0

F∗nC (x)pn, (2)

where FC(x) = Pr[C ≤ x] is the common cdf of C1, . . . , Cn, pn = Pr[N = n]
and F∗nC (x) = Pr[C1 + · · · + Cn ≤ x] is the n-fold convolution of FC(·). If
C is discrete on 0,1,2, . . . , one has

F∗kC (x) =


I{x ≥ 0}, k = 0

FC(x), k = 1∑x
y=0 F

∗(k−1)
C (x −y)fC(y), k = 2,3, . . .

(3)

3 Discretization of claim amount distributions

Some numerical techniques to compute the aggregate claim amount distri-
bution (see Subsection 4) require a discrete arithmetic claim amount distri-
bution; that is, a distribution defined on 0, h,2h, . . . for some step (or span,
or lag) h. The package provides function discretize to discretize a con-
tinuous distribution. (The function can also be used to modify the support
of an already discrete distribution, but this requires additional care.)

Let F(x) denote the cdf of the distribution to discretize on some inter-
val (a, b) and fx denote the probability mass at x in the discretized distri-
bution. Currently, discretize supports the following four discretization
methods.

1. Upper discretization, or forward difference of F(x):

fx = F(x + h)− F(x) (4)

for x = a,a + h, . . . , b − h. The discretized cdf is always above the
true cdf.

2. Lower discretization, or backward difference of F(x):

fx =
{
F(a), x = a
F(x)− F(x − h), x = a+ h, . . . , b. (5)

The discretized cdf is always under the true cdf.

2



3. Rounding of the random variable, or the midpoint method:

fx =
{
F(a+ h/2), x = a
F(x + h/2)− F(x − h/2), x = a+ h, . . . , b − h. (6)

The true cdf passes exactly midway through the steps of the dis-
cretized cdf.

4. Unbiased, or local matching of the first moment method:

fx =



E[X ∧ a]− E[X ∧ a+ h]
h

+ 1− F(a), x = a
2E[X ∧ x]− E[X ∧ x − h]− E[X ∧ x + h]

h
, a < x < b

E[X ∧ b]− E[X ∧ b − h]
h

− 1+ F(b), x = b.

(7)

The discretized and the true distributions have the same total proba-
bility and expected value on (a, b).

Figure 1 illustrates the four methods. It should be noted that although
very close in this example, the rounding and unbiased methods are not
identical.

Usage of discretize is similar to R’s plotting function curve. The
cdf to discretize and, for the unbiased method only, the limited expected
value function are passed to discretize as expressions in x. The other
arguments are the upper and lower bounds of the discretization interval,
the step h and the discretization method. For example, upper and unbiased
discretizations of a Gamma(2,1) distribution on (0,17) with a step of 0.5
are achieved with, respectively,

> fx <- discretize(pgamma(x, 2, 1), method = "upper",
+ from = 0, to = 17, step = 0.5)
> fx <- discretize(pgamma(x, 2, 1), method = "unbiased",
+ lev = levgamma(x, 2, 1), from = 0, to = 17,
+ step = 0.5)

Function discretize is written in a modular fashion making it simple
to add other discretization methods if needed.

4 Calculation of the aggregate claim amount distri-
bution

Function aggregateDist serves as a unique front end for various methods
to compute or approximate the cdf of the aggregate claim amount random
variable S. Currently, five methods are supported.

3



0 1 2 3 4 5

0.
0

0.
4

0.
8

Upper

x

F
(x

)

●

●

●

●
●

0 1 2 3 4 5

0.
0

0.
4

0.
8

Lower

x

F
(x

)

●

●

●

●

●
●

0 1 2 3 4 5

0.
0

0.
4

0.
8

Rounding

x

F
(x

)

●

●

●

●
●

0 1 2 3 4 5

0.
0

0.
4

0.
8

Unbiased

x

F
(x

)

●

●

●

●
● ●

Figure 1: Comparison of four discretization methods

1. Recursive calculation using the algorithm of Panjer (1981). This re-
quires the severity distribution to be discrete arithmetic on 0,1,2, . . . ,m
for some monetary unit and the frequency distribution to be a mem-
ber of either the (a, b,0) or (a, b,1) family of distributions (Klug-
man et al., 2004). (These families contain the Poisson, binomial and
negative binomial distributions and their extensions with an arbitrary
mass at x = 0.) The general recursive formula is:

fS(x) =
(p1 − (a+ b)p0)fC(x)+

∑min(x,m)
y=1 (a+ by/x)fC(y)fS(x −y)

1− afC(0)
,

with starting value fS(0) = PN(fC(0)), where PN(·) is the probability
generating function of N . Probabilities are computed until their sum
is arbitrarily close to 1.

The recursions are done in C to dramatically increase speed. One dif-
ficulty the programmer is facing is the unknown length of the output.
This was solved using a common, simple and fast technique: first al-
locate an arbitrary amount of memory and double this amount each
time the allocated space gets full.

4



2. Exact calculation by numerical convolutions using (2) and (3). Hence,
this also requires a discrete severity distribution. However, there is
no restriction on the shape of the frequency distribution. The pack-
age merely implements the sum (2), the convolutions being computed
with R’s function convolve. This approach is practical for small prob-
lems only, even on today’s fast computers.

3. Normal approximation of the cdf, that is

FS(x) ≈ Φ(x − µSσS

)
, (8)

where µS = E[S] and σ 2
S = Var[S]. For most realistic models, this

approximation is rather crude in the tails of the distribution.

4. Normal Power II approximation of the cdf, that is

FS(x) ≈ Φ
(
− 3
γS
+
√

9

γ2
S
+ 1+ 6

γS
x − µS
σS

)
, (9)

where γS = E[(S − µS)3]/σ 3/2
S . The approximation is valid for x > µS

only and performs reasonably well when γS < 1. See Daykin et al.
(1994) for details.

5. Simulation of a random sample from S and approximation of FS(x) by
the empirical cdf. The simulation itself is done with function simul
(see the "simulation" vignette)). This function admits very general
hierarchical models for both the frequency and the severity compo-
nents.

Here also, adding other methods to aggregateDist is simple due to its
modular conception.

The arguments of aggregateDist differ depending on the calculation
method; see the help page for details. One interesting argument to note
is x.scale to specify the monetary unit of the severity distribution. This
way, one does not have to mentally do the conversion between the support
of 0,1,2, . . . assumed by the recursive and convolution methods and the
true support of S.

The function returns an object of class "aggregateDist" inheriting
from the "function" class. Thus, one can use the object as a function
to compute the value of FS(x) in any x.

For illustration purposes, consider the following model: the distribution
of S is a compound Poisson with parameter λ = 10 and severity distribution
Gamma(2,1). To obtain an approximation of the cdf of S we first discretize
the gamma distribution on (0,22) with the unbiased method and a step of
0.5, and then use the recursive method in aggregateDist:

5



> fx <- discretize(pgamma(x, 2, 1), from = 0, to = 22,
+ step = 0.5, method = "unbiased", lev = levgamma(x,
+ 2, 1))
> Fs <- aggregateDist("recursive", model.freq = "poisson",
+ model.sev = fx, lambda = 10, x.scale = 0.5)
> summary(Fs)

Aggregate Claim Amount Empirical CDF:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 14.5 19.5 20.0 25.0 71.0

Hence, object Fs contains an empirical cdf with support

> knots(Fs)

[1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
[12] 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5
[23] 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
[34] 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5
[45] 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0
[56] 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5
[67] 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0
[78] 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5
[89] 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 48.0 48.5 49.0

[100] 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5
[111] 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0
[122] 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5
[133] 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 71.0

A nice graph of this function is obtained with a method of plot (see
Figure 2):

> plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0,
+ 60))

The package defines a few summary methods to extract information
from "aggregateDist" objects. First, there are methods of mean and
quantile to easily compute the mean and obtain the quantiles of the ap-
proximate distribution:

> mean(Fs)

[1] 20

> quantile(Fs)

25% 50% 75% 90% 95% 97.5% 99% 99.5%
14.5 19.5 25.0 30.5 34.0 37.0 41.0 43.5

6



0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Aggregate Claim Amount Distribution

x

F
S
((x

))

Recursive method approximation

Figure 2: Graphic of the empirical cdf of S obtained with the recursive
method

> quantile(Fs, 0.999)

99.9%
49.5

Second, the package introduces the generic functions VaR and CTE with
methods for "aggregateDist" objects. The former computes the value-
at-risk VaRα such that

Pr[S ≤ VaRα] = α, (10)

where α is the confidence level. Thus, the value-at-risk is nothing else
than a quantile. As for the method of CTE, it computes the conditional tail
expectation

CTEα = E[S|S > VaRα]. (11)

Here are examples:

> VaR(Fs)

90% 95% 99%
30.5 34.0 41.0

7



0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Aggregate Claim Amount Distribution

x

F
S
((x

))

recursive + unbiased
recursive + upper
recursive + lower
simulation
normal approximation

Figure 3: Comparison between the empirical or approximate cdf of S ob-
tained with five different methods

> CTE(Fs)

90% 95% 99%
35.42 38.55 45.01

To conclude on the subject, Figure 3 shows the cdf of S using five of the
many combinations of discretization and calculation method supported by
actuar.

5 The continuous time ruin model

We now turn to the multi-period ruin problem. Let U(t) denote the surplus
of an insurance company at time t, c(t) denote premiums collected through
time t, and S(t) denote aggregate claims paid through time t. If u is the
initial surplus at time t = 0, then a mathematically convenient definition of
U(t) is

U(t) = u+ c(t)− S(t). (12)

8



As mentioned previously, technical ruin of the insurance company occurs
when the surplus becomes negative. Therefore, the definition of the infinite
time probability of ruin is

ψ(u) = Pr[U(t) < 0 for some t ≥ 0]. (13)

We define some other quantities of interest in the sequel. Let N(t) de-
note the number of claims up to time t ≥ 0 and Cj denote the amount of
claim j. Then the definition of S(t) is analogous to (1):

S(t) = C1 + · · · + CN(t), (14)

assuming N(0) = 0 and S(t) = 0 as long as N(t) = 0. Furthermore, let Tj
denote the time when claim j occurs, such that T1 < T2 < T3 < . . . Then the
random variable of the interarrival (or wait) time between claim j − 1 and
claim j is defined as W1 = T1 and

Wj = Tj − Tj−1, j ≥ 2. (15)

For the rest of this discussion, we make the following assumptions

1. premiums are collected at a constant rate c, hence c(t) = ct;

2. the sequence {Tj}j≥1 forms an ordinary renewal process, with the
consequence that the random variables W1,W2, . . . are independent
and identically distributed;

3. claim amounts C1, C2, . . . are independent and identically distributed.

6 Adjustment coefficient

The quantity known as the adjustment coefficient R hardly has any physical
interpretation, but it comes useful as an approximation to the probability
of ruin since we have the inequality

ψ(u) ≤ e−Ru, u ≥ 0.

The adjustment coefficient is defined as the smallest strictly positive solu-
tion (if it exists) of the Lundberg equation

h(t) = E[etC−tcW ] = 1, (16)

where the premium rate c satisfies the positive safety loading constraint
E[C − cW] < 0. If C and W are independent, as in the most common
models, then the equation can be rewritten as

h(t) = MC(t)MW (−tc) = 1. (17)

9



Function adjCoef of actuar computes the adjustment coefficient R from
the following arguments: either the two moment generating functionsMC(t)
andMW (t) (thereby assuming independence) or else function h(t); the pre-
mium rate c; the upper bound of the support of MC(t) or any other upper
bound for R.

For example, if W and C are independent, W ∼ Exponential(2), C ∼
Exponential(1) and the premium rate is c = 2.4 (for a safety loading of 20%
using the expected value premium principle), then the adjustment coeffi-
cient is

> adjCoef(mgf.claim = mgfexp(x), mgf.wait = mgfexp(x,
+ 2), p = 2.4, upper = 1)

[1] 0.1667

The function also supports models with proportional or excess-of-loss
reinsurance (Centeno, 2002). Under the first type of treaty, an insurer pays
a proportion α of every loss and the rest is paid by the reinsurer. Then, for
fixed α the adjustment coefficient is the solution of

h(t) = E[etαC−tc(α)W ] = 1. (18)

Under an excess-of-loss treaty, the primary insurer pays each claim up to a
limit L. Again, for fixed L, the adjustment coefficient is the solution of

h(t) = E[etmin(C,L)−tc(L)W ] = 1. (19)

For models with reinsurance, adjCoef returns an object of class "adjCoef"
inheriting from the "function" class. One can then use the object to com-
pute the adjustment coefficient for any retention rate α or retention limit
L. The package also defines a method of plot for these objects.

For example, using the same assumptions as above with proportional
reinsurance and a 30% safety loading for the reinsurer, the adjustment co-
efficient as a function of α ∈ [0,1] is (see Figure 4 for the graph):

> mgfx <- function(x, y) mgfexp(x * y)
> p <- function(x) 2.6 * x - 0.2
> R <- adjCoef(mgfx, mgfexp(x, 2), premium = p, upper = 1,
+ reins = "prop", from = 0, to = 1)
> R(c(0.75, 0.8, 0.9, 1))

[1] 0.1905 0.1862 0.1765 0.1667

> plot(R)

10



0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

Adjustment Coefficient

x

R
(x

)

Proportional reinsurance

Figure 4: Adjustment coefficient as a function of the retention rate

7 Probability of ruin

In this subsection, we always assume that interarrival times and claim
amounts are independent.

The main difficulty with the calculation of the infinite time probability of
ruin lies in the lack of explicit formulas except for the most simple models.
If interarrival times are Exponential(λ) distributed (Poisson claim number
process) and claim amounts are Exponential(β) distributed, then

ψ(u) = λ
cβ
e−(β−λ/c)u. (20)

If the frequency assumption of this model is defensible, the severity as-
sumption can hardly be used beyond illustration purposes.

Fortunately, phase-type distributions have come to the rescue since the
early 1990s. Asmussen and Rolski (1991) first show that in the classical
Cramér–Lundberg model where interarrival times are Exponential(λ) dis-
tributed, if claim amounts are Phase-type(πππ,T) distributed, then ψ(u) =

11



1− F(u), where F is Phase-type(πππ+,Q) with

πππ+ = −
λ
c
πππT−1

Q = T+ tπππ+,
(21)

and t = −Te, e is a column vector with all components equal to 1; see the
"lossdist" vignette for details.

In the more general Sparre Andersen model where interarrival times
can be any Phase-type(ν,S) distribution, Asmussen and Rolski (1991) also
show that using the same claim severity assumption as above, one still has
ψ(u) = 1− F(u) where F is Phase-type(πππ+,Q), but with parameters

πππ+ =
e′(Q− T)
ce′t

(22)

and Q solution of

Q = Ψ(Q)
= T− tπππ

[
(In ⊗ ν)(Q⊕ S)−1(In ⊗ s)

]
.

(23)

In the above, s = −Se, In is the n × n identity matrix, ⊗ denotes the usual
Kronecker product between two matrices and ⊕ is the Kronecker sum de-
fined as

Am×m ⊕ Bn×n = A⊗ In + B⊗ Im. (24)

Function ruin of actuar returns a function object to compute the prob-
ability of ruin for any initial surplus u. In all cases except the exponen-
tial/exponential model where (20) is used, the output object calls function
pphtype to compute the ruin probabilities.

Some thought went into the interface of ruin. Obviously, all models can
be specified using phase-type distributions, but the authors wanted users
to have easy access to the most common models involving exponential and
Erlang distributions. Hence, one first states the claim amount and inter-
arrival times models with any combination of "exponential", "Erlang"
and "phase-type". Then, one passes the parameters of each model using
lists with components named after the corresponding parameters of dexp,
dgamma and dphtype. If a component "weights" is found in a list, the
model is a mixture of exponential or Erlang (mixtures of phase-type are not
supported). Every component of the parameter lists is recycled as needed.

The following examples should make the matter clearer. (All examples
use c = 1, the default value in ruin.) First, for the exponential/exponential
model, one has

> psi <- ruin(claims = "e", par.claims = list(rate = 5),
+ wait = "e", par.wait = list(rate = 3))
> psi

12



function (u, survival = FALSE, lower.tail = !survival)
{

res <- 0.6 * exp(-(2) * u)
if (lower.tail)

res
else 0.5 - res + 0.5

}
<environment: 0x156f870>

> psi(0:10)

[1] 6.000e-01 8.120e-02 1.099e-02 1.487e-03 2.013e-04
[6] 2.724e-05 3.687e-06 4.989e-07 6.752e-08 9.138e-09

[11] 1.237e-09

Second, for a mixture of two exponentials claim amount model and ex-
ponential interarrival times, the simplest call to ruin is

> ruin(claims = "e", par.claims = list(rate = c(3,
+ 7), weights = 0.5), wait = "e", par.wait = list(rate = 3))

function (u, survival = FALSE, lower.tail = !survival)
pphtype(u, c(0.5, 0.214285714285714), c(-1.5, 3.5, 0.642857142857143,
-5.5), lower.tail = !lower.tail)
<environment: 0x13e033c>

Finally, one will obtain a function to compute ruin probabilities in a
model with phase-type claim amounts and mixture of exponentials interar-
rival times with

> prob <- c(0.5614, 0.4386)
> rates <- matrix(c(-8.64, 0.101, 1.997, -1.095),
+ 2, 2)
> ruin(claims = "p", par.claims = list(prob = prob,
+ rates = rates), wait = "e", par.wait = list(rate = c(5,
+ 1), weights = c(0.4, 0.6)))

function (u, survival = FALSE, lower.tail = !survival)
pphtype(u, c(0.146595513877824, 0.761505562273639), c(-7.66616600130962,
0.246715940794557, 7.05568145018378, -0.338063471100003), lower.tail = !lower.tail)
<environment: 0x2cddb58>

One can plot the probability of ruin function using curve (see Figure 5):

> psi <- ruin(claims = "p", par.claims = list(prob = prob,
+ rates = rates), wait = "e", par.wait = list(rate = c(5,
+ 1), weights = c(0.4, 0.6)))
> curve(psi, from = 0, to = 50, main = "Probability of ruin",
+ xlab = "u", ylab = expression(psi(u)))

13



0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

Probability of ruin

u

ψψ
((u

))

Figure 5: Graphic of the probability of ruin as a function of the initial sur-
plus u

8 Approximation to the probability of ruin

When the model for the aggregate claim process (14) does not fit nicely into
the framework of the previous section, one can compute ruin probabilities
using the so-called Beekman’s convolution formula (Beekman, 1968; Kass,
2004).

Let the surplus process and the aggregate claim amount process be de-
fined as in (12) and (14), respectively, and let {N(t)} be a Poisson process
with mean λ. As before, claim amounts C1, C2, . . . are independent and
identically distributed with cdf P(·) and mean µ = E[C1]. Then the infinite
time probability of ruin is given by

ψ(u) = 1− F(u), (25)

where F(·) is Compound Geometric(p,H) with

p = 1− λµ
c

(26)

14



and

H(x) =
∫ x

0

1− P(y)
µ

dy. (27)

In other words, we have (compare with (2))

ψ(u) = 1−
∞∑
n=0

H∗n(u)p(1− p)n. (28)

In most practical situations, numerical evaluation of (28) is done using
Panjer’s recursive formula. This usually requires discretization of H(·). In
such circumstances, Beekman’s formula yields approximate ruin probabili-
ties.

For example, let claim amounts have a Pareto(5,4) distribution, that is

P(x) = 1−
(

4
4+ x

)5

and µ = 1. Then

H(x) =
∫ x

0

(
4

4+y

)5

dy

= 1−
(

4
4+ x

)4

,

or else H is Pareto(4,4). Furthermore, we determine the premium rate c
with the expected value premium principle and a safety loading of 20%,
that is c = 1.2λµ. Thus, p = 0.2/1.2 = 1/6.

One can get functions to compute lower bounds and upper bounds for
F(u) with functions discretize and aggregateDist as follows:

> f.L <- discretize(ppareto(x, 4, 4), from = 0, to = 200,
+ step = 1, method = "lower")
> f.U <- discretize(ppareto(x, 4, 4), from = 0, to = 200,
+ step = 1, method = "upper")
> F.L <- aggregateDist(method = "recursive", model.freq = "geometric",
+ model.sev = f.L, prob = 1/6)
> F.U <- aggregateDist(method = "recursive", model.freq = "geometric",
+ model.sev = f.U, prob = 1/6)

Corresponding functions for the probability of ruin ψ(u) lower and up-
per bounds are (see figure 6 for the graphic):

> psi.L <- function(u) 1 - F.U(u)
> psi.U <- function(u) 1 - F.L(u)
> u <- seq(0, 50, by = 5)
> cbind(lower = psi.L(u), upper = psi.U(u))

15



0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

ps
i.L

 (
x)

Figure 6: Lower and upper bounds for the probability of ruin as determined
using Beekman’s convolution formula.

lower upper
[1,] 0.6719160 0.83333
[2,] 0.2892792 0.51572
[3,] 0.1361541 0.32938
[4,] 0.0662486 0.21200
[5,] 0.0329848 0.13700
[6,] 0.0167551 0.08877
[7,] 0.0086802 0.05764
[8,] 0.0045911 0.03749
[9,] 0.0024843 0.02443

[10,] 0.0013790 0.01595
[11,] 0.0007877 0.01043

> curve(psi.L, from = 0, to = 100, col = "blue")
> curve(psi.U, add = TRUE, col = "green")

One can make the bounds as close as one wishes by reducing the dis-
cretization step.

16



References

S. Asmussen and T. Rolski. Computational methods in risk theory: a matrix-
algorithmic approach. Insurance: Mathematics and Economics, 10:259–
274, 1991.

J. A. Beekman. Collective risk results. Transactions of the Society of Actuar-
ies, 20:182–199, 1968.

M. d. L. Centeno. Measuring the effects of reinsurance by the adjustment
coefficient in the sparre-anderson model. Insurance: Mathematics and
Economics, 30:37–49, 2002.

C.D. Daykin, T. Pentikäinen, and M. Pesonen. Practical Risk Theory for Ac-
tuaries. Chapman & Hall, London, 1994. ISBN 0-4124285-0-4.

M. Denuit and A. Charpentier. Mathématiques de l’assurance non-vie, vol-
ume 1, Principes fondamentaux de théorie du risque. Economica, Paris,
2004. ISBN 2-7178485-4-1.

H. U. Gerber. An Introduction to Mathematical Risk Theory. Huebner Foun-
dation, Philadelphia, 1979.

R. Kaas, M. Goovaerts, J. Dhaene, and M. Denuit. Modern actuarial risk
theory. Kluwer Academic Publishers, Dordrecht, 2001. ISBN 0-7923763-
6-6.

R. Kass. Beekman’s convolution formula. In J. L. Teugels and B. Sundt,
editors, Encyclopedia of actuarial science, volume 1. Wiley, 2004. ISBN
0-4708467-6-3.

S. A. Klugman, H. H. Panjer, and G. Willmot. Loss Models: From Data to
Decisions. Wiley, New York, second edition, 2004. ISBN 0-4712157-7-5.

H. H. Panjer. Recursive evaluation of a family of compound distributions.
ASTIN Bulletin, 12:22–26, 1981.

17


	Introduction
	The collective risk model
	Discretization of claim amount distributions
	Calculation of the aggregate claim amount distribution
	The continuous time ruin model
	Adjustment coefficient
	Probability of ruin
	Approximation to the probability of ruin

