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1 WiSE Bootstrap Model Selection

Wild Scale-Enhanced (WiSE) Bootstrap is a variant of the wild bootstrap
where the model residuals are multiplied by an additional scaling factor.
Theoretical details of the general WiSE methodology may be found in (Chat-
terjee, 2015). This package is an implementation of the WiSE bootstrap for
a specific case of the partial linear model. Namely, given an equally-spaced
time series of length T = 2J , J ∈ I+, we assume that the time series may be
written as a partial linear model

Y (t) = γ0 + γ1t+Wγ + e(t) (1)

where Y ∈ RT is the observed data, t is a vector time indices, W is a T− row
matrix of a fixed wavelet basis, and γ contains the scaling and filter wavelet
coefficients. Note, in many cases of the discrete wavelet transform (DWT),
especially those implemented within wavethresh, the scaling coefficient is
equivalent to γ0. Thus, only the scaling coefficient or γ0 should be estimated
in any models where this occurs.

The quantity Wγ is a non-parametric component which may represent a sig-
nal within the data. The linear model component(γ0 +γ1t) would necessarily
change by data application, but we claim it is adequate in the examples pre-
sented here. We propose that models of this type are useful descriptors of
various time series, including climate model output. Under this partial linear
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model, it is of interest to estimate the set of population parameters γ0, γ1
and γ.

Estimating the full vector of wavelet coefficients, γ, is problematic with cur-
rent methodologies. However, it is typical that the wavelet filter coefficients
are sparse, containing many zero or nearly zero-valued entries. The proposed
methodology takes advantage of the sparsity and chooses a strong threshold
criteria for the coefficients. With data of length 2J , filter wavelet coefficients
exist for levels 0, 1, ..., J−1. If J0 is our threshold, then all coefficients occur-
ing at levels greater than J0 are set to 0. Essentially, our models assume all
fine-level filter coefficients are 0-valued in expectation. Thresholding γ in this
fashion decreases the number of parameters such that consistent estimation
is possible.

Assume J0 is a set threshold level. Then, we may estimate the population
parameters γ0, γ1 and γ consistently. Using least squares estimation, γ̂0 and
γ̂1 are obtained and residuals are defined as r(t) = Y (t)− γ̂0− γ̂1t. The DWT
is performed on r(t) to obtain a length-T vector of wavelet coefficients. We
apply the threshold and estimate γ with γ̂J0 . Wavelet residauls are obtained
using rw(t) = r(t)−Wγ̂J0 .

To perform the WiSE bootstrap for model 1 with set threshold J0, we create
bootstrap series for b = 1, 2, ..., B

Yb(t) = γ̂0 + γ̂1t+Wγ̂J0 + τUbrw(t) (2)

where τ is a scaling parameter such that τ 2/T → 0 and τ → ∞ and the
Ui, i = 1, ..., B are independent, mean 0, variance 1, finite 8th moment random
variables. The Yb(t) are used to create bootstrap estimates γ̂0b, γ̂1b, and γ̂J0b.
The wild bootstrap also allows for estimation of the error variance, which may
be heteroscedastic, but this is not implemented within WiSEBoot. All details
of these theoretical conditions and results are contained in (Chatterjee, 2015).

This WiSE bootstrap re-sampling technique is novel, as it allows for a model
selection while concurrently providing (asymptotically) consistent estimators
of the model parameters (Chatterjee, 2015). The prior description set the
threshold level, J0. The WiSEBoot package provides an automatic process to
select the wavelet coefficient threshold level. For a data series of length 2J ,
a WiSE bootstrap sample is created for thresholds of J0 ∈ {0, 1, ..., J − 2} as

2



well as setting all filter wavelet coefficients to 0. The selected model mini-
mizes the mean of the mean squared-error between the bootstrap estimated
model and the provided data. That is, for any J0, we calculate the mean of
the mean-squared error

MSEJ0 =
1

TB

B∑
b=1

< Y (t)− γ̂0b− γ̂1bt−Wγ̂J0b, Y (t)− γ̂0b− γ̂1bt−Wγ̂J0b >

where < x, y > is defined as the inner product of vectors x and y. The
selected wavelet coefficient threshold in the model is J∗

0 where

MSEJ∗
0

= min
j
MSEj

2 WiSE Bootstrap Model Selection: Simula-

tion Example

This example uses some simulated wavelet signals to demonstrate the wavelet
coefficient threshold selection. What may be considered as a population-level
signal is contained in SimulatedSmoothSeries, which is a matrix.

data(SimulatedSmoothSeries)

dim(SimulatedSmoothSeries)

## [1] 1024 9

SimulatedSmoothSeries[1:3, ]

## J0.0 J0.1 J0.2 J0.3 J0.4

## [1,] -0.009340405 0.01674716 0.004249168 0.04902028 -0.02750788

## [2,] -0.009343208 0.01676378 0.003836796 0.04871207 -0.02514671

## [3,] -0.009345534 0.01677582 0.003428975 0.04834426 -0.02252105

## J0.5 J0.6 J0.7 J0.8

## [1,] -0.050660410 0.1438138 0.2153899 0.40223065

## [2,] -0.028013936 0.1572082 0.2122281 0.34668205

## [3,] -0.005142542 0.1555804 0.1611787 0.09866474

3



All signals in this matrix were generated using the wavethresh package with
a "DaubLeAsymm" (Daubechies Least Asymmetric) wavelet with 8 vanish-
ing moments and a "periodic" boundary condition. The column names of
SimulatedSmoothSeries indicate the true wavelet coefficient threshold level.
Let’s consider the 4th column. The wavelet coefficients were thresholded at
the J0 = 3 level. Thus, all finer-level coefficients (levels 4,5,6,7,8, and 9) were
set to 0, to create this smooth signal.

Here is a plot of the signal:
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Data observed from a population signal such as this would be noisy. The ma-
trices SimulatedSNR0.5Series, SimulatedSNR1.0Series, SimulatedSNR1.5Series,
and SimulatedSNR2.0Series contain data series with population signals
from SimulatedSmoothSeries and varying levels of added noise. Defining
the signal-to-noise ratio (SNR) as (Variance of Signal)/(Variance of Noise),
these matrices contain data series with SNR=0.5, 1.0, 1.5 and 2.0. It seems
reasonable to assume that the signal would be more apparent in the SNR=2.0
series than the SNR=0.5 series. Here is a look at the data:
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We can see that the true signal is fairly clear in each of these data series,
but the lower SNR series are noisier. Typically, the analyst would not know
the true signal threshold level. The smoothTimeSeries function allows for
a quick visualization of all possible wavelet coefficient threshold levels. This
is especially useful if the analyst would like to manually choose a wavelet
coefficient threshold level. Using the SNR=1.0 series, we can demonstrate
this capability. Note, the wavelet settings for these smooths generated be-
low exactly match the true signals from SimulatedSmoothSeries. The user
could change the wavelet family, filter, and boundary.
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smoothPlot <- smoothTimeSeries(SimulatedSNR1.0Series[ ,4], plot="all")
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Without knowing the truth, an analyst may guess that the wavelet threshold
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level could be any of J0 ∈ {2, 3, 4}. We can use the WiSEBoot function to
remove the guess-work and automatically choose a wavelet threshold. As
discussed in Section 1, the model which achieves the minimum of the mean-
squared error is selected. Let’s leave the default wavelet settings again (which
exactly match the true signal wavelet here) and look at the MSE criteria for
B=10 (R=10) bootstrap samples. Typically, a larger number of bootstrap
samples is used, as these may be generated in parallel. We choose a lower
number in the vignette for the sake of time.

set.seed(1414)

SNR10Boot <- WiSEBoot(SimulatedSNR1.0Series[ ,4], R=10)

SNR10Boot$MSECriteria

## J0plusOne meanOfMSE

## [1,] 9 0.005253337

## [2,] 8 0.004647180

## [3,] 7 0.003526287

## [4,] 6 0.002935839

## [5,] 5 0.002609077

## [6,] 4 0.002394103

## [7,] 3 0.003768089

## [8,] 2 0.004040207

## [9,] 1 0.004421682

## [10,] 0 0.004503563

Even in this small bootstrap sample, the correct model was selected. We
can see at J0 + 1 = 4 the mean of the MSE is minimized with a value of
0.00239. The reader should keep in mind that this is a simulation example,
so a desirable result is not surprising.

The output from WiSEBoot also may be used to examine the distributions of
the γ0, γ1 and γ parameters, estimated by the bootstrap. The boxplots below
show the parametric linear parameter estimates (γ̂0b, γ̂1b). Because the data
was simulated, the population parameters are known to be γ0 = 0, γ1 = 0.

par(mfrow=c(1,2))

boxplot(SNR10Boot$BootIntercept,

main=expression(paste("R=10 Bootstrap Estimates of ", gamma[0])),

ylab=expression(hat(gamma)[0][b]))

boxplot(SNR10Boot$BootSlope,
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main=expression(paste("R=10 Bootstrap Estimates of ", gamma[1])),

ylab=expression(hat(gamma)[1][b]))
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As always in any type of bootstrap, the bootstrap distribution will be cen-
tered around the original estimate from the data. We can see that these
boxplots aren’t exactly centered at 0 because of this centering issue associ-
ated with the bootstrap.

If we wanted to look at the bootstrap distribution of any individual filter
wavelet coefficient, the output from WiSEBoot also makes this possible. Below
are the bootstrap distributions of the level=1 filter coefficients.

par(mfrow=c(1,2))

boxplot(SNR10Boot$BootWavelet[,3],

main=expression(paste("R=10 Boot. Est. of level=1, coef. 1, ", gamma)),

ylab=expression(hat(gamma)[b]))

boxplot(SNR10Boot$BootWavelet[,4],

main=expression(paste("R=10 Boot. Est. of level=1, coef. 2, ", gamma)),

ylab=expression(hat(gamma)[b]))
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3 WiSE Bootstrap Hypothesis Test

Next we provide a brief introduction to a hypothesis test of the wavelet
coefficients from two data series of equal lengths. This hypothesis test-
ing methodology is discussed in detail in (Braverman, 2015). This theo-
retical discussion is meant to give users of the WiSEHypothesisTest and
WiSEConfidenceRegion a general idea of the methodology occurring.

Consider two equally-spaced data series of length T = 2J , J ∈ I+. Each data
series follows the model from eqn. 1. That is,

Y (t) = γy0 + γy1t+Wγy + ey(t)

X(t) = γx0 + γx1t+Wγx + ex(t)

Users of these functions wish compare the signals of these two series. Namely,
the user may test the linear relationship between the two sets of wavelet
coefficients: γy = α + βγx. The null hypothesis in WiSEHypothesisTest is

H0 : α = m,β = n, m, n ∈ R
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In Braverman, 2015, values of m = 0 and n = 1 are tested. If the null
hypothesis in this specific scenario is not rejected, then we may say that
signal within the climate model output matches the observed climate.

The algorithm to generate the WiSE bootstrap sample under the null hy-
pothesis changes slightly. Please see (Braverman, 2015) for the details.

4 WiSE Bootstrap for Hypothesis Testing:

Climate Model Signals

An example analysis of climate model data is presented here. The full analy-
sis of the climate models at some specific grid-cells is available in (Braverman,
2015). Within the WiSEBoot package, two sets of climate model outputs and
observed climate are available. Here, we will look at the data in CM20N20S60E.

data(CM20N20S60E)

CM20N20S60E[1:3,]

## AIRS IPSLRun1 IPSLRun2 IPSLRun3 IPSLRun4

## 2002-10-01 0.001764203 0.001844154 0.002112894 0.0006225206 0.001579949

## 2002-10-02 0.001498882 0.001700833 0.001708422 0.0006596091 0.001716239

## 2002-10-03 0.001522536 0.001539518 0.001419565 0.0008227325 0.001948907

## MIROC5Run1 MIROC5Run2 MIROC5Run3 MIROC5Run4 MIROC5Run5

## 2002-10-01 0.001653560 0.0017041005 0.0010692392 0.001497587 0.000984715

## 2002-10-02 0.001490860 0.0011596567 0.0010018310 0.001331268 0.001106074

## 2002-10-03 0.001315217 0.0008881064 0.0008363572 0.001092815 0.001381810

## MIROC5Run6

## 2002-10-01 0.001133758

## 2002-10-02 0.001047236

## 2002-10-03 0.001029497

This data matrix contains runs from AIRS (observed climate), 4 runs of
the IPSL model, and 6 runs of the MIROC5 model. The model runs are
obtained by choosing different starting parameters. This matrix contains a
set of specific humidity observations/outputs between 20N and 20S at 60E
and an altitude of 500 hPa. Observations are daily, from October 1, 2002 to
December 29, 2010.
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We’ll specifically compare the signals in AIRS and MIROC5, run 5. Here are
some plots of the raw data.

par(mfrow=c(2,1))

plot.ts(CM20N20S60E[,1], main="AIRS", ylab="Obs. Climate")

plot.ts(CM20N20S60E[,10], main="MIROC5, run 5", ylab="Model Climate")
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Before it is possible to use any of the WiSE bootstrap methodology, the
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data must first be of length T = 2J for a positive integer, J . The raw data
contains 3012 observations. Thus, we first use the padMatrix function to
lengthen each series simultaneously.

pad60E <- padMatrix(CM20N20S60E)

dim(pad60E$xPad)

## [1] 4096 11

The code above uses the default options of padding at both sides of the data
series by reflecting. The linear trend is not replaced (default) to the padded
data matrix because we may easily input the estimated linear (parametric)
parameters to the hypothesis testing function. This data is now of length
212.

The hypothesis testing function requires that the user choose a wavelet co-
efficient threshold level. This may be done automatically with the WiSEBoot

function, by inputting both series as a 4096 x 2 matrix. Here, we choose to
use a threshold of J0 = 5, as this corresponds to a cycle of 128 days.

Now that the data is of correct length, we may test the hypothesis

H0 : α = 0, β = 1

(i.e. the climate model signal matches the observed climate). Our ‘X’ series
is AIRS and the ‘Y’ series is MIROC5, run 5. For demonstration purposes,
we will choose to take R=10 bootstrap samples. A higher number of samples
is generally recommended.

hypObj <- WiSEHypothesisTest(pad60E$xPad[,1], pad60E$xPad[,10], R=10, J0=5,

XParam=pad60E$linearParam[,1],

YParam=pad60E$linearParam[,10])

## [1] "The asymptotic p-value is 2.11e-06. The bootstrap p-value is 0"
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The function prints two p-values. The asymptotic p-value is based upon
the distribution of Hotelling’s T2 and the test statistic utilizes the variance-
covariance matrix from the bootstrap sample. The bootstrap p-value com-
putes a Hotelling’s T2 test statistic for each bootstrap sample, and the quan-
tile of the data-based Hotelling’s T2 is computed from the bootstrap sample.
A plot of the bootstrap sample and observed data parameter estimates is
also generated optionally.

We can see that both the asymptotic and bootstrap p-values indicate that
the null hypothesis should be rejected. This is not surprising based upon
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the generated plot. The α̂ and β̂ estimated from the data (red point) is
clearly outside of the cloud of bootstrap sample points (black). The gray
vertical and horizontal lines represent the parameter values under the null
hypothesis.
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