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This user’s guide defines syntax and illustrates use of updated “R” functions that perform a
variety of aternative approaches to Propensity Scoring (PS) analyses. These functions
implement a variety of relatively new methods for statistical inference that use either “local
control” patient clustering or else traditional “covariate adjustment” (parametric prediction) to
anayze data from different types of non-standard studies ...such as observational studies,
retrospective database analyses and poorly randomized (chaotic) studies. USPS methods do not
rely on the “balance” that is “expected” when using traditional randomized assignment of
patients to treatments  After all, this “balance” frequently fails to result even approximately in
finite samples!!!  Instead, the USPS methods implement various forms of aposteriori
“matching” or “stratification” of patients who received only one of the two treatments that are
being compared.
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1. Introduction.

Here we describe “R” language functions implementing rather new methods for “propensity
score” (PS) and/or “instrumental variable” (1V) adjustment to estimates of treatment effects.
These approaches adjust for treatment selection bias characterized by imbalance in patient
baseline characteristics between treatment groups (arms, cohorts) in either nonrandomized or
poorly randomized studies. Traditiona “supervised” PS methods can be categorized as follows:
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The traditional “big three’” Propensity Scoring methods require an estimate of the PS =
(conditional probability of treatment) for each patient ...usualy from a fitted logit or probit
modd.

[a] PS matching of patientsin any fixed ratio (asin case/control studies),

[b] PS binning of patients (sub-classification / stratification) and

[c] regression modeling using Heckman effects or inverse Mills' ratios (nonlinear
functions of PS).

See D’Agostino(1998) for a gentle introduction to these three relatively well-know
methods of supervised propensity scoring.

Two aternative (rather more technical) methods are:

[d] inverse probability weighting (IPW =1/ PS) and
[€] econometric simultaneous equations / instrumental variable models.

For key references on these methods, see my “white paper,” Obenchain(2006a).

“Unsupervised” PS strategies start by clustering patients in baseline covariate X-space. The
two new approaches of this type that are implemented in “R” here are:

[f] Nearest Neighbor / Local Treatment Differences (NN/LTD) plotting.

NN/LTD focuses on characterizing the full distribution of truly “local”
treatment differences within clusters of relatively well- matched patients.

[g] Instrumental Variable/ Local Outcome Averages (1V/LOA) plotting.

IV/ILOA focuses on how within-cluster outcome averages (regardless of
treatment) vary when clusters are plotted versus a within-cluster PS
estimate, the observed treatment percentage. This approach requires al X
covariates used to define clusters b be “instrumental variables,” i.e. to
effect outcome only (indirectly) through choice of treatment. Use of X
covariates which quantify disease severity or patient frailty is then
guestionable because such characteristics may also have direct effects on
outcomes, invalidating the IV/LOA plotting approach.

Our “Unsupervised” PS designation comes from familiar jargon in literature on artificial
intelligence and data mining; see Barlow(1989). Specifically, PS clustering methods proceed
without recelving any “hints’ from a designated outcome measure or a treatment indicator
variable to help “quide” formation of patient subgroups. In addition to clustering,

multivariate probability density estimation is arother example of an unsupervised statistical
method.
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The PS clustering approaches implemented here are like some early suggestions of
Rubin(1980), which apparently have not been nearly as widely used as “supervised”
methods. After al, they tend to be much more computationally intensive.

Some supervised methods do have to resort to numerical search methods over a p-
dimensional space of parameters (e.g. estimation of alogit or probit regression model) rather
than use a closed form expression (such as that for ordinary least squares estimates in a linear
regresson model.) On the other hand, unsupervised methods typicaly have to make the
n (n1)/2 pairwise comparisons of patients needed to hierarchically cluster al study
subjects. The resulting increases in computing time and memory allocation due to use of
unsupervised (Non-Polynomia Hard) methods can be enormous, especially when n is much
larger than p (n >> p.) Besides, clustering results can also be highly sensitive to user choices
of patient similarity metric and/or specific clustering algorithm.

In spite of their almost frustrating flexibility and sharply increased demand on computing
power, “clustering” approaches to adjustment for treatment selection bias end up offering
two main advantages over supervised PS methods...

[1] At least when the number of clusters is relatively large (and thus the number of
patients in most clusters is relatively small), there is no real need to test whether patients
are relatively “well matched” on their X characteristics within individual clusters.
Clustering of patients on their X characteristics has assured that almost any model for
predicting propensity scores that is relatively smooth over X space would confirm that
any within-cluster comparisons of treatment outcome differences are relatively “fair”
comparisons.

[2] Results from clustering lend themselves well b use of graphica visuaization and
sensitivity analysis techniques. For example, once the full hierarchical clustering tree has
been constructed, displays using alternative numbers of total clusters can be generated
relatively quickly. Thus clustering approaches can provide not only fundamental, robust
(non-parametric) insights but also highly relevant information about sensitivity of results
to “tuning” parameters. Furthermore, the resulting graphical displays can dramatically
illustrate how traditiorel parametric modeling approaches, such as simultaneous
equations models, tend to emphasize some aspects of the data while de-emphasizing
other aspects.

Thanks to the considerable computing and graphical display power of modern workstations,
clustering methods for PS adjustment are now practicaly useful. My key strategy is to
emphasize their use in systematic senditivity analyses: “What is the full range of quantitative
treatment effect estimates supported by the available data?” And, “Which patient subsets
tend to have extreme outcomes?’

Finally, “smoothing” of outcomes along a PS axis defined by a parametric prediction model
isasimple and intuitively appealing alternative (initially suggested to me by Professor Frank
Harrell of Vanderbuilt) to the earlier PS “binning” approach
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The computing algorithms discussed here are written in a dialect of Version 3 of the “S’
language that is processed by the “R” interpreter, Version 1.7+, available for download from
http://www.r-project.org R is a GNU (open source) implementation of the “S language and
environment for data analysis and graphics.” See Becker, Chambers and Wilks(1988) and
Chambers and Hastie(1992) for information about S; see lhaka and Gentleman(1996) for the
origina description of R as being “not unlike” S.

2. Fundamental Distinctions between Alter native PS Approaches.

Traditional “Supervised” forms of Propensity Scoring (PS) typicaly start with a parametric logit
(or probit) model to estimate the conditional probability of receiving treatment given certain
patient characteristics. [An average across some randomForest() of classification trees may well
be a superior way to “score” patients, but no R functions for this are currently provided here]

The mandatory second step in all Supervised approaches is to verify that one’'s estimated
propensity scores behave, at least approximately, like (unknown) true propensity scores.
Specifically, they must conditionally “balance” patients on al relevant X characteristic
distributions within al bins. Sections 3 and 11 (Supervised PS Step 2), below, discuss this topic
in detail.

The steps in actually using estimated propensity scores (PSs) involve: rank ordering patients on
their estimated scores, sub-classifying patients into “bins’ (strata), computing within-bin
outcome differences between treatment subgroups, and averaging these differences across bins.

The “unsupervised” propensity scoring approaches introduced here stress graphical methods for
detection of Local Treatment Differences (LTDs) using Nearest Neighbor (NN) Clustering in the
X-space of observed patient baseline characteristics. Obenchain(2006a) argues that cluster
membership can provide better (less “coarse”) patient matchings than propensity scores. This
general approach is definitely not new. Obenchain(1979) used the underlying concept to develop
an AT&T measurement plan (PRRAP) that made “customer trouble report rate” comparisons
among only relatively well-matched Bell System plant maintenance districts.

3. The Fundamental “Balancing” Theorem of Propensity Scoring
Our basic notation for variables will be...

y = observed outcome variable(s)

X = observed basdline patient characteristic(s) / covariate(s) / instrumental variable(s)

t = observed treatment assignment (binary, O or 1; may be non-random)

Z = unobserved explanatory variable(s)
Note that unobserved z variables may provide unknown, causal effects on outcomes, y. In
statistical/econometric models, it is the existence of z variables (as well as uncertainty in
measuring y and x variables) that necessitates inclusion of “error terms’ in models.

NOTE: Patient level genome information is mostly a gigantic z—vector today (2006.) Some day
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soon, more and more of this sort of information will become routine x variables.
The Propensity Score for the f" patient is then defined to be the following function of hisher x
characteristics...

PS=p()=Pr(t=1|x)=E(t[x). [1]

By definition propensity scores are (conditional) probabilities, which are numbers between zero
and one, inclusive. In words, the true propensity score of a patient is the conditional probability
that he/she will receive treatment number one given higher vector of observed, baseline
characteristics, x.

In many practical applications, only the rank orders of (estimated) propensity scores are
needed. In this sense, any monotone transformation of a set of propensity scores are another
set of propensity scores “equivalent” to the first set. For example, when only one
(univariate) x variable is found to be predictive of treatment choice/assignment, that single x
variable may (itself) be called a propensity score.

One requirement of the above PS formulation is that each patient receives one and only one
treatment. In other words, the formulation here does not cover chronic conditions where a
cross-over design may access two (or more) treatments using sequential treatment periods for
each patient ...separated by adequate “wash-out” periods.

In the following (cartoon) proof of the “fundamental theorem” of propensity scoring, it will be
essential to view a patient’s propensity score as the conditional probability, [1]. We will not
attempt any sort of a full-blown proof in the sense that our notation only makes sense when X is
discrete and t has only 2 levels. In other words, we will not worry here about notational details
for cases where components of x have continuous distributions or t has more than 2 levels.

The “fundamental theorem” of propensity scoring, Rosenbaum and Rubin(1984), states that,
conditional upon a given value of the propensity score, p(x), the distribution of baseline patient
characteristics must be statistically independent of treatment choice. Mathematically, this
theorem simply implies that the joint distribution of x and t given p must factor as follows:

Pr(x t|p) =Pr(x[p)Pr(t[x p)
=Pr(x|p)Pr(t[x)
=Pr(x|p) timespor (1- p)
=Pr(x|p) Pr(t|p) 2

PROOF: In the first line of [2], we use the very definition of conditional probability to factor
the joint conditional distribution of x and t. In the second line, we note that p(x) cannot
contain any information not contained in x itself. In the third line, we note that Pr( t | x ) is
either p(x) or 1 — p(x). In the fourth and final line, we conclude that Pr( t | x ) must depend
upon x only through p(x).
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In other words, x and t are, necessarily, conditionally independent variables given the propensity
score, p=Pr(t=1]|x). Thisisredly avery simple theorem in statistics / probability that
requires only rather weak assumptions. In fact, the real “problem” in applications is simply that
the functional form of the true PS is usually unknown and, thus, needs to be estimated from datal

When the conditional distributions of baseline patient characteristics and treatment choices “fail
to factor” as dictated by the fundamental theorem of PS, [2], thisisrightfully interpreted as clear
evidence that one's estimates of the unknown, true PSs are not even approximately correct.

4. Case Study Example: Effects of Abciximab use on both Survival and Cardiac Billing.

The (numerical and graphical) output illustrations provided here use the data from Kereiakes et
al. (2000). The corresponding command file and data are distributed along with the UPS and
SPS “R” functions in the files ABCI Xi ni . Rand ABClI X. CSV. In this prospective study,
outcomes variables (survival and cardiac related costs) were collected via follow-up for at least 6
months on 996 PCI patients treated at the Lindner Center, Christ Hospital, Cincinnati. Rather
than randomize patients to treatment, the Lindner interventionists practiced “evidence based
medicine” in choosing between either augmenting or not augmenting their “usua care” for
Percutaneous Coronary Intervention (PCI) with abciximab (ReoproO), a relatively expensive
l1b/ll1a cascade inhibitor. Ability-to-pay was not a factor in this treatment choice in the sense
that Lindner interventionists had access to “research use” abciximab.

Our objective in this “R user’s manua” documentation for the UPS and SPS functions is not to
fully discuss and illustrate all aspects of the abciximab case study. Rather, we smply wish to
illustrate some example UPS and SPS function invocations as well as the tabular and/or
graphical output that results. Readers interested in reading more about UPS and SPS analyses
using the abciximab case study are referred to my “white paper,” Obenchain(2006a).

Variablesin the Kereiakes et al (2000) Abciximab/ Lindner Data:
Description Name Values

Life Years Preserved = O if died within 6 Months or lifepres Either O or 11.6 Years
11.6 Years given Survival for at least 6 Months

Total Cardiac Related Billing within 12 Months of cardbill $2,216t0 $178,534 in
Patient’s Initial PCI at Lindner Center 1997 US Dollars
Was “Usual PCI Care” augmented with Abciximab? abci x 0=>No,1=>Yes
Was a Stent (anti-collapse device) Deployed? stent 0=>No,1=>Yes
Patient Height in Centimeters hei ght 108 cm to 196 cm
Patient Gender femal e 0=>No,1=>Yes
Was the patient Diabetic? di abetic 0=>No,1=>Yes
Had patient suffered an Acute Myocardial Infarction acutem 0=>No,1=>Yes
within the Last Seven Days?

Left Ventricular Ejection Fraction ej ecfrac 0% to 90%
Number of Vesselsinvolved in first PCI procedure veslproc Oto5
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5. Ingtalling and L oading the“ USPS” Package.

First, obtain the USPS 1 0.ZIP archive from the web site of the Central Indiana ASA chapter,
www.math.iupui.edu~indyasa\bobodown.htm , or from CRAN. Then use the R ‘Packages’
menu and the “Install from loca ZIP file” menu item. Then use the “Load packages’ sub-menu
to load “USPS” The required “cluster”, “lattice” and “spling’” R packages will then be
automatically loaded for you

All of the abciximab analyses and graphics used as illustrations in this documentation (and
several more!) can then be generated by reading in the abci x. R source code file and executing
theresulting abci x () function.

"abci x" <- function() {

#i nput the abci xi mb study data of Kereiakes et al. (2000).
Load( !l i ndner)

# outcones: |lifepres & cardbil

# Define Divisive Cluster Hierarchy for UNSUPERVI SED anal yses. .

UPSxvars <- c("stent","height","fenmal e", "diabetic", "acutem ",
"ejecfrac","veslproc")

UPSharch <<- UPShcl us(lindner, UPSxvars, method="di ana")

pl ot (UPShar ch) # Top figure on page 13.

# Save UPSpars settings for NN IV anal yses of the "lifepres" outcone.
# Although the "lifepres" variable assumes only two different numerical values, it is not to be treated here as

# a“factor.” It'saverage valueisto beinterpreted as “proportion surviving” times 11.6 = expected years.
UPSaccum( UPSharch, |indner, abcix, lifepres, faclev=1l, accobj="ABCife")

[if00lnn <<- UPSnnltd( 1)

[if002nn <<- UPSnnltd( 2)

[if005nn <<- UPSnnltd( 5)

[if0lOnn <<- UPSnnltd( 10)

[if020nn <<- UPSnnltd( 20)

pl ot (1if020nn) # graphical display
[if030nn <<- UPSnnltd( 30)

[if040nn <<- UPSnnltd( 40)

[ifO050nn <<- UPSnnltd( 50)

[if060nn <<- UPSnnltd( 60)
summary(li f060nn) # brief consol e out put
[if070nn <<- UPSnnltd( 70)

[if080nn <<- UPSnnltd( 80)

[if090nn <<- UPSnnltd( 90)

pl ot (1i f090nn) # graphical display

[if030iv <<- UPSivadj( 30)
i f040i v <<- UPSivadj( 40)
i f050iv <<- UPSivadj( 50)
i f060i v <<- UPSivadj( 60)
i f070iv <<- UPSivadj( 70)
i f080iv <<- UPSivadj( 80)
i f090i v <<- UPSivadj( 90)
plot(lif090iv) # graphical display
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i f100iv <<-
i f200iv <<-
i f300iv <<-
i f996iv <<-

# Overal
UPSgr aph()

cat("\n\nPress ENTER to add | owprecision IV estimtes...\n\n")

scan()

i fO03iv <<-
i fOO5iv <<-
i fO1l0iv <<-
i f020iv <<-

# Display Augnented "Sensitivity Anal ysis"

UPSgr aph()

"Sensitivity Analysis"

UPSi vadj ( 100)
UPSi vadj (200)
UPSi vadj (300)
UPSi vadj (996)

Summary. . .

UPSi vadj ( 3)
UPSi vadj ( 5)
UPSi vadj ( 10)
UPSi vadj ( 20)
Summary. ..

# Display contents of UPSdf..

ABCl i fe

cat ("\n\nPress ENTER to Anal yze Costs...\n\n")

scan()

# Save UPSpars settings for
UPSaccun( UPShar ch,

cst001nn <<-
cst 002nn <<-
cst 005nn <<-
cst010nn <<-
cst 020nn <<-
cst 030nn <<-

pl ot (cst 030nn)

cst 040nn <<-
cst 050nn <<-
cst 060nn <<-
cst070nn <<-
cst 080nn <<-
cst 090nn <<-

pl ot (cst 090nn)

cst030i v <<-
cst 040i v <<-
cst 050i v <<-
cst 060i v <<-
cst070i v <<-
cst 080i v <<-

cst 090i v <<-

pl ot (cst 090i v)

cst 100i v <<-
cst 200i v <<-
cst 300i v <<-
CSt 996i v <<-

i ndner, abcix, cardbill
uPSnnl td( 1)
UPSnnltd( 2)
uPsSnnl td( 5)
uPSnnl td( 10)
uPSnnl td( 20)
UPSnnl td( 30)
# graphical display (Figureon page15.)
uPSnnl td( 40)

UPSnnl t d( 50)

UPSnnl t d( 60)

UPSnnl td( 70)

UPSnnl t d( 80)

UPSnnl t d( 90)

# graphical display (Figureon page 16.)

UPSi vadj (
UPSi vadj ( 40)
UPSi vadj ( 50)
UPSi vadj ( 60)
UPSi vadj ( 70)
UPSi vadj ( 80)
UPSi vadj ( 90)
# graphical display (Bottom figure on page 18.)
UPSi vadj (100)
UPSi vadj (200)
UPSi vadj (300)
UPSi vadj (996)
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# Overall "Sensitivity Analysis" Summary (Figureon page 19.). ..
UPSgr aph()

cat ("\n\nPress ENTER to add | ow-precision |V estimtes...\n\n")
scan()

cst003iv <<- UPSivadj( 3)

cst 005i v <<- UPSivadj( 5)

cst010i v <<- UPSivadj( 10)

cst020i v <<- UPSi vadj ( 20)

# Augmented "Sensitivity Analysis" Summary (Figureon page20.). ..
UPSgr aph()

# Di splay contents of UPSdf..
ABCcost

# End of UNSUPERVI SED anal yses.

# Define Logit Mddel for Treatment Choice in SUPERVI SED anal yses
PStreat <- abci x~stent +hei ght +f emal e+di abet i c+acut em +ej ecfrac+veslproc

# Store Propensity Score info (default=5 bins) in frame named "I i ndSPS"

| ogt SPS <<- SPSlogit(lindner, PStreat, PSfit, PSrnk, PSbin,
appn="1i ndSPS")
| ogt SPS

# Testing for Wthin-Bin Balance on Continuous Covari ates. .
SPSbal ht <<- SPSbal an(lindSPS, abci x, PSbin, height)

pl ot ( SPSbal ht)

print ( SPSbal ht)

SPShal ej <<- SPSbal an(lindSPS, abci x, PSbin, ejecfrac)

pl ot (SPSbal ej ) # Figure on page 25.

pri nt ( SPSbal ej )

SPSbhal vs <<- SPSbal an(li ndSPS, abcix, PSbin, veslproc)

pl ot ( SPSbal vs)

pri nt ( SPSbal vs)

# Testing for Wthin-Bin Balance on Binary (Di chotonous) Covari ates..
SPSbal st <<- SPSbal an(|i ndSPS, abci x, PSbin, stent)

pri nt ( SPSbal st)

SPSbal f m <<- SPSbal an(| i ndSPS, abci x, PSbin, fenale)

pri nt ( SPSbal f m

SPSbal di <<- SPSbal an(li ndSPS, abcix, PSbin, diabetic)

print (SPSbal di)

SPSbal am <<- SPSbal an(|i ndSPS, abci x, PSbin, acutem)

pri nt ( SPSbal am

# Test for Wthin-Bin Qutcome Differences..

lindlife <<- SPSoutco(lindSPS, abcix, PShin, lifepres, faclev=1)
plot(lindlife)

print(lindlife)

scan()

i ndcost <<- SPSoutco(lindSPS, abcix, PSbin, cardbill)
pl ot (Iindcost) # Both Figureson page 28.
print(lindcost)
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# Cubi c snoot hing spline anal yses..
SPSchi || <<- SPSsnoot (|indSPS, abcix, PSfit, cardbill)
pl ot ( SPSchi | I)

SPSchi | 7 <<- SPSsnpot (| i ndSPS, abcix, PSfit, cardbill, df=7)
pl ot (SPSchi | 7)  # Figures on pages 33 and 34.
SPSchi | 3 <<- SPSsnoot (|indSPS, abcix, PSfit, cardbill, df=3)

pl ot ( SPSchi | 3)

# Loess "symmetric" snoothing anal yses..
SPSchl ss <<- SPSl oess(|i ndSPS, abcix, PSfit, cardbill)
pl ot ( SPSchbl ss)

SPSchl s5 <<- SPSl oess(|i ndSPS, abcix, PSfit, cardbill, span=.5)
pl ot (SPSchl s5) # Top Figure on page 33.

SPSchl s9 <<- SPSl oess(|indSPS, abcix, PSfit, cardbill, span=.9)
pl ot ( SPSchbl s9)

}

Part | . Unsupervised PS Analyses

In data mining terminology, the approach here is an “unsupervised” form of propensity score
binning, which (in turn) is a form of retrospective patient sub-classification or stratification
(matching without using any fixed ratio of treated-to-untreated patients.) Specifically, we will
use observed patient X-characteristics to cluster similar patients together rather than to directly
predict (nonrandom) treatment choice. In fact, here our unsupervised (cluster-binning) strategy
will typically use...

many more bins (say, 50 instead of 5) and/or

bins with a potentially wide range of different sizes (wide variation in total numbers

of patients.)

7. Unsupervised Step One: Compute the Hierarchical Clustering Tree using USPhcl us()

The UPS hierarchical clustering function, UPShcl us () , must be invoked before any of the four
other UPS functions. The R calling syntax for this function is

UPShcl us( df rame, xvars, nethod="di ana"),

where the first two arguments are required and the third is optional (because a default value is
provided.) The R invocation of UPShcl us() used in the abciximab case study is

UPShar ch <- UPShcl us(lindner, UPSxvars)
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...which implies that the default (divisive) clustering method = "diana" will be used and that all
relevant hierarchical clustering information is to saved in an R object of class ‘UPShcl us”
named “UPShar ch. ”

Thethree arguments of UPShcl us() areasfollows:

The first argument, dframe = lindner, must be the name of an existing data.frame object.

SPSlogit’s second argument, xvars = UPSxvars, must be a list (concatenation) of “quoted”
names (in character format) of variables existing within the data.frame that will be used to
discover clusters representing “nearest neighbors in X-space.”

UPSxvars <- c("stent","height","fenale","diabetic","acutem", "ejecfrac", "veslproc")

The final (optional) argument defines the clustering algorithm to be used by UPShcl us() .
The (default) method is “di ana” for the Dlvisve ANAIlysis method of Kaufman and
Rousseeuw (1990), and the other two options currently available are: “agnes” for the
Aglomerative NESting method of Kaufman and Rousseeuw(1990) and the original
“hcl ust ” method implemented in Fortran code contributed to STATLIB by F. Murtagh.

Unfortunately, the current implementation of UPShcl us provides only one possible metric,
Mahal anobis distance, Rubin(1980), for determining patient dissimilarity in X-space. Thus
each X variable used with UPShcl us() needs to be coded as either a continuous (interval)
or a “dummy” (0 or 1) variable. Factors with more than two unordered (but numerical

levels) would be inappropriately analyzed by the current UPShcl us() implementation

The object list returned by UPShcl us() will contain an object (x$upshcl) of class diana, agnes
or hclust and must be saved to some name because this UPShcl us() “output list” must be
specified as the first, required argument to the UPSaccun( ) function.

The graphical output generated for an UPShcl us() output object isa*®dendrogram” display of
the resulting hierarchical clustering tree, such as the following “diana’ tree for the abciximab
data.
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Unsupervised Divisive Hierarchy

Height

Divisive Coefficient = 0.94

For comparison with the UPShcl us() “diana’ tree above, note the considerably different
appearance of the corresponding “agnes’ tree, below, for the same data and dissimilarity metric.

Unsupervised Agglomerative Hierarchy

Height

Agdlomerative Coefficient = 0.98
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8. Unsupervised Step Two: Specify Treatment and Outcome variablesto prepare for
Accumulation of NN and/or 1V information with UPSaccun()

Invoking UPSaccun() creates an R object named “UPSpars’ or overwrites any existing object
with this name.

UPSaccunt hiclus, dframe, trtm yvar, faclev=3, accobj="UPSfrane")

The six possible arguments of UPSaccun() areasfollows;

UPSaccum'’s first argument, hi cl us=ABChcl us, must be an R object of class diana,
agnes or hclust ...usually the object returned by an invocation of UPShcl us() .

UPSaccum’'s second argument, df ranme=li ndner, is usuadly the dataframe that
provided X-covariates to the most recent UPShcl us( ) invocation.

UPSaccum'’s third and fourth arguments, t rt mrabci x and yvar=cardbil |, ae
amost always the treatment and outcome variable names within the data.frame that also
provided the X-covariates in the most recent UPShcl us (') invocation.

The two optional argumentsto UPSaccun() are

facl ev = the maximum number of distinct numerical values that an outcome
variable can assume within the input data.frame and yet still be treated as a
discrete R “factor” variable. The default values for this optional parameter
is faclev=3.

accobj = the quoted name of the R object that will hold "UPSframe"

When yvar takeson morethan f acl ev distinct numerical values within the specified
data.frame, yvar will be considered to be a“continuous’ variable.

9. Unsupervised Step Three: UseUPSnnl t d() to Compute Nearest Neighbor / L ocal
Treatment Differences (NN/LTD) for a specified Number of Cluster-Bins.

In these “Step 3" analyses, we calculate Nearest-Neighbor (within cluster-bin) statistics
describing “Loca Treatment Differences’ via R function calls of the form:

out ###nn <- UPSnnl t d( nunctl ust)
Here are some example invocations of the UPSnnl t d() family of functions:

cst 030nn <- UPSnnl td(30)
cst030nn  # shorthand for...print(cst030nn)
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sumar y( cst 030nn)
pl ot (cst 030nn)

The graphical output generated by “pl ot. UPSnnl td()” is caled a “Nearest Neighbors:
Local Treatment Differences” (NN/LTD) plot. This graphic displays a circular symbol
representing each “informative” cluster-bin ...using horizontal and vertical coordinates that
convey within-cluster-bin mean and precision information about |ocal treatment differences.
Specifically, the horizontal coordinate conveys the average outcome difference (treated minus
untreated) within a single cluster-bin, the vertical coordinate conveys the corresponding outcome
difference standard error (treated minus untreated) within that same cluster-bin, and the area of
the circular plotting symbol denotes the total number of patients (either treated or untreated)
within that cluster-bin. To be fully “informative,” a cluster-bin must contain at least two patients
on each treatment. After all, at least 2 patients on each treatment are needed to provide not only a
treatment difference point estimate but also an observed standard error for that treatment
difference!

Here is the NN/LTD plot for 30 “diana’ cluster-bins for the car dbi | | outcome within the
abciximab case study. Note that only 21 of these 30 clusters are fully informative about local
treatment differences.
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For comparison with the above NN/LTD plot based upon 30 cluster-bins, here is the
corresponding PS plot for 90 diana cluster-bins. Note that only 34 of these 90 cluster-bins are
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fully “informative” about treatment differences. Twenty additional cluster-bins out of the
original 90 contained just one patient on one (or both) of the two treatments and thus provided no
“local” standard error information to supplement its local treatment difference point estimate.

Unsupervised Nearest Neighbor BINS = 90
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Note that each UPSnnl t d() plot aso displays 3 vertical lines. A solid vertical line is always
drawn at the position denoting an outcome treatment difference of zero. A dashed vertical lineis
then drawn at the position corresponding to the overall weighted average outcome treatment
difference, with weights proportional to the total number of patients within each cluster-bin.
Finally, a dotted vertical line is drawn at the position corresponding to the supposedly
“optimally” weighted average outcome treatment difference, with weights inversely proportional
to estimated within-cluster-bin variance ...as dictated by the Gauss-Markov theorem for the
known variance case.

10. Unsupervised Step Four: UseUPSi vadj () to Compute Instrumental Variable/
Local Outcome Averages (IV/LOA) for a specified Number of Cluster-Bins

In this step, we generate “1V plots’ of within-cluster Local-Outcome-Averages (regardless of
treatment) versus within-cluster treatment percentages (PS estimates.) A key assumption here is
that all X-variables used to define clusters are instrumental variables in the sense that they
influence expected outcome only through treatment choice. 1.E. none of the X-variables used to
define clusters should have direct influence on the outcome to be analyzed. The appropriate R
function calls are then of the form:
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UPSi vadj (nuntl ust)

Any two IV cluster-bins can be connected by a straight line without any apparent |ack-of-fit, and
there is no way to define such aline with asingle cluster. Thusnuntl ust must be at least 3in
each UPSi vadj () invocation.

Possible invocations of the UPSi vadj () family of functions for the abciximab case study are
of the form:

i ndcost <- UPSi vadj (90)

| i ndcost # or print(lindcost)

summar y( | i ndcost)

pl ot (I i ndcost)

WARNING: Several of the X-variables used to define clusters in the abciximab study are likely
to have direct effects on survival and/or cost as well as (demonstrated) influence upon treatment
choice. In other words, these X-variables are highly unlikely to be pure “instruments.”

The graphical output that can be requested from a UPSi vadj () output object is called an “IV
plot” ...asin Figure 1 of McClelan, McNeil and Newhouse (1994.) This graphic displays a
circular plotting symbol representing each cluster-bin using horizontal and vertical coordinates
that convey how within-cluster-bin outcome averages vary across clusters Specifically, the
horizontal coordinate for each cluster displays the within-cluster-bin PS estimate (fraction of
treated patients relative to total patients), the vertica coordinate conveys the corresponding
average outcome (regardless of treatment) within that same cluster-bin, and the area of the
circular potting symbol depicts the relative size of the total number of patients (treated plus
untreated) within that cluster-bin.

The first plot on page 18 displays calculations from UPSi vadj () for 30 diana cluster-bins on
the cardbi I | outcome in the abciximab case study. Note that “pure” cluster-bins (with
extreme within-bin PS estimates of either 0% or 100%) are not only informative in this type of
analysis ...they are potentia “high-leverage” points!

In sharp contrast with “NN/LTD plot” analyses, a relatively much larger number of cluster-bins
may be highly desirable in the “1V plotting” approach. For example, the first IV plot below with
“only” 30 cluster-bins suggests that treatment with abciximab might be expected to result in a net
cost savings! On the other hand, the second 1V plot on page 18, with 90 cluster-bins, suggest an
average overal treatment effect much more like estimates from NN/LTD plots with a relatively
wide range of numbers of cluster-bins (either small or large.)

Again, the fundamenta problem with the abciximab examples of 1V/LOA anayses may well be
that some of the X covariates used here are not “instrumental variables.” Encouragingly, the
UPSgr aph() “systematic sensitivity summary” plot will dramatically depict the instability in
numerical signs of potential answers resulting from aternative 1V analyses for this example!
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11. Unsupervised Step Five: Use UPSgr aph() to Graphically Display a Systematic
Sensitivity Summary of NN and/or 1V Analysesto choice of Number of Cluster-Bins

While the user of the UPS functions certainly has the option to make a NN/LTD or IV/LOA plot
immediately after each call to UPSnnl t d() or UPSi vadj () for a specified number of cluster-
bins, the fundamental strategy advocated here is to generate results over a sufficiently wide range
for number-of-clusters to generate a meaningful “systematic sensitivity summary” plot resulting
from an invocation of UPSgr aph(). For example, it is always a good idea to invoke both
UPSnnl td(1) and UPSi vadj (Cmax), where Cnax = maximum possible number of
clusters = total number of subjects in the input R dataframe. After al, these seemingly
“extreme’ cases are actually guaranteed to give the same (“unadjusted”) estimates of the overall
average outcome difference ...and of its precision!

Here is what the UPSgr aph() summary for the car dbi | | outcome in the abciximab case
study looks like before (very low precision) UPSi vadj () results have been accumulated for
fewer than 30 cluster-bins.
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Calculating UPSi vadj () results for 20, 10, 5 and 3 cluster-bins forces the UPSgr aph()
summary plot for the car dbi | | outcome in the abciximab / lindner case study to “Zoom Out”

so as to accommodate the much wider (vertical) range of treatment difference uncertainties
displayed in the updated UPSgraph() bel ow.
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12. Unsupervised Step Six: Use UPSal t dd() to Compare the NN/LTD Distribution for a
given number of Clustersin X-space with the Corresponding “ Artificial” Distribution from
Random Clusters.

After displaying outcome LTD sensitivity over a range of aternative numbers-of-clusters using
UPSgr aph(), the user will usually wish to focus on visualizing details of the NN/LTD
digtribution for some specific number-of-clusters. The UPSaltdd() function displays Cumulative
Distribution Functions (CDFs) and Histogram pairs that are quite helpful in doing this.

UPShnitd() makes only the “more” or “most” relevant patient comparisons in the specified X-
space for a given requested number-of-clusters. UPSaltdd() allows users to compare and contrast
this NN/LTD distribution with the corresponding “Artificia” LTD distribution from random
clusterings (ignoring the specified X variables.) This alows the user to literaly see how much
treatment-sel ection-bias (imbalance) has been “detected” using the specified X-space clustering
metric, clustering algorithm and number-of-clusters. If the NN/LTD and Artificia LTD
distributions are not clearly “different,” then no meaningful “adjustment” for X variables has
occurred.

For example, consider the following R code fragment for the abciximab / lindner example. Here,

we specify faclev=1 because the expected life years preserved (continuous) variable, lifepres,
assumes only two distinct values (0 if died within 6 months, or 11.6 years otherwise):
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abcdf <- UPSaltdd(lindner, abcix, lifepres, faclev=1, NNobj=Iif050nn)
The Rcommand pri nt (abcdf) then produces the following output:

UPSal tdd Object: Artificial Distribution of LTDs for random cl usters..
Data Frame: |indner

Qutcone Variable: |ifepres

Treatment Factor: abcix

Scedasticity assunption: hono

Nurmber of Replications: 10

Nunber of Clusters per Replication: 50

Total Number of Informative Clusters = 494

Mean Artificial Treatnent Difference = 0.4275955
Nunmber of Snpothed Sanple Quantiles = 309
Mean of Snoothed Sanple Quantiles = 0. 4251765
Std. Deviation of Sanple Quantiles = 1.254298
UPSnnlitd Object: 1if050nn
Nunber of Informative Clusters = 9
Mean of Observed LTD Distribution = 0. 3592107
Nunber of Snoothed Sanple Quantiles = 37
Mean of Snoothed Sanple Quantiles = 0. 2331547
Std. Deviation of Sanple Quantiles = 0. 9594896

Unfortunately, the above printout is rather misleading. As we will see, the two distributions to
be compared are skewed and have different ranges. Thus the order of their mean values is
relatively meaningless because means are poor measures of location in this situation. We do
learn that the NN/LTD distribution has a dightly lower mean (and slightly higher precision) than
the Artificial LTD distribution. Much more informative and meaningful insights are provided by
theR pl ot (abcdf, br eaks=20) command that produces the 4 plots on the next page.

These plots allow the user to literally “see” that the NN/LTD and Artificial LTD distributions are
quite different and also skewed in opposite directions. The Artificial LTD CDF and Histogram
(in the top 2 plots) show that this distribution hasM ode < Median = 0 < Mean = 0.43 years and
contains alarge, outlying value of +11.6 years (arandom cluster where all abciximab augmented
patients survived for a least 6 months and all unaugmented patients died.) Meanwhile, the
NN/LTD CDF and Histogram (on the bottom of the figure) show that this distribution has Mean
= 0.36 years < Median = 0.59 years < Mode with an upper limit of ~2.5 years. In other words,
relative to the (biased) Artificia LTD distribution, the LTD distribution resulting from NN
“adjustment” using 50 clusters of relatively well-matched patients in the X space defined by
seven patient characteristics (stent, height, female, diabetic, acutem,
ej ecfrac & veslproc) strikes me as being clearly more favorable to demonstrating the
“effectiveness’ of augmenting “usua PCI care” with abciximab.

Again, means are not “robust” measures of location; the means of these two distributions are in
the “wrong order” smply due to asingle outlier in the simulated Artificial LTD distribution!
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Part |1: Supervised PS Analyses

13. Supervised Step One: Estimate Propensity Scores and Form Bins
The propensity scoring “definition” function, SPSI ogi t () , provides...

(1) estimates a logistic regression model for predicting observed treatment choice (zero or
one) from specified covariates observed on all patients,

(2) estimates the probability (propensity score) that each patient would have been selected to
receive treatment number one (rather than treatment number zero),

(3) rank orders all patients (allowing for ties) according to these estimated probabilities, and

(4) groups patientsinto “bins’ defined by equal ranges of PS ranks.

NOTE: Defining bins using tied rank ranges assures that no two patients with identical estimated
propensity scores will end up in different bins. The bin number for the " patient will be 1 +
floor(bins*rank[i]/(1+total number of patients)).

The R calling syntax for this “define” function is
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SPSl ogit( dframe, form psfit, psrnk, gbin, bins=5 appn="")

SPSlogit’ s first five arguments are required while the last two are optional. The R invocation of
SPSI ogi t () illustrated in the numerica exampleis

SPSobj <- SPSlogit(PCl, PSform PSFIT, PSRNK, QUI NT)

The arguments of SPSI ogi t () areasfollows;

SPSlogit's first argument, dframe=PCI, must be an existing data.frame name.

SPSlogit’s second argument, form=PSform, must be an S “formula’ for predicting the
treatment factor (ABCI X) using available data.frame covariates.

PSform <- ABCI X ~ STENT + HEI GHT + FEMALE + DI ABETI C +
ACUTEM + EJECFRAC + VES1PROC

SPSlogit's third, fourth and fifth arguments, psfit = PSFIT, psrnk = PSRNK and gbin =
QUINT, supply names for the fitted propensity scores (estimated treatment probabilities), the
propensity score ranks and the propensity score bin number factor that are created by
SPSlogit.

Note 1: Although missing values (“NA”s) are allowed, it is best to make predictions for
as many patients as practicaly possible. Adding a covariate with NAs for patients who
do not have NAs in any other current covariate or in the response (trestment) variable,
will cause additional NAs in the psfit, psrnk and gbi n variables created by
SPSl ogit ().

Note 2: SPSI ogi t () does not use regression subset selection methods because this
tactic can create “ties’ between propensity score predictions. Ties can cause the total
number of patients per bin to vary from bin to bin. Also, see comments in the section
“R and S-Plus functions that are (or could be) called in PS analyses.”

The optional argumentsto SPSI ogi t () are

bi ns = the number of bins to be formed, and
appn = name of output data.frame with appended columns, as a quoted string.

The default value for bi ns is 5. Thus, users need to specify a value for “bin” only when
they wish SPSI ogi t () to form more than 5 or fewer than 5 bins.

The default value for appn is “”, which means that the user wishes to revise the input
dataframe by appending the calculated psfit, psrnk and qbi n variablesto it. Thus,
the user needs to specify a nonrempty quoted string (such as appn=" SPSdf 2" ) if he/she
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does not wish to modify / overwrite the input data.frame named in the first argument to
SPSI ogi t (). For example, the treatment indicator variable will have been declared to be a
“factor” in the revised data.frame.

The output list returned by SPSI ogit () needs be saved to avoid printing of summary()
information about the “glm” object created by SPSI ogi t (). This summary information as
well as details on the SPSI ogi t () invocation can then be printed later from the saved object
using pri nt ( SPSobj ) .

NOTE: The SPSnbi ns() function creates a new (or modifies an existing) propensity score bin
number factor variable to change the number of PS bins; typical R invocations are of the general
form...

PSfranme <- SPSnbi ns( PSfranme, psrnk, octile, bins=8)

or
PSfranme <- SPSnbi ns( PSframe, psrnk, decile, bins=10)

All four arguments to SPSnbi ns() are usually specified; the first three are required, and the
default value for the fourth is bi ns=8. SPSnbi ns() does not re-calculate PS fitted values or
re-rank patients. Specifically, the first argument to SPSnbi ns() is amost aways the
data.frame output value of a previous SPSI ogi t () invocation, and the second argument to
SPSnbi ns() isthenthe psr nk (fourth) argument from that same SPSI ogi t () invocation.
Finaly, the third (required) argument of SPSsbi ns() isa variable name for a (new or aready
existing) propensity score bin number factor variable.

14. Supervised Step Two: Test for Within-Bin “Balance” on Covariates

The “fundamenta theorem” of PS states that, if an appropriate propensity scoring algorithm has
been found, then there will be no difference in the distributions of covariate measurements
between treatment groups with the same given propensity score. Inother words, although this
distribution may be different at different numerical values for propensity score, treated and
untreated patients have been relatively “well matched” when their propensity scores are nearly
equal. Specificaly, treated and untreated patients can be expected to display essentially identical
covariate distributions within each bin.

The SPSbal an() function is designed to detect “violations’ of this fundamental PS balancing
theorem, thereby implying that the current PS model is inadequate to explain treatment selection.
Every covariate used in the second, "formula’ argument to SPSI ogi t () of SPS Step ONE isa
candidate for the sort of testing performed here in SPS Step TWO.

The R calling syntax for the function to detect treatment differences in the within-bin distribution
of asingle X covariateis...

SPSt est <- SPSbal an(dfrane, xvar, trtm gbin, faclev=3)
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The first four arguments of SPSbal an() are required, and the final two are optiona. For
example, three consecutive R invocations could be

SPSout 1 <- SPSbal an( PSfrane, AGE, ABCI X, QUI NT)
SPSout 2 <- SPSbal an( PSfranme, EJECTFEM , ABCI X, QUI NT)
SPSout 3 <- SPSbal an( PSf ranme, VES1PROC, ABCI X, QUI NT)

The argumentsof SPSbal an() areasfollows:

SPSbalan's first argument, df r ame=PSfr ane, is amost aways a returned data.frame
from SPSI ogi t () .

SPShalan’s second and third arguments, xvar andt rt m are usualy terms from the S
"formul@’ used in SPSlogit. In fact, t r t mmust be the “response” (first) term of that
formula, whilexvar isalmost aways one of the “covariate’ terms.

SPSbalan's fourth argument, gqbi n=QUI NT, is dmost aways the bin indicator variable
name as in the previous SPSI ogi t () or PSbi nnunt() invocation.

The optional argument to SPSbal an() is

f acl ev = the maximum number of distinct numerical values that a variable can
assume and yet still be treated as an S "factor.”

The default value for this optional parameter is faclev=3.

If the xvar named in this invocation takes on no more than f acl ev distinct numerical
values, no graphics will be displayed. On the other hand, when xvar takes on more than

f acl ev distinct numerica values, xvar is considered “continuous,” and a “ SPShalan”
will be created.

SPSbal an() returns alist of objects containing analysis details. However, in addition to the
optional box plot “side effects’ discussed above, Psdi f cov() aso prints out summaries of
overall and within-bin analyses of t r t meffectson xvar .

When the xvar datacontain f acl ev or fewer levels, a summary of contingency table
ChiSguare testsfor t r t meffectsis printed.

When the xvar data contain more than facl ev levds, xvar is considered

“continuous,” and one-way and two-way ANOVA summaries are printed ¢ rt m % n%
bi n identifies treatment within bin effects.)

If the above test results and/or box-plots indicate that the fundamental theorem of propensity

scoring is not even approximately satisfied, then a revised model formula should be tried in
SPSI ogi t (). Typicaly, one would try adding powers or interaction terms between currently
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used covariates, adding more covariates, or even defining propensity scores using a generalized
additive model rather than a generalized linear model.

Here are some examples of SPSbhal an() output for the abciximab case study:
> SPSbal an( PSfranme, age, abcix, QUI NT)
Test for Raw / Unadjusted Differences by Treatnment

AGE ~ ABC X
Df Sum of Sq Mean Sq F Val ue Pr(F)
ABCI X 1 0.0 0.0443 0.0003315842 0.9854754 <= NOT significant!
Resi dual s 1009 134822.4 133.6198

Test for Treatnent Differences within Paired PS Bins

AGE ~ QUINT + ABCI X % n% QUI NT
Df Sumof Sq Mean Sq F Val ue Pr(F)
QUI NT 4 686.7 171.6847 1.295466 0.2699387
ABCl X % n% QUI NT 5 1475. 8 295. 1598 2.227162 0. 0496073 <= significant?
Resi dual s 1001 132659.9 132.5274

In other words, binning can appear to create a covariate differencel!!

> SPSbal an( PSframe, veslproc, abcix, QUINT)
Test for Raw / Unadjusted Differences by Treatnent

VES1PROC ~ ABCI X
Df Sum of Sq Mean Sq F Val ue Pr(F)
ABCI X 1 14.3135 14.31349 34.06864 7.164788e-009 <= Significant!!!
Resi dual s 1009 423.9180 0.42014

Test for Treatnent Differences within Paired PS Bins
VES1PROC ~ QUI NT + ABCI X % n% QUI NT
Df Sumof Sq Mean Sq F Val ue Pr(F)
QUI NT 4 164.5746 41.14364 151.0037 0.0000000

ABCI X % n% QUI NT 5 0.9167 0.18333 0.6729 0.6441004 <= NO PROBLEM !'!
Resi dual s 1001 272.7402 0.27247

Much more commonly, appropriate estimates of propensity scores eliminate al within-bin
covariate differences!

To “visualize’ within-cell balance, plot the SPSbal an() output for a continuous variable:
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15. Supervised Step Three: Display Within-Bin Treatment Differences by Outcome using
SPSout co()

The calculations performed in Step TRHEE by SPSout co() assume that the PS model of Step
ONE was found to (approximately) satisfy the fundamental balancing theorem in Step TWO. In
other words, treated and untreated patients have now been relatively “well matched” on
covariates within bins. As a result, withinrbin mean outcome differences (treated minus
untreated) can be expected to be relatively free of bias, at least compared with the corresponding
overall mean outcome difference between treatment groups.

An overall summary statistic estimating any true (treated minus untreated) outcome difference is
usually desired. As a result, within-bin estimates need to be averaged across bins using some
weighting scheme. SPSout co() displaystwo such weighted averages.

weighted proportional to the total number of patients in each bin, and
weighted inversely proportional to the estimated variance of the within-bin difference.

The overal difference from the latter option will always appear to be more precise, but this
weighting typically downweights results from the outer (first and last) bins. The overal
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difference using weights proportional to total numbers of patients (usually nearly equal across
bins) may be much |ess biased, especially when the data contain outliers. After al, outliers can
greatly inflate within-bin variances because within-bin sample sizes are reduced by a factor of
five or more.

The R calling syntax for the function to compute “adjusted” outcome differencesis...
SPSout co(df rame, yvar, trtm qbin, faclev=3)

The first four arguments of SPSoutco are required, and the other two are optional. For example,
two consecutive R invocations could be

PSdi e6nmo <- SPSout co(PSframe, l|ifepres, abcix, QU NT)
PScrdbi|l <- SPSoutco(PSframe, cardbill, abcix, QUINT)

The argumentsto SPSout co() areasfollows:

SPSout co's first argument, dframe=PSframe, is almost always a returned data.frame
from SPSI ogi t .

SPSout co’s second argument, yvar, is an outcome measure for patients. Outcomes are
results that were unknown at the time when patients were assigned (possibly non
randomly) to treatments. “NA”s are allowed in this yvar.

SPSout co’sthird argument, trtm, is almost always the “response” (first) term from the
S*“formula’ used in SPSI ogi t () .

SPSout co's fourth argument, gbin = QUINT, is amost aways the same bin indicator
variable name as in the previous SPSI ogi t () or SPSnbi ns() invocation.

The optional argument for SPSout co() is

f acl ev =the maximum number of distinct numerica values that a variable can
assume and yet till be treated like an S “factor.”

The default value for this optiona parameter isf acl ev=3.

SPSout co() returns alist of objects containing analysis details. However, in addition to the
optiona histogram plot “side effects’ discussed above, SPSout co( ) also prints out summaries
of overall and within-bin analysesof t r t meffectson yvar .

When the yvar datacontain f acl ev or fewer levels, a summary of contingency table
ChiSquare tests for t r t meffects is printed. On the other hand, if this yvar actualy is
an R factor (character) variable, then SPSout co() histograms will display mean values
computed as if the numerical values for factor levelsare 1, .., facl ev. Asareault,
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any yvar taking on only the numerical values 0 and 1 (meaning that outcome was not or
was observed, respectively), should usually not be declared an R factor variable (with
vaues“0’=1and “1"=2.)

When the yvar data contain more than facl ev leves, yvar is consdered
“continuous’ and one-way and two-way ANOV A summaries are printed. (t rt m % n%
bi n identifies “treatment within bin” effects.)

Note that SPSout co() describes treatment differences in the distributions of outcomes using
the same methodol ogies (ChiSquare or ANOVA) used by SPSbal an() on covariates. The key
distinction here is that any outcome differences remaining after propensity scoring are called
“adjusted” differences and do NOT signal problems with assumptions in the current PS analysis.

Frequencies by PS Bin

Abciximab
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o —
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1
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1
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Outc ome Means by PS Bin
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16. Supervised Step Four: Explore Outcome Differ ences Expressed as Smooth L oess or
Spline Functions of Propensity Score

The calculations currently performed in Step FOUR by SPSI oess() and SPSsnoot () can
only be applied to outcome measures that are continuous. And the logistic regression model fit
in Step ONE using SPSI ogi t () needs to have been found satisfactory in Step TWO. After al,
when one starts treating assigned propensity scores as continuous variables (rather than forming
discrete bins of similar scores), it becomes much more difficult to test / verify the implications of
the PS matching theorem (i.e. that the distribution of covariates is independent of treatment
selection.)

MOTIVATION: Suppose one has fitted a somewhat smooth (loess or spline) curve through the
observed outcome (Y) versus fitted propensity score (X) scatter for each of the two treatment
groups. Now, consider the question:

“Over the range where both smooth curves are defined (i.e. their common support),
what is the (weighted) average signed difference between these two curves?’

If the distribution of patients (either treated or untreated) were UNIFORM over this range, the
(unweighted) average signed difference (treated minus untreated) would be an appropriate
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estimate of the overall difference in outcome due to choice of treatment.

Histogram patient counts within 100 cells of width 0.01 provide a naive “non-parametric density
estimate” for the distribution of total patients (treated or untreated) along the propensity score
axis. The weighted average difference (and standard error) displayed by SPSI oess() and
SPSsnoot () arebased onan Rdensi t y() smooth of these counts.

In situations where the propensity scoring distribution for all patients in a therapeutic class is
known to differ from that of the patients within the current study, that population weighted
average would also be of interest. Thus the SPS| oess() returned value contains two data
frames, | ogri d and | of i t, useful in further computations; the corresponding data frames
returned by SPSsnoot () arenamedssgri d andssfit.

NOTE: The difference in average smooth (loess or spline) predictions (treated minus untreated)
is not an appropriately weighted average, in the above sense. While this sort of computation
would use propensity scores to make a cost prediction for each patient, no “matching” of treated
and untreated patients (with nearly equal propensity scores) is used in this sort of calculation.

SYNTAX: The R calling syntax for the functions to compute outcome differences (treatment=1
minus treatment=0) under the assumption that expected outcome is a smooth (lowess or spline)
function of propensity score within each treatment cohort are...

SPS| oess(dfranme, yvar, ps, trtm faclev=3, display = T, deg=2,
sp=0. 75, fam="symretric", tcol ="black", ucol="red")

and

SPSsnoot (df rame, yvar, ps, trtm faclev=3, df=5, spar=NULL,
cv=F, penalty=1, display = T, tcol ="black", ucol ="red")

The first four arguments of SPSloess and SPSsmoot are required, and the other five or six are
optional. For example, two consecutive R invocations could be

PSchillo <- SPSl oess(PSfranme, cardbill, PSFIT, ABClI X)
PSframe$TRI MBI LL <- pnin( PSfranme$cardbill, 50000)
PStbill o <- SPSl oess(PSfranme, TRIMBILL, PSFIT, ABCIX)

The fam=" symmetri ¢c” default option of SPSloess tends to be fairly robust to outlying
outcomes, at least when the loess span (default sp = 1/10) is wide enough. Thus reducing
(Winsorizing) outlying cardbill values to $50K (as illustrated above) should have little effect on
a fitted loess smooth with an appropriate span. Looking for the effects of Winsorizing on
SPSI oess() or SPSsnoot () resultsisaform of “sengitivity analysis.”
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The argumentsto SPS| oess() areasfollows:

SPSI oess’ first argument, df r ame=PSf r ame, is amost always a returned data.frame
from SPSI ogi t () .

SPS| oess’ second argument, yvar, must be a continuous outcome measure.
Outcomes are results that were unknown at the time when patients were assigned
(possibly nonrandomly) to treatments. “NA”s are alowed in this yvar.

SPSI oess’ third argument, ps=PSFI T, is amost always a set of fitted propensity
scores from a previous SPSI ogi t () invocation.

SPSI oess’ fourth argument, t rt m is aimost aways the “response’ (first) term from
the R “formuld’ used in SPS| ogi t () , which is a “factor” variable taking on only two
different levels.

The seven optional arguments of SPSI oess( ) are

f acl ev = the maximum number of distinct numerica values that a variable can
assume and et still be automatically converted into an R "factor”,

di spl ay = display graphical output (T or F.)
deg = degree (1=linear or 2=quadratic) of the local fit.
Sp = gpan (zero to two) of the local regression fit, and

fam = “gaussian” or "symmetric."

t col color loess curve for treated group (default “black”.)

ucol color loess curve for untreated group (default “red”.)

The argumentsto SPSsnoot ( ) areasfollows:

SPSsnoot 'sfirst argument, df r ame=PSframe, is amost aways a returred data.frame
from SPSI ogi t .

SPSsnoot 's second argument, yvar, must be a continuous outcome measure.
Outcomes are results that were unknown at the time when patients were assigned
(possibly nonrandomly) to treatments. “NA”s are allowed in this yvar.

SPSsnoot ‘s third argument, ps = PSFIT, is amost always a set of fitted propensity
scores from a previous SPSI ogi t () invocation.
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SPSsnoot 's fourth argument, t r t m is aimost aways the “response” (first) term from
the R “formula’ used in SPSI ogi t () , which is a “factor” variable taking on only two
different levels.

The eight optional arguments of SPSsnoot ( ) are

f acl ev = the maximum number of distinct numerical values that a variable can assume
and yet still be treated as an S "factor”,

cv =ordinary cross-vaidation (T) or generalized cross-vaidation, GCV (F).
df = degrees-of-freedom of B-splinefit (5 bins.
spar = gpar of thesnoot h. spl i ne() function, and
penal ty = coefficient of penalty for df inthe GCV criterion.

di spl ay =display graphical output (T or F.)

t col color of spline for treated group (default “black”.)

color of spline for untreated group (default “red”.)

ucol

This scatterplot displays patient propensity score along the horizontal axis and his/her
corresponding observed (continuous) outcome along the vertical axis. Patients receiving
the “standard” treatment (t rt m=0) are represented by cyan circles, while patients
recelving the “new” treatment ¢ rt m=1) are represented by magenta triangles. The
smooth fits of outcome to propensity score within treatment cohorts are show as cyan
(trt m=0) and magenta (t r t m=1) curves, respectively, superimposed upon the scatter.

The smooth fits can be difficult to see when the scatters contain many points. Thus
SPSloess and SPSsmoot each draw a second plot rescaled to show only the two smooth
(lowess or spline) fits, again using cyan (t r t m=0) and magenta (t r t m=1) curves. (For
details, seethereturned | of i t andssfit dataframes.)

Finally, SPSloess and SPSsmoot each draw a third plot to show total patient frequencies
(black circles) within a 100-cell histogram along the propensity score axis as well as the
corresponding densi t y() smooth in red. (For details, see the returned | ogri d and
ssgri d dataframes.)

In addition to the graphs described above, the primary “side effects’ of SPS| oess( ) and

SPSsnoot () consist of printouts of outcome differences (unadjusted and adjusted) and their
standard deviations.
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The SPSI oess( ) or SPSsnoot ( ) returned value is a list of two data frames, a gri d
frameand af i t frame, plus other objects giving analysis details.

| ogridandssgri d each contain 11 variables and 100 observations. The PS variable
(column one) contains propensity score “cell means’ of 0.005 to 0.995 in steps of 0.010.
Variables FO, SO and CO for treatment O and variables F1, S1 and C1 for treatment 1
contain fitted smooth (lowess or spline) values, standard error estimates and patient
counts, respectively. Observations with “NA” for variables FO, SO, F1 or S1 represent
“extremes’ where the lowess fits could not be extrapolated because no observed
outcomes were available. The DI F variable is simply ( F1- FO), the SED variable is
sqrt (S172+S0"2), the HST variable is proportional to ( CO+Cl), and the DEN
variable is the estimated probability density of patients aong the PS axis.

| of i t contains 4 variables for al observations in data frame = df r ane that have no
“NA” vauesin the yvar, ps or trtmvariables. These 4 variables are named PS,
YVAR, TRT (with levels O and 1 recoded to 1 and 2, respectively) and FI T = loess
prediction for the specified “span” (default sp=1/ 10.)

ssfit contains4 variables for each distinct PS value in data frame =df r ane. These 4
variables are named PS, YAVG, TRT (with levels O and 1 recoded to 1 and 2,
respectively) and FI T = spline prediction for the specified degrees-of-freedom (default
df =10.)

Example SPSloessfit for cardbill versus Propensity Score

PS Loess Fit, Span = 0.5

Smoothed cardbill
12000 14000 16000
! ! !

10000
|

8000
|

T T T
04 0.8 0.8

Estimated Propensity Score

Solid loessfit gives smoothed cardbill estimates for ABCIX patients.
Dashed loessfit gives smoothed car dbill estimates for Usual-Care-Only patients.
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Example SPSsmoot fit for cardbill versus Propensity Score

PS Smoothing Splines, df =7

25000
!

20000
I

Smoaothed cardbill

15000
I
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I

\ T \
04 0.6 0.8

Estimated Propensity Score

Salid spline gives smoothed cardbill estimatesfor ABCIX patients.
Dashed spline gives smoothed cardbill estimates for Usual -Care-Only patients.

Example Patient Distribution (abcix + usual care) along fitted Propensity Score Axis

PS Probability Density

]

0.0 0.2 04 0.6 0.8 1.0

Estimated Propensity Score

Black circles give normalized histogram estimates for 100 cells (0.005 to 0.995).
Red curve gives Gaussian kernel density estimator for the PS distribution of patients.
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Note that the above distribution of patients at the Lindner Center is somewhat shifted to the right
because ailmost 70% of al Lindner PCI patients did receive abciximab in 1997.

17. R and S-Plusfunctionsthat are (or could be) called in PS/NN/IV analyses.

SPSI ogi t () currently models propensity scores via a call to gl m() with famly =
bi nom al () (and thus default | i nk=l ogi t), but a variety of aternatives could be quite
useful in applications. For example, fits from gam() or a classfication t r ee() model would
relax the “linear functional” requirement of gl m() or automatically incorporate interactions
among covariates, respectively. Thel r m() function from the Harrell(1997) “design” library
could be used to pendlize logistic regression parameters, but it is debatable whether inter-
correlations (or even nontlinear relationships) among covariates can be harmful in propensity
score estimation.  After all, our primary interest here is restricted to simply making predictions;
all we need are fitted values within the closed interval O £ PS £ 1 that estimate the probability of
treatment choice give all available covariates. Any potential problems with significance testing
or (causal) interpretations for parameters are amost irrelevant. In fact, D’ Agostino(1998)
essentially recommends drastic over-fitting by including al potentially relevant covariates in
one' s PS modd.

SPSI oess() and SPSsnoot () use the R 1 oess() and snoot h. spl i ne() functions,
respectively. Cleveland’'s original | owess() function could be used here because only one X
variable (namely, fitted propensity score) is involved, but | choose | oess() to give users
flexibility to choose between f am=" gaussi an” and f am=" symretri c”, which provides
some resistance to outlying outcome values.

The df parameter of SPSsnpot () brings considerable intuitive appea to one’'s choice of
smoothness; see Hastie and Tibshirani(1990). For example, the SPSout co() approach with
bi ns=5 clearly corresponds to df =5, but “binning” outcome analyses correspord to fits that
are discontinuous at cut points. SPSsnoot () fits cubic smoothing splines that are not only
continuous but also have continuous first and second derivatives.

SPSI oess() and SPSsnoot () both cal the R density() function to generate a non
parametric probability density estimate for the distribution of patients along the fitted PS axis.
This density is evaluated at 100 points evenly spaced between PS=0.005 and PS=0.995, and
signed differences between the (lowess or cubic spline) smooths at these same points are
weighted proportional to this density. Bandwidth for this Gaussian kernel density estimator is
chosen using the R default bw=" nr d0” option. Alternatively, see Venables and Ripley(1999),
page 137.

Like “Lattice’ graphics in R, SPlus “Trellis Graphics’ can be extremely useful in visualizing
within-bin balance achieved via propensity scoring. For example, the plots below illustrate
balance issues related to the “veslproc” X-variable within the abciximab case study. Even major
overall distributional differenceswill, ideally, almost “disappear” as aresult of PS binning.
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Overall “veslproc” Distributions Within-Bin “veslproc” Distributions
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18. Summary

As is clear from the above descriptions and examples, the SPSI ogi t (), SPSbal an() and
SPSout co( ) R functions provide only relatively ssmple and straight- forward analyses. | started
out performing such computations primarily in IMP and Stata. | then used text files to port
tables of means and sample sizes to Excel to draw histograms. Although possibly pedagogical, |
quickly realized that my original “mostly-point-and-click” analysis process was actually highly
repetitive, tedious, error-prone and produced no satisfactory audit-trail for reproducing analyses.

Like many other interesting forms of data analysis, | think that propensity scoring and
instrumental variables adjustment methods need to be viewed as highly iterative, discovery
processes. Successfully making ones way through SPS step TWO can require several returns to
SPS step ONE. Only then can results from SPS steps THREE and FOUR be considered
meaningful. And convincing UPS analyses require exploring alternative clustering algorithms
and patient dissimilarity metrics in step ONE as well as a varying numbers of cluster-bins in
steps TWO and/or THREE. Outliers and missing values (NAs) can provide frustrations
throughout these journeys. The R functions described here hopefully provide enough basic
support (if only relief from tedium) to encourage PS practitioners to persevere and end up feeling
confident that their “ sensitivity analyses’ have been thorough.

The SPSI oess() and SPSsnoot () functions are still in their early stages of development.
SPSI oess() fits can tend to look rather “rough” compared to SPSsnoot () fits. Qubic
spline smoothing appears to give answers that are interpretable as smoothed mean values for
highly skewed distributions. Loess smoothing, at least when f an=* symmetri c,” tends to
give answers more easily interpretable as modes or medians of highly skewed distributions. This
median versus mean analogy may help explain why the weighted average signed treatment
differences from SPSI oess() tend to seem more precise than those from SPSsnoot () for
highly skewed distributions.
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Softwar e Updates:

2003.08 Fix error in standard deviation computation for the “weighted by bin size”
treatment difference estimate in SPSout co( ) andUPSnnl td( ).

2004.01 Major upgrade to “object oriented” style; add UPS “ sensitivity analysis’ overview
UPSgr aph() ; fix SPSbal an() trellis-style (lattice library) graphic;
unfortunately, new argument sequencing not backward compatible with earlier
versions.

2006.09 Upgrade functions (fix bugs and clarify terminology / titles/ labels) and add
UPSaltdd() functionality for computing and visualizing the Artificial Distribution
of LTDs due to random patient clusterings.

Unsupervi sed R functi ons:

xvars <- c("x1", "x2", ..., "xN")
UPlinint <- function(q, xmn, n, X, w

UPShcl us <- function(dfranme, xvars, nethod=di ana)
pl ot . UPShcl us <- function(x)
print. UPShcl us <- function(x)

UPSaccum <- function(hiclus, dframe, trtm yvar, faclev=3,
accobj =" UPSfrane")

UPSal tdd <- function(dfrane, trtm yvar, faclev=3,
scedas="honm", NNobj =NA, cl us=50,
reps=10, seed=12345)

plot.UPSsltdd <- function(x, breaks="Sturges”)
print.UPSaltdd <- function(x)
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UPSnnltd <- function(nuntlust)
pl ot.UPSnnl td <- function(x)
print.UPSnnltd <- function(x)
sunmary. UPSnnl td <- function(x)

UPSi vadj <- function(nuntlust)
pl ot. UPSi vadj <- function(x)
print.UPSivadj <- function(x)
summary. UPSi vad] <- function(x)

UPSgr aph <- function(nncol ="red", nwcol ="green3", ivcol ="blue")

Supervi sed R functions:

form<- trtmx1+x2+...+xN

SPSlogit <- function(dframe, form pfit, prnk, qgbin, bins=5,

appn="")
print.SPSlogit <- function(x)

SPSbal an <- function(dfranme, trtm gbin, xvar, faclev=3)
pl ot . SPSbal an <- function(x)
print. SPSbal an <- function(x)

SPSout co <- function(dfranme, trtm qbin, yvar, faclev=3)
pl ot . SPSout co <- function(x)
print.SPSoutco <- function(x)
summary. SPSout co <- function(x)

SPSsnmoot <- function(dfranme, trtm pscr, yvar, faclev=3, df=5,
spar =NULL, cv=F, penalty=1)
pl ot . SPSsnoot <- function(x, tcol ="blue", ucol ="red",
dcol ="green3")
print.SPSsnmoot <- function(x)

SPSI oess <- function(dfranme, trtm pscr, yvar, faclev=3, deg=2,
span=0. 75, famssynmetri c)
pl ot . SPSI oess <- function(x, tcol="blue", ucol="red",
dcol =" green3")
print. SPSl oess <- function(x)
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