Tutorial: Getting Started with TREERANK in R

Nicolas Baskiotis
ENS Cachan - CMLA UMR CNRS No. 8636
Stéphan Clémencon
LTCI UMR Telecom ParisTech/CNRS No. 5141

November, 2010

Abstract

TREERANK is a learning algorithm tailored for ROC optimization in the context of bipartite
ranking. It is the purpose of this note to provide a tutorial introduction for the use of the
TREERANK package for R statistical software.

1 Introduction

Bipartite ranking, sometimes termed nonparametric scoring, is an ubiquitous issue, encountered in
anomaly detection, medical diagnosis, credit-risk screening, or information retrieval for instance. In
a wide variety of applications, practitioners need to learn scoring/ranking functions for discriminat-
ing between two populations from multivariate data with binary labels.

Precisely, here data consist of a set of individual measurements z = (1), ..., z(9) € X (the
input variables), to which a binary label y € {—1, +1} (the output variable). These measurements
are assumed to be independent realizations of a pair (input/output) of random variables (X,Y’). A
part, if not all, of this historical database, with n > 1 observations D,, = {(z;, v;) : 1 < i < n},
is dedicated to learning of a scoring rule s : X — R. By transporting the natural order on the real
line onto X, s defines a ranking (i.e. a preorder) through: V(z,2') € &2,

T =57 & s(x) < s(2).

In bipartite ranking, the goal pursued is to use the training set D,, in order to produce an accurate
ranking, ranking performance being evaluated through ROC analysis. The ROC curve of a scoring
functions is the plot of the false positive rate against the true positive rate:

ROC, : t € R (B{s(X) >t | Y = —1}, P{s(X) > t | Y = +1}).

The closer the to the left upper corner of the ROC space, the more accurate the ranking (instances
with positive labels are expected to be top ranked). In regards to this (theoretical) functional
performance criterion, increasing transforms of the regression function n(x) =P{Y =+1| X =z}
are the optimal elements (their ROC curve dominates any other ROC curve, everywhere along the
false positive rate axis). In practice, an estimate PTO\CS of ROCy is computed the following way:
one calculates, using a sample {(z;, y;) : 1 < i < n} of realizations of the pair (X,Y), empirical
counterparts of the class probabilities P{s(X) > t | Y = —1} and P{s(X) > ¢t | Y = +1} for

threshold values {s(X;) : ¥; = —1, 1 < i < n} and next connects the corresponding knots by
line segments, producing a piecewise linear ROC curve (notice that another convention, sometimes
encountered in practice, consists in plotting a stepwise ROC estimate from these knots). The ROC
curve estimate plotted using training data (i.e. those used for building s) is called the training ROC
curve, while that plotted using a sample independent from the training set is called a test ROC
curve. A common summary statistic is the area under the empirical ROC curve (empirical AUC in
short), which is a consistent estimate of the quantity

AUC(s) = P{s(X) < s(X') | (Y,Y') = (-1,+1)} + %]P’{s(X) =s(X) | (Y,Y') = (-1,+1)},

where (X', Y") denotes an independent copy of the pair (X,Y). Basic results in ROC analysis from
the perspective of bipartite ranking can be found in Section II of 6] (see also the Appendix therein).

The software we present here implements a novel statistical learning algorithm, named TREER-
ANK, for ROC curve optimization. This algorithm is a tree induction procedure, entirely tailored
for bipartite ranking and producing, from a training sample, a piecewise constant scoring function
of which ROC curve mimics the behavior of an adaptive linear-by-part interpolant of the optimal
ROC curve [6 B]. It produces models that can be easily summarized in the form of an oriented
rooted binary tree graph. The ranking can be directly read by perusing the terminal leaves from
the left to the right.

As for many other tree-based learning methods, the procedure includes two stages. A greedy top-
down recursive partitioning strategy is first implemented, leading to a complete rooted binary tree
equipped with a left-right orientation, we call it the Master Ranking Tree. Fach split corresponds
itself to a classification rule, obtained through a cost-sensitive version of a binary classification
methodology (the celebrated CART method [I] for instance, or SVM methods), we call LEAFRANK
in this context, the cost locally depending on the data, being equal to the empirical rate of positive
instances within the node to split, in order to maximize the AUC criterion recursively. A pruning
procedure then follows the growing stage, where children of a same parent node are recursively
merged so as to maximize a cross-validation based estimate of the AUC criterion. The ROC curve
of the resulting scoring function can be shown to converge to the optimal one, in the AUC sense
and in sup norm both at the same time. The procedure is described in detail in [6, B], together with
the related background theory.

Beyond the theoretical properties of this ranking algorithm, a crucial advantage of such a tree-
structured recursive partitioning method lies in its ability to handle qualitative predictor variables
(up to a dummy coding) and incomplete data in both the training samples and future observations
to be predicted /ranked.

A bootstrap aggregating method can also be implemented in order to enhance ranking accuracy
and stability, refer to |2 for further details.

Throughout this note, the installation and the use of the TREERANK package for R statistical
software is described.

2 TreeRank package Contents

The TreeRank package implements under the R environment the TreeRank algorithm and provides
tools to analyze the results, as well as a graphical user interface for most of the functionalities. It
essentially includes the following procedures:

e the TreeRank growing procedure, which produces from the training dataset a complete ori-
ented rooted binary tree, the Master Ranking Tree;

e 3 LeafRank versions for the internal splitting rules of the Master Tree : one based on a
cost-sensitive version of the CART algorithm, one based on a cost-sensitive random forest
algorithm, and one based on cost-sensitive SVM’s;

e 3 TreeRank based algorithm for the statistical problem of testing homogeneity of two samples
in a multidimensional setup.

e bagging and pruning tools for the TreeRank algorithm.
It also comprises the tools listed below:

e score computation tools to ranking predictions from ranking trees and new (unlabeled) data;

tools for computing and displaying ROC and precision /recall curves from ranking trees and
(traning and test) data,

tree manipulation tools, in order to extract sub-ranking trees or to combine ranking trees;

model interpretation tools, such as variable importance computation;

graphical interfaces for launching the procedures and for displaying/exploring the results (tree
graphics, etc.).

The package also includes demo datasets as well as documentation files. The names and char-
acteristics of the demo datasets are collected in the following table:

Data set name Pyr2D | Gauss2D | Gauss20DFar | Gauss20DClose
Artificial | Artificial Artificial Artificial
Nature
uniforms | gaussians gaussians gaussians
Attributes 2 2 20 20
Learning sample size 2000 2000 2000 2000
Test sample size 1000 1000 1000 1000
Positives rate 0.5 0.5 0.5 0.5

For each data set, the variable Name . learn denotes the learning set, the variable Name . test the
test set and the variable Name . roc the target ROC curve (i.e. the optimal one). For all data set, the

name of the label attribute is class and, by convention, we always take the value 1 as "positive"
label.

3 Installation

This section describes the installation steps of the TreeRank package, it is intended for beginning
R users.

3.1 Getting R statistical software

R is a language and an environment for statistical computing and graphics. It is available for free
under the terms of the GNU General Public Licence at http://www.r-project.org/| for Windows,
MacOS and UNIX platforms. Tutorials and documentations are also available on the R homepage.

3.2 TreeRank requirements

The TreeRank package is fully implemented in R, thus no third-party software is required for its
basic use. It is however based on other R packages from the official CRAN package repository and
some of them need Tc1/Tk version 8.4 or above for graphical purposedd. The Windows version of
R installs by default all needed files for Tc1/Tk. For UNIX and MacOS R version, Tc1/Tk needs to be
installed by hand. A build for MacOS is available at | http://cran.r-project.org/bin/macosx/tools/
(just install the dmg file). For UNIX, please refer to your distribution to find and install the
appropriate packages (generally tc18.x and tk8.x).
The R packages required for the installation of TreeRank are the following:

e rpart, providing a CART implementation for recursive partitioning and regression trees;
e kernlab, kernel-based machine learning methods including a SVM algorithm;

e randomForest, a random forest algorithm;

e coin, conditional inference procedures including two sample problems.

The recommended packages are the following (only used for the graphical user interfaces):
e tkrplot for placing R graphics in a Tk widget;

e colorspace for some nice color palettes;

e igraph, a very complete package for graphs and network analysis, used here for visualization
purpose only.

Normally, no manual installation of these packages is required, it is done automatically when
installing the TreeRank package. In case of troubles, a manual installation can be done through the
command install.packages (‘“NameOfPackage’’) in the R shell.

3.3 Getting the TreeRank package

The last version of TreeRank package is available at http://treerank.sourceforge.net/. However, the
easiest way to install it is by the R command install.packages. To do that, open an R session,
and just type in the shell install.packages(‘“TreeRank’’). A window appears asking you to
choose a CRAN repository. To check your installation, try to load the package by the command
library(TreeRank) and then execute the command example(TreeRank).

'If you plan to use only the command line version of TreeRank, there is no need for Tc1/Tk. The installation of
the graphic related packages are recommended but not required.

http://www.r-project.org/
http://cran.r-project.org/bin/macosx/tools/
http://treerank.sourceforge.net/

4 Loading data

The input used by TreeRank to construct a ranking tree (and thus a scoring function) is a set of
labeled examples (z;,y;), the input information being described by ¢ > 1 numerical or categorical
attributes, while the output consists of a binary label (conventionally but not mandatory +1 for
positive examples and —1 for negative ones: "relevant" vs. "irrelevant", "sick" vs. "healthy", etc.).
In R, data frames are used to represent this type of data. Actually, a data frame is a sort of matrix,
where columns can correspond to different type of data. Each column of a data frame has an unique
name denoting a variable and each row represents an example. Generally, the label is included in
the data frame representation as an additional variable.

In order to import data from files to data frames, R has several functionalities, that allows for
dealing with a wide variety of data files. We will discuss further how to import the most common
type of data file, the spreadsheet-like text file, in which the data are presented in a rectangular
grid, possibly with row and column labels (like cvs and MATLAB files; see R_documentation to
import other file formats). For such files, each line of the file describes an example and each value is
separated by a special character named separator (usually the space, the tabular or the semi-colon
character). These data files can be imported in R by the means of the generic function read.table.
The following parameters must be specified in order to use this function :

e file : the path and filename of the file being imported;

e sep : the separator used in the file;

e headers: to be set to TRUE or FALSE, indicating whether the names of the variables are included
in the file (corresponding in general to the first line of the file) or not. When the names are not
included (the most common case), they can be specified by the optional parameter col.names.
Otherwise, R uses by default the name V¢ for the i-th column.

The R affectation symbol <- is used to store the result of the importing procedure.

http://cran.r-project.org/doc/manuals/R-data.pdf

Demo:

The separator for myDatal.cvs is the colon character
and the file don’t contain the variable names.
> tablel <- read.table(file="myDatal.cvs", sep=",", headers=FALSE
> tablel[1:3,] # Display the 3 first rows of the data frame
Vi V2 V3 Va V5 V6 V7 V8
1 1.18590 -0.0024941 1.33290 1.69090 0.908180 -0.658880 0.325710 0.698940
2 0.87946 -0.5272500 0.12230 1.76700 0.772090 1.242500 -0.060701 2.544200
3 2.09470 0.8184400 1.64860 1.19230 -1.153100 -1.196300 -1.136800 0.600780
> nrow(tablel) # Display the number of rows
[1] 3000
> ncol(tablel) # Display the number of columns
(1] 8
> colnames(tablel) # Display the column names

[1] Ilvlll IIV2II IIV3II IIV4II IIV5II IIV6II IIV7I| IIV8II

import myDatal.cvs with specified variable names.
>table2 <- read.table(file="myDatal.cvs",sep=",",headers = FALSE,
col.names = c("a","b","c","d","e","£","g","1label"))

>table2[1:3,]

a b c d e f g label
1 1.18590 -0.0024941 1.3329 1.6909 0.90818 -0.65888 0.325710 0.69894
2 0.87946 -0.5272500 0.1223 1.7670 0.77209 1.24250 -0.060701 2.54420
3 2.09470 0.8184400 1.6486 1.1923 -1.15310 -1.19630 -1.136800 0.60078

5 Using TreeRank through the graphical interface

The TreeRank package provides a user-friendly Graphical User Interface (GUI) handling most of
the TreeRank features. This section presents how to use it.

The GUI is made up of two interfaces. The first one, described in section Bl is used to
configure the TreeRank procedure and the dataset used. The second one (section B2) allows the
user to display/explore the results and to perform model selection (either automatically or else
manually).

In the following, it is assumed that the TreeRank package and all of its requirements have been
preliminarily installed (see Section [Ml). The Gauss2DEasy toy dataset, included in the package, is
used for the demo.

To load the library, execute the following command:

Demo:
>library(TreeRank)

5.1 The Launching Interface

The TRGui() command is used to start the interface. After its execution, a window like the one
displayed in Fig. BJl normally appears. This window is made up of three frames: data setting,
LEAFRANK options and TREERANK options.

Demo:
>TRGui ()

i TreeRank GUI =B
Data set: | _ Data Settings
Label name: |class _ Frame
Best Label: 1
(Cart
LeafRank: isvm LeafRank
randomFores .
» = Options
Minimum Split |50 Min. Crit. |0 Frame
Maximum Depth :10_ ~ n-fold IG |
TreeRank Options
Minimum Split (50 Forest 'O
Maximum Depth |10 %Data. split/100 -ge?.Rank
Min. Criteria Gl Replace v ptions
n-fold Cross Validation 0 %Var. split |100 | Frame

=

Figure 1: The Launching Interface

¥

5.1.1 Data setting frame

This frame is used to set up the learning dataset. The dataset has to be loaded previously in R as
a data frame (see section Hl). The field Data Set is used to specify the name of the R variable
containing the dataset. The field Label name indicates the name of the variable in the data frame
denoting the class/label /response of the examples. The field Best Label indicates which label value
corresponds to the "positive" label.

Demo:
Set

e Data set to Gauss2DEasy.learn
o Label name to class

e Best Label to 1.

5.1.2 LEeEAFRANK options frame

This frame allows to choose the LeafRank algorithm to be used and pick its tuning parameters. The
listbox is used to select the LeafRank algorithm (three LeafRank algorithms are provided natively,
a CART-based, a SVM-based, and a RANDOM FOREST-based version). The options depend on the
used LeafRank algorithm, setting up the learning parameters of the chosen algorithm.

CART options

e MINIMUM SPLIT : the minimum number of observations that must exist in a node, in order
for a split to be attempted;

e MAXIMUM DEPTH : set the maximum depth of any node of the final tree, with the root node
counted as depth 0.

e MiIN. CRIT. : if the criterion (in our implementation the auc) is less than this value, the node
is not splitted.

e N-FOLD : number of cases for the n-fold cross pruning. If it is set to 0 or 1, no pruning is
done.

SVM options Full documentation for these options can be found in the package KERNLAB.
e C : cost of constraints violation;

e DEGREE/SIGMA : set the value of sigma or degree kernel parameters, depending on the chosen
kernel.

e SCALE, OFFSET : set the value of scale and offset parameter for the hyperbolic tangent kernel.

o KERNEL : set the kernel to be used : RBF is a radial basis kernel Gaussian, POLY. a polynormial
kernel, TANHDOT a hyperbolic tangent kernel.

e AUTO. PARAMETERS : automatically compute the best kernel parameters.

random Forest options Full documentation for these options can be found in the package RAN-
DOMFOREST.

e #TREE : number of trees to grow.

e #VAR : number of variables randomly sampled as candidates at each split. If it is set to 0,
all the variables are used.

e %DATA : percentage of the examples to be used for each tree computation. The examples are
drawn randomly from the whole data set.

e REPLACE : if it is checked, the sampling of the examples is done with replacement.
e NODE SIZE : Minimum size of terminal nodes.

e MAaX. LEAVES : Maximum number of terminal nodes trees in the forest can have.

Demo:
Select the CART algorithm and keep default options.

5.1.3 TREERANK options frame

The following options set controls the tree growing stage.

o Minimum Split: the minimum number of observations that must exist in a node, in order for
a split to be attempted.

o Mazimum Depth: the maximum depth of the tree.

e Min. crit.: if the AUC increase is below this threshold, the node is not split and it becomes
a leaf.

The n-fold Cross Validation option controls the tree pruning stage. If its value n is greater than
1, the tree will be pruned by a n-fold cross validation.

The forest option allow to compute a forest of TreeRank rankers. If its value is greater than
one, its indicates the number of TreeRank rankers to learn to compute the forest.

The % Var. Split option controls the amount of feature randomization: it indicates the percent of
variables used at each node of the master tree (drawn randomly). The %Data Split option indicates
the percent of examples of the training dataset used for the learning in case of forest computation.
The checkbox replace indicates when the sampling is done with replacement or not.

Demo:
Set %Data Split option of LeafRank frame to 80% and keep the default options
for the others and click the run button.

5.2 The results explorer interface

After the TreeRank computation, a new window is displayed (figure B.2).

5.2.1 Information displayed

The central frame #1 displays the ranking tree. Each node is colored according to the percentage of
positive examples lying in the node (green for higher percentage, red for lower). The left child of a
node is always the best scored node and the right child the worst one. Thus, the leaves are ordered
from the best score (on the left) to the worst (on the right).

Selecting a node (by clicking on it) displays the node information at the upper left corner of the
window (frame #2): the node Id, the number of positive/negative examples belonging to the node,
the AUC increase due to the node split and the score if the node is a leaf. Variable importance
measures are given on the left side listbox (frame #3 and displayed as an histogram at bottom right
(frame #7).

Finally, the training ROC curve is displayed on the top right graph, at the frame #6.

Close View LeafRank View Subtree View Unpruned Plot Subtree ROC Plot Unpruned ROC Add test set Add ROC Save Tree Export ROC Export Tree

Node: 2
Dauc: 0.0293
#P0s: 698 2 6
#Neg: 256
ratio: 0.732 .
p
Var. importance: -
V1: 1 Al i
[V2: 0.002243
3 @
2 o
ol
o
- =
=
¥ ™
Forest =
1 iz
2 (=]
3 4 =
4
5 4
ROC v Prec/Recall |
ROC List auc FP rate
Learn. forest 0.807 v 5
Learn. 1 0828 ¥
L
(=]
o
o
¥/ o
= b= —
=]
V1 vz

Figure 2: Results explorer interface.

If the current object is a TreeRank forest, the frame #4 allows to navigate through the different
trees. In this case, the plotted tree in the main frame is the selected tree (by default the first one)
and the frames #6 and #7 refer to this tree.

5.2.2 Interactive tools

As specified above, clicking a node selects the node. Selecting multiple nodes can be done by pressing
the control key when the click is performed. With a right click on the central frame (containing the
tree), a popup menu is displayed. The menu items are also available on the top menu of the window.
Some items are specific to nodes, in which case they appear in the popup menu only by clicking on a
node. The View LeafRank item allows the user to display, on a new window, the LeafRank classifier
associated to a given node, but only when such an operation is allowed (depending on the chosen
LeafRank algorithm). See section 223 for more information about the CART LeafRank classifier.

It is possible to consider a subtree of the tree by selecting some nodes. The subtree is con-
structed by pruning the tree at the selected nodes. The View Subtree item opens a new interface
corresponding to the selected subtree. The Plot Subtree ROC item plots the training ROC curve
corresponding to the subtree.

In the case of the pruning option is selected for the learning, the View Unpruned item opens a
new interface with the unpruned tree. The Plot Unpruned ROC item plots the training ROC curve,
corresponding to the unpruned ranking tree. The Add test set item allows to plot a test ROC curve.
The test set has to be in a R data frame variable. Selecting the item opens a dialog box, where
the name of the test set variable can be submitted. Hiding/displaying a ROC curve can be done by
unchecking/checking the corresponding checkbox on the left side of the window, in the frame #5.

10

The precision/recall curves can be displayed by checking/unchecking the corresponding checkbox
on the top of the frame #5.

Finally, the Save tree item allows the user to export the tree in a R variable; the Fzport ROC
item allows the user to save in a eps file the frame #6, i.e. the ROC curve; the Ezport Tree item
allows the user to save in a eps file the main frame, i.e. the tree.

5.2.3 CART LearRANK interface

In the case where the CART LeafRank algorithm is used, the interface displayed when selecting the
View LeafRank item is very similar to the TreeRank interface, but simplified. The tree displayed
corresponds to the CART tree. The nodes are not ordered. Finally, each leaf has a green or a red
circle, which indicates if the examples reaching this node are send to the left or the right child of
the TreeRank tree.

5.3 A simple session example

In this section we show how to use TreeRank package to tune the procedures, to compute various
models and compare the results. We assume that the library is loaded and the interface is launched.
We will use the Gauss20DFar.learn dataset. The label name of this dataset is class and the "best
label" is 1.

To compute the first model, leave all options by default and run the TreeRank procedure. In
the resulting interface, the real ROC curve can be displayed by choosing Add ROC menu item and
filling the textbox with Gauss20DFar.roc. As we can see, the train ROC is similar to the real ROC.
To display the test ROC, choose the Add test set item and fill it with Gauss20DFar.test. As
expected, the resulting ROC is worst than the previous one. To improve the result, a TreeRank
forest can be used : in the launcher, choose to compute 10 trees in the forest, and set 80% for data
split and var split option. The AUC of the test ROC is thus improve by 0.05.

As the problem to be treated is a gaussian one, we can expect better results using the svm-based
LeafRank procedure : in the launcher, choose the svin version for the LeafRank algorithm, run the
procedure and compute the test ROC. The resulting test ROC have an AUC near to 0.8 and for
the forest version with 10 trees near to the optimal one, 0.84. In comparison, a polynomial kernel
outputs poor results.

Finally, a way to improve Cart-based LeafRank is to use the Random Forest-based LeafRank
procedure. This version has to be tuned carefully : if the number of tree is too high, a random
forest will match perfectly the training dataset and the TreeRank master tree will have a depth of
only 1, as the first forest will classify perfectly the training dataset. One can tune the node size,
#tree and the Max leaves parameters to prevent this effect. For instances, run the launcher with
10 as node size and 200 trees for the LeafRank options and 10 trees for the TreeRank option. The
resulting AUC of the test ROC is near to 0.7, which is a great improvement compared to the Cart
version.

6 Advanced use of TreeRank

We present in this section the console use of the TreeRank package. The full details can be found
in the man page documentation of the TreeRank package.

11

6.1 Main procedures

e TreeRank : the main function to compute a TreeRank scoring function.

e TreeRankForest : the forest version of the TreeRank algorithm.

e LRCart : the CART-based LeafRank procedure.

e LRsvm : the svm-based LeafRank procedure.

e LRforest : the forest-based LeafRank procedure.

e TRplot: launching the interface for a TreeRank or LRCart object.

e predict: a generic method for predicting scores from a TreeRank tree and (unlabelled) data.

e getClassifier: return the classifier associated to a specified node from a TreeRank tree. The
generic method predict can be used on the returned object.

e getROC/getPREC: return a matrix with the ROC curve (or precision/recall curve) coordinates
from a TreeRank tree and data.

e auc: return the AUC of the ROC curve from a ROC curve.
e varImportance : return a vector containing the variable importance measure for each variable.

e depVar : return the partial dependence on pair of variables.

6.2 A simple session example

We use the same example as in the section to illustrate the use of the TreeRank package with
the console mode. To compute a TreeRank model with the default parameters for the Gauss2DFar
dataset, execute the following command :

treeCart <- TreeRank(formula=class” .,data=Gauss20DFar.learn,bestresponse=1);.

The computed tree is stored in the variable treeCart. To display the computed tree, execute
TRplot (treeCart). To predict scores for a new dataset, for instances Gauss2DFar.test, the com-
mand is the following :

predict(treeCart,Gauss20DFar.test).

The train ROC curve of the model can be computed by the command :

rocCartTrain <- getROC(treeCart,Gauss20DFar.learn)

and the test ROC curve by :

rocCartTest <- getROC(treeCart,Gauss20DFar.test).

The ROC curves can be plotted either by the command plot (rocCartTest) or :

plotROC(list (rocCartTrain,rocCartTest)).

The AUC of the test ROC can be computed by aucCartTest <- auc(rocCartTest). The variable
importance measures are computed by the command varImportance(treeCart). Finally, the par-
tial dependence on pair of variables can be computed by the command :

vdCart <- varDep(treeCart,Gauss20DFar.test,varx="V5",vary="V10",subdivx=10) (here on

12

the pair (V5,V10)). The plot can be drawed using the persp command : persp(vdCart) (or to
compute a heatmap : heatmap(vdCart)).

In the following we will give examples to parametrize the TreeRank procedure. By default,
the TreeRank procedure uses the Cart-based LeafRank procedure. In order to compute a svm-
based version, the TreeRank option LeafRank has to be specified. The call is the following :

TreeRank(class™ ., Gauss20DFar.learn, 1, LeafRank= LRsvm). The customization of the LRsvm
can be inline in the call or by defining a new procedure with the wanted parameters :

Demo:

#Inline :

TreeRank(class™ .,Gauss20DFar.learn,1,LeafRank=

function(...)LRsvm(kernel="polydot", C=2,...)

#By defining a new function

MySvm <- function(...)LRsvm(kernel="polydot", C=2,...)
TreeRank(class™ .,Gauss20DFar.learn,l,LeafRank=MySvm)

The following commands define a custom Random Forest LeafRank and compute a TreeRank
forest with the same options as in section :

Demo:
MyRandom <- function(...) LRforest(nodesize=10,ntree=200,...)
TreeRankForest(class™ .,Gauss20DFar.learn,l, LeafRank=MyRandom,

varsplit=0.8,sampsize=0.8,ntree=10)

The option details can be found in the manual pages of each function (ksvm for the svmn-based
LeafRank, randomForest for the Random Forest version).

7 The two sample problem

The TreeRank package implements a TreeRank version of the two sample problem, testing the
homogeneity of two samples in a multidimensional setup([4]). To launch the graphical interface,
execute the following command:

Demo:
>TwoSampleGui ()

The only difference between this interface and the TreeRank launcher one is for the upper frame,
the data setting frame. The field 1st data set is used to set one of the two sample to be tested; the
other one can be set by the field 2nd data set. These datasets have to be dataframes (see section
@).

The Learning % size field indicates the percentage of the both data set to use for the training.
The remaining data are used to compute the Mann-Whitney Wilcoxon test. The confidence level
field denotes the confidence level of the test. The Mann-Whitney Wilcoxon test is computed with
the functions of the coin package.

After the computation, the learned tree is displayed with the interface used by TreeRank. The
results of the test are shown in the console.

13

References

[1] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth and Brooks, 1984.

[2] S. Clémencon. Ranking Forests. Technical Report hal-00452577, HAL, 2010.

[3] S. Clémencon, M. Depecker, and N. Vayatis. Adaptive partitioning schemes for bipartite ranking.
Technical Report hal-00268068, HAL, 2009.

[4] S. Clémengon, M. Depecker, and N. Vayatis. AUC optimization and the two-sample problem.
In Advances in Neural Information Processing Systems, 2009.

[5] S. Clémencon and N. Vayatis. Tree-structured ranking rules and approximation of the optimal
ROC curve. In Proceedings of ALT 2008. Springer, 2008.

[6] S. Clémengon and N. Vayatis. Tree-based ranking methods. IEEE Transactions on Information
Theory, 55(9):4316-4336, 2009.

14

	Introduction
	TreeRank package Contents
	Installation
	Getting R statistical software
	TreeRank requirements
	Getting the TreeRank package

	Loading data
	Using TreeRank through the graphical interface
	The Launching Interface
	Data setting frame
	LeafRank options frame
	TreeRank options frame

	The results explorer interface
	Information displayed
	Interactive tools
	CART LeafRank interface

	A simple session example

	Advanced use of TreeRank
	Main procedures
	A simple session example

	The two sample problem

