
Distance Measures for Time Series in R: The TSdist

Package

Usue Mori
University of the
Basque Country

UPV/EHU.

Alexander Mendiburu
University of the
Basque Country

UPV/EHU.

Jose A. Lozano
University of the
Basque Country

UPV/EHU.

Abstract

The definition of a distance measure between time series is critical for many time series
data mining tasks such as clustering and classification. For this reason, and based on the
specific characteristics of time series data, a vast number of distance measures have been
published in the past few years. However, many of the most popular distance measures
for time series are not included in any R package. With the objective of filling this gap, a
complete set of the most popular distance measures for time series are implemented in the
TSdist R package . This package is designed to work with different time series data types
supported in R such as ts, xts or zoo, as well as with numeric vectors. Furthermore, the
efficient calculation of distance matrices for entire databases is supported in the package.

Keywords: time series, distance measures, R.

1. Introduction

In recent years, the increase in data collecting technologies and sensors has enabled access to
a large amount of temporal data, also denominated time series. The main features of this type
of data are its high dimensionality, dynamism, auto-correlation and noisy nature, all which
complicate the study and pattern extraction to a large extent. In view of this, researchers
have focused on finding specific methods and on adapting the existing data mining algorithms
to obtain useful information from these databases. So, tasks such as regression, classification,
clustering or segmentation have been extended and modified successfully (Fu 2011).

Many of these tasks require the definition of a distance measure which will indicate the level
of similarity or dissimilarity between time series. Because of this, the scientific community
has focused on elaborating suitable measures for this specific type of data. The fruit of this
work, a vast portfolio of distance measures, has been published.

A few R packages such as dtw (Giorgino 2009) or TSclust (Montero and Vilar 2014) provide
implementations of some of these distance measures. However, to the extent of our knowledge,
many of the most popular distances reviewed by Liao (2005); Esling and Agon (2012) and
Wang, Mueen, Ding, Trajcevski, Scheuermann, and Keogh (2012) are not available in R.

In this paper, the TSdist package for the R statistical software (R Development Core Team
2014) is presented. This package provides the implementation of a set of distance measures de-
signed for univariate numerical time series. These distance measures have been selected based
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on their popularity and because they are mentioned in recent reviews on the topic (Liao 2005;
Esling and Agon 2012; Wang et al. 2012). In this manner, this package largely contributes to
achieving a more complete coverage of the published time series distance measures in R.

The rest of the paper is organized as follows. In Section 2, the distance measures included in
the package are described and the details concerning their implementation and computation
are summarized. Furthermore, some examples of their use are included. In Section 3, the
distance computation between objects of type ts, zoo or xts is explained. In Section 4 the
calculation of distance matrices of entire time series databases by means of the TSdist package
is studied. To finish, in the last section, a summary of the distance measures implemented in
the different R packages is given, providing a complete view of the possibilities for time series
distance computation in this language.

2. Definition of similarity measures

In this section, the distance measures implemented in the TSdist package are described and
the functions included for their calculation are detailed.

These basic distance function will be designed to work only with numeric vectors. To calculate
distances between time series objects of type zoo, xts or ts (see Section 3).

Following the categorization introduced by Esling and Agon (2012), the time series distance
measures are usually divided into four categories: shape based, edit based, features based and
structure based. This package focuses on the first three categories because they are applicable
to all cases.

2.1. Shape based distance measures

This first category of distances is based on directly comparing the raw values and the shape
of the series in different manners.

Lp distances

Lp distances are those that derive from the different Lp norms (Yi and Faloutsos 2000). These
distances are rigid metrics that can only compare series of the same length. However, due to
their simplicity, they have been widely used in many tasks related to time series analysis and
mining. Given two time series X = {x0, x1, ..., xN−1} and Y = {y0, y1, ..., yN−1}, the different
variations of the Lp distances and their formulas are provided in Table 1. It must be noted
that the Euclidean Distance is a special case of the Minkowski distance, but it is explicitly
included because it is a baseline distance measure in the area of time series data mining.

These distances are implemented in the manhattanDistance(), minkowskiDistance(),
euclideanDistance() and infinitenormDistance() functions. They receive two time se-
ries, represented by numeric vectors as the only input, except the Minkowski distance which
also needs a specification of p. The output of these functions is the distance between the two
series.

A wrapper function, lpDistances(), has also been defined for the Lp distances. This function
also takes two numeric vectors as input but, in addition, the method argument must be set to
the desired Lp distance measure (e.g method = "euclidean"). In the case of the Minkowski
distance, the argument p must also be specified.
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Distance p Formula

Manhattan p = 1
∑N−1

i=0 |xi − yi|

Minkowski 1 < p < inf
p

√∑N−1
i=0 (xi − yi)

1
p

Euclidean p = 2
√∑N−1

i=0 (xi − yi)2

Infinite norm p = inf maxi=0,...,N−1 |xi − yi|

Table 1: Lp distances.

Short Time Series distance

The Short Time Series distance (STS) is introduced by Möller-Levet, Klawonn, Cho, and
Wolkenhauer (2003) with the idea of proposing a distance adapted to the characteristics of
irregularly sampled series. It is defined as:

dSTS(X,Y ) =

√√√√N−1∑
k=0

(
yk+1 − yk
tk+1 − tk

− xk+1 − xk
t′k+1 − t′k

)
(1)

where t and t′ are the temporal indexes of series X and Y respectively.

This distance can be calculated by invoking the stsDistance() function and specifying four
numeric vectors that represent the two series x and y and their temporal indexes t and t’. x
and y must have the same length and, although their temporal indexes may start in different
time contexts, the increments must be equal:

tk+1 − tk = t′k+1 − t′k, ∀k = 0, ..., N − 1 (2)

If the temporal indexes are not specified, a constant sampling rate will be assumed.

Dissim Distance

The Dissim distance was introduced by (Frentzos, Gratsias, and Theodoridis 2007) and is
specifically designed for series collected at different sampling rates. This means that each
series will be defined in a finite set of time instants, but these can be different for each series.

The Dissim distance requires a continuous representation of the series and so, the series that
are being compared are assumed to be linear between sampling points (see Figure 1). Once
this is done, the definite integral of the Euclidean distance between them is calculated:

Dissim(X,Y ) =

K−1∑
i=0

∫ ti+1

ti

DX,Y (t)dt (3)

where, T = {t0, ..., tK−1} is a global time index that fuses the time indexes of both series
by taking all the points that appear in both sets. DX,Y (t) represents the Euclidean distance
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Time Series X

Time Series Y

Figure 1: Representation of the Dissim distance calculation.

between the series at time-stamp t.

This distance measure is implemented in the dissimDistance() function that takes the two
numeric series (x and y) and their corresponding temporal indexes (tx and ty) as input. It
must be noted that, although these indexes may differ, they must start and end at the same
instants of time.

Finally, in order to avoid the computational expense of calculating the integral, Frentzos et al.
(2007) present an approximation of Dissim that simplifies Equation 3 by using the trapezoid
rule. In this manner, the following simpler formula is obtained:

Dissim approx(X,Y ) =
N−1∑
i=0

(DX,Y (ti) +DX,Y (ti+1)) · (ti+1 − ti) (4)

This approximation may be calculated by invoking the dissimapproxDistance() function,
which is defined with the same input arguments as in the previous case.

Dynamic Time Warping distance (DTW)

In order to overcome the inconveniences of rigid distances such as Euclidean Distance, many
similarity measures have been specifically designed for time series data. Among them the most
popular is probably Dynamic Time Warping (DTW) (Berndt and Clifford 1994). This dis-
tance is able to deal with transformations such as local warping and shifting and, furthermore,
it allows the comparison between series of different length.

As shown in Figure 2, the objective of this distance is to find the optimal alignment between
two series X = {x0, x1, ..., xN−1} and Y = {y0, y1, ..., yM−1}, by searching for the minimal
path in a distance matrix (D) that defines a mapping between them. Each entry of the matrix
D is defined by the Euclidean distance between a pair of points (xi, yj). In R, the calculation
of D is efficiently done by using the proxy package (Meyer and Buchta 2013).

This optimization problem is subject to three restrictions (Liao 2005). The boundary condi-
tion forces the path to start in position D(0, 0) and to end in D(N−1,M−1). The continuity
condition restricts the step size, forcing the path to continue through one of the adjacent cells.
Finally, the monotonicity condition forbids the path to move backwards in the positions of
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d(xi, yj)

0 N − 1

0
M

−
1

X

Y

Figure 2: Illustration of the Dynamic Time Warping distance calculation.

the matrix. Based on this, the problem is reduced to solving the following recurrence:

DTW (X,Y ) =


0 if M − 1 = N − 1 = 0

inf if M − 1 = 0 or N − 1 = 0

d(x0, y0) +min{DTW (Rest(X), Rest(Y )),
DTW (Rest(X), Y ), DTW (X,Rest(Y ))} otherwise

(5)

where d is the Euclidean distance and, beingX = {x0, x1, ..., xN−1} and Y = {y0, y1, ..., yM−1},
Rest(X) and Rest(Y ) are defined as {x1, ..., xN−1} and {y1, ..., yM−1}. By applying dynamic
programming, this recurrence can be solved as shown in Algorithm 1.

The calculation of this basic DTW distance is implemented in the dtwDistance() function.
The core of this function has been implemented in C, due to computational efficiency issues.
The output of the function is the DTW distance between the two series.

Additionally, it must be noted that it is quite common to add an extra temporal constraint
to DTW by limiting the number of vertical or horizontal steps that the path can take consec-
utively. The windowing type implemented in this package is the classical Sakoe-Chiba band
(Sakoe and Chiba 1978) which places a symmetric band around the main diagonal and forces
the path to stay inside this band (see Figure 3). This adjustment avoids the matching of
points that are very far from each other in time and, in addition, it reduces the computation
cost (Wang et al. 2012).

If we want to restrict the window size in the DTW calculation, an additional argument sigma
must be added to the dtwDistance() function invocation. This argument represents the
window size and must be a positive integer value. The window size can not exceed the
length of the series and in addition, the function will return an error message if |length(X)−
length(Y )| >sigma, because in this case the boundary condition can not be fulfilled and no
possible warping solution will exist.
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Algorithm 1 Dynamic Time Warping calculation.

Input: X = {x0, ..., xN−1}, Y = {y0, ..., yM−1}
Initialize: costMatrix = matrix(N + 1,M + 1) ∗ 0
for i = 1, ..., N do
costMatrix(i, 0) = 10000

end for
for j = 1, ...,M do
costMatrix(0, j) = 10000

end for
for i = 1, ..., N do
for j = 1, ...,M do

costMatrix(i, j) = d(xi, yj) +min


costMatrix(i− 1, j)
costMatrix(i, j − 1)
costMatrix(i− 1, j − 1)

end for
end for
return costmatrix(N,M)

LB-Keogh for Dynamic Time Warping

Calculating the Dynamic Time Warping between a pair of series is computationally quite
expensive and, because of this, many lower bounds have been introduced in the literature
for this distance. These lower bounds are essentially approximations of the DTW distance
that provide a value which is always lower than the actual DTW measure. They are com-
putationally more efficient than DTW and become especially useful for the task of similar
series retrieval, because they allow the pruning of sequences that are largely dissimilar to the
query series. One of the most common of such lower bounds is that introduced by Keogh and
Ratanamahatana (2005).

Given a query series X and a reference series Y , the first step in the calculation of this lower
bound is obtaining an upper and lower envelope series for the query series. Given an allowed
range of warping r, the upper and lower envelope series are defined as follows:

Ui = max(Xi − r,Xi + r) (6)

Li = min(Xi − r,Xi + r) (7)

where r can take a fixed value or it can be a function of i, depending on the windowing
function used. In this case, the Sakoe-Chiba band (Sakoe and Chiba 1978) will be used to
calculate the envelopes, so r will take a constant value indicating the width of the window.

Once the upper and lower envelopes have been calculated, the lower bounding distance be-
tween X and Y is calculated by using the following formula:

LB Keogh(X,Y ) =


(Yi − Ui)2 if Yi > Ui
(Yi − Li)2 if Yi < Li

0 otherwise
(8)
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d(xi, yj)
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−
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Y

Figure 3: Illustration of the Sakoe-Chiba windowing applied to the Dynamic Time Warping
distance calculation.

This lower bound is implemented in the lbKeoghDistance() function that takes a numeric
vector that represents the query series x, a numeric series that defines the reference series
y and a window size sigma as input arguments and returns the Keogh lower bound for the
DTW distance.

2.2. Edit based distances

Edit distance was initially presented to calculate the similarity between two sequences of
strings and is based on the idea of counting the minimum number of edit operations (delete,
insert and replace) that are necessary to transform one sequence into the other.

The problem of working with real numbers is that it is difficult to find exact matching points
in two different sequences and, therefore, the edit distance is not directly applicable. Different
adaptations have been proposed in the literature and those included in the TSdist package are
the most common according to recent reviews Wang et al. (2012); Esling and Agon (2012).

By using the delete and insert operations, all these distances are able to work with series of
different length.

Edit Distance for Real Sequences (EDR)

In this first edit based distance, in order to adapt it to numerical values, the distance between
the points in the time series is reduced to 0 or 1 (Chen, Özsu, and Oria 2005). If two points
xi and yj are closer to each other in the absolute sense than a user specified ε, they will be
considered equal. On the contrary, if they are farther apart, they will be considered distinct
and the distance between them will be considered 1. In R, this initial mapping between two
series is efficiently done by using the proxy package and applying vector operations to the
resulting matrix.

As an additional property, EDR permits gaps or unmatched regions in the database but it
penalizes them with a value equal to their length. All this summarizes into the following
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recursion that is converted into an iteration by means of dynamic programming as in the
previous case:

EDR(X,Y ) =


N if M − 1 = 0

M if N − 1 = 0

min{EDR(Rest(X), Rest(Y )) + dedr(x0, y0),
EDR(Rest(X), Y ) + 1, EDR(X,Rest(Y )) + 1} otherwise

(9)

where dedr represents the distance between two points in the series and takes a value of 0 or
1, as explained above.

The value of this distance measure can be calculated by means of the edrDistance() function,
which takes two numeric vectors and a threshold parameter epsilon as input.

Finally, as with DTW, a Sakoe-Chiba windowing may be added to the EDR distance by
simply adding a positive integer sigma value to the function call.

Longest Common Subsequence distance (LCSS)

The second edit based distance included in the TSdist package, which is in fact a similar-
ity measure, is the Longest Common Subsequence distance (LCSS) (Vlachos, Kollios, and
Gunopulos 2002). In this case, the similarity between two time series is quantified in terms of
the longest common sub-sequence but, taking into account that gaps or unmatched regions
are permitted.

As with EDR, the initial mapping between the series is done with the aid of the proxy
package and the Euclidean distance. Then, the distance between two points is reduced to 0
or 1 depending on a threshold ε. All this is reduced to the following recurrence:

LCSS(X,Y ) =


0 if M − 1 = 0 or

N − 1 = 0

LCSS(Rest(X), Rest(Y )) + 1 if |x0 − y0| ≤ ε
max{LCSS(Rest(X), Y ), LCSS(X,Rest(Y ))} otherwise

(10)

This recurrence is usually solved by using dynamic programming, similar to the two previous
distance measures and is implemented in the lcssDistance() function. The input arguments
to this function are two numerical vectors x and y, a threshold parameter epsilon and an
optional sigma value that will be added if a temporal constraint is desired. As with the other
distances, the function will return the distance value between the two series (d).

Edit Distance with Real Penalty (ERP)

The third adaptation to the edit distance is Edit Distance with Real Penalty (EDR) (Chen
and Ng 2004) which is a combination of DTW and EDR.

In this case, given two time series X = {x0, x1, ..., xN−1} and Y = {y0, y1, ..., yM−1}, the
initial mapping is done by using the Euclidean distance and the proxy package as with DTW.
The similarity with EDR relies on the fact that gaps are permitted. However, penalization
will be carried out differently, by setting a user specified constant g and adding the euclidean
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distance (d) of the unmatched points to this constant.

ERP (X,Y ) =



∑N−1
i=0 |yi − g| if M − 1 = 0∑M−1
i=0 |xi − g| if N − 1 = 0

min{ERP (Rest(X), Rest(Y )) + d(x0, y0),
ERP (Rest(X), Y ) + d(x0, g), ERP (X,Rest(Y )) + d(g, y0)} otherwise

(11)

The R function that calculates this distance is erpDistance() and in order to invoke it, two
numeric vectors and a user defined g parameter must be provided necessarily as input. In
addition, a Sakoe-Chiba temporal constraint can be added to the calculation if the sigma

argument is added to the call.

2.3. Feature based distances

This category of distance measures focuses on extracting a set of features from the time series
and calculating the similarity between these features instead of using the raw values of the
series.

Distances based on Pearson’s correlation

Pearson’s correlation between two time seriesX = {x0, x1, ..., xN−1} and Y = {y0, y1, ..., yN−1}
is defined as:

PC(X,Y ) =

N−1∑
i=0

(xi − x̄)(yi − ȳ)√
(xi − x̄)2

√
(yi − ȳ)2

(12)

where x̄ and ȳ are the mean values of the series.

Based on this value, two distance measures were introduced by Golay, Kollias, Stoll, Meier,
Valavanis, and Boesiger (1998):

dPC1(X,Y ) =

(
1− PC
1 + PC

)β
(13)

dPC2(X,Y ) = 2(1− PC) (14)

where β is a positive parameter defined by the user.

These two distance measures are implemented in the correlationDistance() function. If
the beta parameter is specified, the first distance will be calculated and if not, then, the
second definition will be applied. Other than that, the function takes two numeric vectors x

and y as input and returns the distance between them (d).

Distance based on the cross-correlation

This distance is presented in (Liao 2005) and is based on the cross-correlation between two
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series. The cross-correlation between two series at lag k is calculated as:

CCk(X,Y ) =

N−1−k∑
i=0

(xi − x̄)(yi+k − ȳ)√
(xi − x̄)2

√
(yi+k − ȳ)2

(15)

where x̄ and ȳ are the mean values of the series as in the previous case. Based on this, the
distance measure is defined as:

dCC(X,Y ) =

√
(1− CC0(X,Y ))∑max
k=1 CCk(X,Y )

(16)

This distance measure can be calculated by using the crosscorrelationDistance() function
included in the TSdist package and specifying two numeric vectors (x and y) and a value for
max. This last argument represents the maximum lag that is considered in the calculation
and should not exceed the length of the series. As in the other cases, this function will return
the distance between the two series.

Fourier Coefficients based distance

As its name indicates, the similarity calculation in this case is based on comparing the Discrete
Fourier Transform coefficients of the series.

Given a numeric series X = {x0, x1, ..., xN−1}, its Discrete Fourier Transform can be easily
calculated in R by using the fft() function included in the stats package. This function simply
returns an array containing the Fourier Coefficients of the series. The value of each coefficient
measures the contribution of its associated frequency to the series and, based on this, the
Inverse Fourier Transform provides the means to represent the sequences as a combination of
sinusoidal forms.

It is important to note that the Fourier coefficients are complex numbers that can be expressed
as Xf = af + bf i. In the case of real sequences such as time series, the Discrete Fourier
Transform is symmetric and therefore it is sufficient to study the first N

2 + 1 coefficients.
Furthermore, it is commonly considered that, for many time series, most of the information
is kept in their first n Fourier Coefficients, where n < N

2 + 1 (Agrawal, Faloutsos, and Swami
1993).

Based on all this information, the distance between two time series X and Y with Fourier Co-
efficients {(a0, b0), ..., (aN

2
, bN

2
)} and {(a′0, b′0), ..., (a′N

2

, b′N
2

)} is given by the Euclidean distance

between the first n coefficients:

F (X,Y ) =

√√√√ n∑
i=0

((ai − a′i)2 + (bi − b′i)2) (17)

This distance is implemented in the fourierDistance() function and apart from two numeric
series, the number of parameters to be considered (n) must be specified.

TQuest distance

TQuest was presented by Aßfalg, Kriegel, Kröger, Kunath, Pryakhin, and Renz (2006) and
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is classified as a feature based distance in (Esling and Agon 2012). In this manner, instead of
comparing the raw values of the series, it studies the similarity of a set of features extracted
from them.

t1 t2 t3t4t5t6 t7 t8t9t10

τ

S(X, τ) = {(t1, t2), (t3, t4), (t5, t6), (t7, t8), (t9, t10)}

Figure 4: Time series representation method used by the TQuest distance.

As can be seen in Figure 4, the idea is to define the set of time intervals in a time series that
fulfill the following conditions:

1. All the values that the time series takes during these time intervals must be strictly
above a user specified threshold τ .

2. They are the largest possible intervals that satisfy the previous condition.

The distance between two time series X and Y that are represented by the interval sets
S(X, τ) and S(Y, τ) is defined as follows:

TQuest(X,Y ) =
1

|S(X, τ)|
∑

s∈S(X,τ)

min
t∈S(Y,τ)

d(s, s′) +
1

|S(Y, τ)|
∑

s′∈S(Y,τ)

min
s∈S(X,τ)

d(s′, s) (18)

where the distance between two intervals s = (sl, su) and s′ = (s′l, s
′
u) is calculated as:

d(s, s′) =
√

(sl − s′l)2 + (su − s′u)2 (19)

This distance is implemented in the tquestDistance() function and relies on the potential
of R for working with vectors to find the threshold passing points and to define the threshold
passing intervals. The input values of the function are two numeric series, x and y, their
temporal indices tx and ty and a threshold tau. It provides the TQuest distance between
the two series.
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2.4. Examples of distance calculations between numeric vectors

The example.series1 and example.series2 objects included in the TSdist package are two
numeric vectors that represent two different synthetic series which are generated based on the
shapes that define the Two Patterns synthetic database of series (Geurts 2002) (See Figure 5).

0 20 40 60 80 100

(a) example.series1.

0 20 40 60 80 100

(b) example.series2.

Figure 5: The two example series of the same length included in the TSdist package.

Additionaly, example.series3 and example.series4 represent two ARMA(3,2) series of
coefficients AR=(1, -0.24, 0.1) and MA=(1, 1.2) but with different lengths, 100 and 120, and
generated with different random seeds (See Figure 6).

0 20 40 60 80 100

(a) example.series3.

0 20 40 60 80 100 120

(b) example.series4.

Figure 6: The two example series of different length included in the TSdist package.
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Example 1 The basic calculation of the distance between two series such as example.series1
and example.series2 is done as follows:

R> crossCorrelationDistance(example.series1, example.series2)

[1] 11.80617

R> correlationDistance(example.series1, example.series2)

[1] 1.958172

Example 2 A special case are the Lp distances that can also be called by the wrapper function
lpDistance:

R> manhattanDistance(example.series1, example.series2)

[1] 185.1962

is equivalent to:

R> lpDistance(example.series1, example.series2, method="manhattan")

[1] 185.1962

Example 3 Many of the distance measures require the definition of a parameter, which must
be included in the call to the corresponding function:

R> edrDistance(example.series1, example.series2, epsilon=0.1)

[1] 80

R> erpDistance(example.series1, example.series2, g=0)

[1] 98.29833

Example 4 Some distance measures can be computed between series of different lengths but
in some other cases this is not possible. In these latter cases, the distance can not be computed
and the function will return NA and an error message:

R> lcssDistance(example.series3, example.series4, epsilon=0.1)

[1] 16

R> fourierDistance(example.series3, example.series4)
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[1] NA

Error : The length of the series must be equal

Example 5 Other errors will be specific to each distance measure and will be determined
based on their definition. As in the previous case, when encountering an error, a NA value
will be returned and the corresponding error message will be printed. As an example, the
window function defined for DTW can not exceed the size of the time series being compared.

R> length(example.series3)

[1] 100

R> length(example.series4)

[1] 120

R> dtwDistance(example.series3, example.series4, sigma=105)

[1] NA

Error : The window size exceeds the length of the first series

3. The use of time series objects of R in TSdist

Given their relevance and special characteristics, many specific classes or object types have
been included in R to define time series. The most popular examples are the ts objects
introduced in the basic stats package of R or the more complex zoo (Zeileis and Grothendieck
2005) and xts (Ryan and Ulrich 2013) classes implemented in two separate packages.

All these objects provide the possibility of saving information about the temporal index and,
in addition, provide a complete set of methods to work with them. However, there are slight
differences between them. The first is the most basic and is addressed exclusively for regularly
sampled time series. The zoo objects incorporate the possibility of dealing with irregularly
sampled time series. Finally, the xts package further extends the zoo package to provide a
uniform handling of all the time series data types in R.

The TSdist package reviewed in this paper supports the use of these three time series objects
by means of the function tsDistances. This function admits ts objects or univariate zoo and
xts objects as well as numeric vectors and works as a wrapper function for all the distances
presented in the previous sections. All the input arguments and the results obtained by this
function are summarized in Table 2.

As can be seen, this function simply acts as a link between the time series object types and
the functions that calculate the distance measures.
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Argu-
ment

Description Remarks

x

Univariate time series object
of type numeric vector, ts,
zoo or xts

y

Univariate time series object
of type numeric vector, ts,
zoo or xts

tx
Sampling index of series x

(optional)

Necessary if x is a numeric vector and
the sampling is not constant.

ty
Sampling index of series y

(optional)

Necessary if y is a numeric vector and
the sampling is not constant.

method Distance measure

"euclidean", "manhattan",
"minkowski", "infinitenorm",
"pearsoncorrelation",
"crosscorrelation", "sts", "dtw",
"keogh_lb", "edr", "erp", "lcss",
"fourier", "tquest", "dissim" or
"dissimapprox"

...
Parameters associated to the
selected distance measure

Result

d Distance between x and y.

Table 2: Summary of the function tsDistances.

3.1. Examples of distance calculations between time series objects

The zoo.series1 and zoo.series2 time series included in the package are replicas of the
example.series1 and example.series2 objects introduced previously but saved in a zoo

format with a specific time index.

Example 6 A basic call to the tsDistance function for two series like these is done in the
following manner:

R> tsDistances(zoo.series1, zoo.series2, distance="pearsoncorrelation")

[1] 1.958172

R> tsDistances(zoo.series1, zoo.series2, distance="dtw", sigma=10)

[1] 93.66541

The distance calculation between ts or xts objects is done in the same manner.
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4. Computing distance matrices

On some occasions it is necessary to calculate the distance between each pair of series in a
given database of series (X = {X1, X2, ..., XN}). This will result in a distance matrix:

D(X) =


d(X1, X1) d(X1, X2) · · · d(X1, XN )
d(X2, X1) d(X2, X2) · · · d(X2, XN )

...
...

. . .
...

d(XN , X1) d(XN , X2) · · · d(XN , XN )


The proxy package provides the means to calculate pairwise distances between the rows of
a given matrix. In view of this, together with loading the TSdist package, the distance
measures included in it are loaded into the registry of distances of the proxy package. With
this, distance matrices obtained from the measures included in the TSdist package may be
computed directly by simply invoking the dist method implemented in proxy. The only
requirement is that the time series database must be saved in a numeric matrix, where each
series is set in a row.

Argu-
ment

Description Remarks

x

Object of type matrix, list, mts,
xts or zoo that represents a set of
series set in a row-wise format .

method Distance measure to be computed.

"euclidean", "manhattan",
"minkowski", "infinitenorm",
"pearsoncorrelation",
"crosscorrelation", "sts",
"dtw", "keogh_lb", "edr", "erp",
"lcss", "fourier", "tquest",
"dissim" or "dissimapprox"

diag

Logical value indicating if the
diagonal of the distance matrix
should be printed.

upper

Logical value indicating if the
upper triangle of the distance
matrix should be printed.

...
Any other parameters associated to
the distance measures

Result

D Distance matrix of series in x. An object of the class dist.

Table 3: Summary of the function tsDatabaseDistances.

A more direct way of performing this computation is by using the tsDatabaseDistances

function implemented in the package TSdist. The input and output arguments to this function
are summarized in Table 3.
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As can be seen in the table, this function also provides a solution to calculate the pairwise
distance between databases saved on list, mts, zoo or xts objects. It works as a wrapper
function and accommodates the structure of this type of objects to the requirements of the
dist function. Note that the series in the database must be of the same length.

The direct distance matrix calculation of databases with series of different sizes or sampling
rates are not supported in this package. However, they can be easily obtained by using the
tsDistances combined with for loops or derivations of the function apply in R.

4.1. Examples of distance matrix calculations

The example.database object included in the package is a matrix that represents a database
with 6 ARMA(3,2) series of coefficients AR=(1, -0.24, 0.1) and MA=(1, 1.2) but with different
innovations. The 6 series are set in a matrix in a row-wise format.

Additionally, the zoo.database object included in the package is a multivariate zoo object
that saves the series of example.database but with a specific time index.

Example 7 The dist function calculates the pairwise distance between all the rows in a
matrix, so the calculation of the distance matrix can be done easily for the example.database

object:

R> dist(example.database, method="tsDistances",

+ distance="tquest", tau=mean(example.database),

+ diag=TRUE, upper=TRUE)

series1 series2 series3 series4 series5 series6

series1 0.0000000 1.9070456 1.4856385 1.4856385 1.3499311 2.0070405

series2 1.9070456 0.0000000 1.1856538 2.0213254 1.9427580 1.3570736

series3 1.4856385 1.1856538 0.0000000 0.5642569 2.1284628 0.8071017

series4 1.4856385 2.0213254 0.5642569 0.0000000 1.4284985 0.9499515

series5 1.3499311 1.9427580 2.1284628 1.4284985 0.0000000 2.7141472

series6 2.0070405 1.3570736 0.8071017 0.9499515 2.7141472 0.0000000

This can also be calculated by using the tsDatabaseDistances function:

R> tsDatabaseDistances(example.database, method="tquest",

+ tau=mean(example.database), diag=TRUE, upper=TRUE)

Example 8 The zoo.database object is not a matrix, so the distance matrix calculation can
not be done by using the dist function directly. In this case, the calculation must be done in
the following manner:

R> tsDatabaseDistances(zoo.database, method="tquest",

+ tau=mean(zoo.database), diag=TRUE, upper=TRUE)

series1 series2 series3 series4 series5 series6

series1 0.0000000 1.9070456 1.4856385 1.4856385 1.3499311 2.0070405
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series2 1.9070456 0.0000000 1.1856538 2.0213254 1.9427580 1.3570736

series3 1.4856385 1.1856538 0.0000000 0.5642569 2.1284628 0.8071017

series4 1.4856385 2.0213254 0.5642569 0.0000000 1.4284985 0.9499515

series5 1.3499311 1.9427580 2.1284628 1.4284985 0.0000000 2.7141472

series6 2.0070405 1.3570736 0.8071017 0.9499515 2.7141472 0.0000000

5. Summary and comparison of time series distance packages in R

As commented previously and to the extent of our knowledge, apart from TSdist, two other
packages of R provide implementations of distances for time series: dtw and TSclust.

In Table 4, a summary of the distance measures included in these packages is presented,
providing a complete view of the different options available for time series data mining pur-
poses. As can be seen, the three packages focus on different distances and are, therefore,
complementary.

dtw TSclust TSdist

Shape-based distances

Lp distances X
Short Time Series Distance (STS) X
Complexity Invariant Time Series Distance X
DISSIM X
Approximated DISSIM X
Dynamic Time Warping (DTW) X X
Keogh LB (DTW) X

Edit based distances

Edit Distance for Real Sequences (EDR) X
Edit Distance with Real Penalty (ERP) X
Longest Common Subsequence (LCSS) X

Feaure-based distances

Autocorrelation based X
Pearson correlation based X X
Cross-correlation based X
Discrete Fourier Decomposition based X
Wavelet Decomposition based X
Periodogram based X
SAX based X
Spectral Density based X
TQuest X

Structure-based distances

ARIMA model based X
Compression based X
Non Parametric Forecast based X

Table 4: Summary of distance measures for time series implemented in R.
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The first package, dtw, focuses on a unique distance measure, DTW, and provides an in depth
approximation to it, providing many different options and variations of this distance measure.
On the contrary, TSclust provides a wide spectrum of simple distance measures, mostly based
on the structure of the series or on different features extracted from them. It must be noted
that some of these distances are quite ad-hoc and uncommon and are not mentioned in recent
reviews (Liao 2005; Esling and Agon 2012; Wang et al. 2012). Finally, our package TSdist fills
the gaps left by these two packages by implementing many of the most common and popular
distance measures proposed in the reviews mentioned. Specifically, in addition to adding
new measures to the shape-based and feature-based distance categories, edit based distances
for numeric time series have been included, which was a completely overlooked category of
distance measures in previous R packages.
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