
CIOP Report 01-2011 Tuned Data Mining in R 1

The TDMR Framework:
Tuned Data Mining in R

Wolfgang Konen, Patrick Koch

Cologne University of Applied Sciences

Last update: October 2011

Using TDMR

Overview
The TDMR framework is written in R with the aim to facilitate the training, tuning and evaluation of
data mining models. It puts special emphasis on tuning these data mining models as well as
simultaneously tuning certain preprocessing options. TDMR is especially designed to work with SPOT
[Bart10e] as the preferred tuner, but it offers also the possibility to use other tuners, e.g., CMA-ES
[Hans06], LHD [McKay79] or direct-search optimizers [BFGS, Powell] for comparision.

This document

 gives a short overview over the TDMR framework,

 explains some of the underlying concepts and

 shows an example usage: how to use TDMR on a new data mining task.

This document concentrates more on the software usage aspects of the TDMR framework. For a
more scientific discussion of the underlying concepts and the results obtained, the reader is referred
to [Kone10a, Kone11b].

TDMR Workflow

Phase 1: DM without SPOT
Two kinds of DM tasks, classification or regression, can be handled.

For each DM task TASK, create one task-specific function main_TASK(opts=NULL), as short as
possible. If called without any parameter, main_TASK() should set default parameters for opts via
tdmOptsDefaultsSet(). main_TASK() reads in the task data, does the preprocessing if necessary and
then calls with the preprocessed data dset the task-independent functions tdmClassifyLoop or
tdmRegressLoop, which in turn call the task-independent functions tdmClassify or tdmRegress.

A template may be copied from inst/demo02sonar/main_sonar.r. [Here and in the following inst/
refers to the directory where the package TDMR is installed, use .find.package(“TDMR”) to
locate this directory.] The template is invoked with

 result <- main_sonar();

See Sec. “Example Usage” (Phase 1) for a complete example.

See Table 3 for an overview of elements in list result.

CIOP Report 01-2011 Tuned Data Mining in R 2

Phase 2: Tuned Data Mining in R (TDMR)
A TDMR task consists of a DM task (Phase 1) plus a SPOT configuration (decision which parameters to
tune within which ROI, which meta parameters to set for SPOT, …).

For each DM task a subdir TASK in TDM.SPOT.d should be created. In this subdir the files shown in
Table 1 have to be created for each SPOT configuration (each TDMR task):

Table 1: Configuration files for a SPOT run

.apd problem design: all opts-settings

.roi SPOT ROI file, specifies which parameters to tune in which ROI

.conf SPOT configuration file, usually with alg.func = "tdmStartSpot". Furthermore,
io.apdFileName and io.roiFileName should specify the two files above.

Templates for these three files may be copied from inst/demo02sonar/sonar_01.*.

The whole SPOT tuning can be started with a small file script_phase2.r in the user directory. A
template can be found in inst/demo02sonar:

 source("script_phase2.r");

This script will define a main_TASK in tdm$mainCommand, reads the .apd file and calls SPOT. SPOT
reads the .conf file, calls the generic function tdmStartSpot(spotConfig), which finally executes
tdm$mainCommand.

The only requirement on tdm$mainCommand is that it returns in

 result$y

a suitable quantity to be minimized by SPOT.

If spot.fileMode==T, SPOT will generate .des and .aroi files (needed by SPOT internally) and the
output files .bst and .res.

If spot.fileMode==F, tdmStartSpot will read the design from spotConfig$alg.currentDesign and it
writes the .res data frame onto spotConfig$alg.currentResult.

See Sec. “Example Usage” (Phase 2) for a complete example.

Phase 3: “The Big Loop”: Several TDMs with Unbiased Evaluations
“The Big Loop” is a script to start several Phase-2-TDMR tasks (usually on the same DM task),
optionally with several tuners (see here for a list of tuners) and compare their best solutions with
different modes of unbiased evaluations, e.g. on unseen test data (tdm$umode = ”TST”) or by
starting a new, independent CV (tdm$umode = “CV”) or by starting a new, independent
resubsampling (tdm$umode = “RSUB”).

To start the Big Loop, only one file has to be created in the user directory: script_all.R. A template
may be copied from inst/demo02sonar/.

It is invoked with

 source("script_all.R")

This will specify in runList the list of TDMR tasks and a list of tuners. For each TDMR task and each
tuner

(a) the tuning process is started (if spotStep=”auto”) or a previous tuning result is read in from
file (if spotStep=”rep”) and

(b) one or more unbiased evaluations are started. This is to see whether the result quality is
reproducible on independently trained models and / or on independent test data.

CIOP Report 01-2011 Tuned Data Mining in R 3

The result is a data frame theFinals with one row for each TDMR task / each tuner and several
columns measuring the success of the best tuning solution in different unbiased evaluations, see
Table 2. The data frame theFinals is written to tdm$finalFile.

See Sec. “Example Usage” (Phase 3) for a complete example.

TDMR Experiment Concept
TDMR Phase 3 (“The Big Loop”) allows

(a) to conduct experiments, where different .conf files, different tuners, different unbiased
evaluations, … are tried on the same task;

(b) to repeat certain experiments of kind (a) multiple times with different seeds
(tdm$nExperim>1).

Details:

 Each experiment of kind (a) initially deletes file tdm$finalFile, if it exists, and then writes for each
combination {.conf file, tuner} it encounters a line to tdm$finalFile (usually a file with suffix .fin). This
line is a one-row data frame finals which is built in unbiasedBestRun_C.r (classification) and contains

the columns listed in Table 2.

Table 2: Elements of data frame finals

finals$ Description Condition

 <<columns obtained from the tuning process>>

CONF the base name of the .conf file

TUNER the value of tdm$tuneMethod

{PARAMS} all tuned parameters appearing in .roi file if tdm$withParams==T

NEVAL tuning budget, i.e. # of model evaluations during tuning (rows
in data frame res)

RGain.bst best solution (RGain) obtained from tuning

RGain.avg average RGain during tuning (mean of res$Y)

 <<columns obtained from the unbiased runs>>

NRUN # of runs with different test & train samples in
unbiasedBestRun_*.r or # of unbiased CV-runs. Usually NRUN =
tdm$nrun, see fct map.opts in tdmMapDesign.r.

RGain.OOB mean OOB training error (averaged over all unbiased runs) if opts$method = *.RF

sdR.OOB std. dev. of RGain.OOB if opts$method = *.RF

RGain.TRN mean training error (averaged over all unbiased runs) if opts$method *.RF

sdR.TRN std. dev. of RGain.TRN if opts$method *.RF

RGain.RSUB mean test RGain (test set = random subsample) if tdm$umode has “RSUB”

sdR.RSUB std. dev. of RGain.RSUB (averaged over all unbiased runs) if tdm$umode has “RSUB”

RGain.TST mean test RGain (test set = separate data, user-provided) if tdm$umode has “TST”

sdR.TST std. dev. of RGain.TST (averaged over all unbiased runs) if tdm$umode has “TST”

RGain.CV mean test RGain (test set = CV, cross validation with tdm$nfold
CV-folds

if tdm$umode has “CV”

sdR.CV std. dev. of RGain.CV (averaged over all unbiased runs) if tdm$umode has “CV”

 In the case of regression experiments (unbiasedBestRun_R.r) each “RGain” has to be replaced by
“RMAE” in the table above, see here for further explanation.

TDM-docu.docx#Phase 3:

CIOP Report 01-2011 Tuned Data Mining in R 4

 If tdm$experFile is not NULL, then the same one-row data frame finals is also appended to the file
tdm$experFile. Usually, tdm$experFile is a file with .exp as suffix. This file is never deleted by the
TDMR system, only the user may delete it. tdm$experFile serves the purpose to accumulate
experiments carried out multiple times (with different random seeds). This multiple-experiment
execution may be done either directly, within one ‘big-loop’ experiment, if tdm$nExperim>1, or it may
be done subsequently by the user when starting script_all.R again at a later point in time with the
same tdm$experFile defined.

 An .exp file can be analyzed with scripts like exp_summ.r in TDM.SPOT.d/appAcid/.

TDMR Important Variables

Table 3: Overview of important variables in TDMR

opts list with DM settings (used by main_TASK and its subfunctions). Parameter groups:

 opts$READ.* # reading the data

 opts$TST.* # test set and resampling

 opts$PRE.* # preprocessing

 opts$SRF.* # sorted random forest (or similar other variable rankings)

 opts$RF.* # Random Forest

 opts$SVM.* # Support Vector Machine

 opts$GD.* # graphic device issues

dset preprocessed data set (used within main_TASK and its subfunctions)

result list with results from Phase 1:
In the case of regression, this list is of class TDMregressor contains (see tdmRegress.r):

 opts # with some settings perhaps adjusted in tdmRegress

 last_res # last run, last fold: result from tdmRegress

 R_train # RMAE on training set (vector of length NRUN)

 S_train # RMSE on training set (vector of length NRUN)

 T_train # Theil's U for RMAE on training set (vector of length NRUN)

 *_test # --- similar, with test set instead of training set

 y # what to be minized by SPOT, usually mean(R_test)

In the case of classification, this list of class TDMclassifier contains (see tdmClassify.r):

 opts # with some settings perhaps adjusted in tdmClassify

 last_res # last run, last fold: result from tdmClassify

 C_train # classification error on training set (vector of length NRUN)

 G_train # gain on training set (vector of length NRUN)

 R_train # relativ gain (% of max. gain) on training set (vector of length NRUN)

 *_test # --- similar, with test set instead of training set

 *_test2 # --- similar, with test2 set instead of training set

 y # what to be minized by SPOT, usually mean(-R_test)

tdm list with settings for Phase 2 and 3. Elements are

 mainFile (with path relative to current dir)

 mainCommand (string, e.g. "result <- main_sonar(opts) ")

 unbiasedFunc (string, e.g. "unbiasedBestRun_C")

 umode: list of unbiased evaluation modes, with elements from
,“TST”,”RSUB”,”CV”-, see tdmMapDesign.r, tdmCompleteEval.r

 finalFile, (string, e.g. "sonar.fin")

 withParams: T/F, has theFinals columns with best parameters?

finals see Table 2

envT environment, see Table 5

CIOP Report 01-2011 Tuned Data Mining in R 5

TDMR opts Concept
opts is a long list with many parameters which control the behaviour of main_TASK, i.e. the
behaviour of Phase 1. To give this long list a better structure, the parameters are grouped with key

words after “opts$” and before “.” (see Table 3 above).

There are some other parameters in opts which do not fall in any of the above groups, e.g.

 opts$NRUN

 opts$VERBOSE

 opts$CLASSWT

and others.

You might either specify all opts-parameters in your application (i.e. main_TASK.r or *.apd) or you
might use tdmOptsDefaultsSet() and specify only those of the opts-parameters which differ from this
defaults or you enter main_TASK.r with a partially filled opts and leave the rest to function
tdmFillOptsDefaults (in tdmOptsDefaults.r), which is called from main_TASK after the user’s opts-
settings (because some settings might depend on these settings of the user).

Details:

 If the list opts is extended by element X in the future, you need only to add a default specification of

opts$X in function tdmOptsDefaultsFill, and all functions called from main_TASK will inherit this
default behaviour.

 TODO: why two function set.. and fil… : set only if opts==NULL

 opts$TST.kind=”rand” triggers random resampling for the division of dset into training and test set. In
the case of classification this resampling is done by stratified sampling: each level of the response
variable appears in the training set in proportion to its relative frequency in dset, but at least with one
record. This last condition is important to ensure proper functioning also in the case of ‘rare’ levels
(most DM models will crash if a certain level does never appear in the training set). In the case of
regression the sample is drawn randomly (without stratification).

TDMR RGain Concept
For classification: The R_-elements (i.e. result$R_train and result$R_test) can contain different
things, depending on the value of opts$rgain.type:

- “rgain” or NULL *def.+: the relative gain in percent, i.e. the gain actually achieved divided by
the maximal achievable gain on the given data set,

- “meanCA”: mean class accuracy: For each class the accuracy on the data set is calculated and
the mean over all classes is returned,

- “minCA”: same as “meanCA”, but with min instead of mean. For a two-class problem this is
equivalent to maximizing the min(Specifity,Sensitivity) (see here).

In each classification case, TDMR seeks to minimize “–result$R_train”, i.e. to maximize
result$R_train.

For regression: The R_‐elements (i.e. result$R_train and result$R_test) can contain different things,
depending on the value of opts$rgain.type:

- “rmae” or NULL *def.+: the relative mean absolute error RMAE, i.e. the mean <|y – y(pred)|>
divided by the mean <|y|>,

- “rmse”: root mean square error.
In each regression case, TDMR seeks to minimize result$R_train.

Example Usage
The usage of the TDMR workflow is fairly easy. We show it for the three workflow phases and for the
example of the SONAR classification task.

Phase 1: DM on task SONAR
If you want to build a DM classification model for the SONAR data (see UCI repository or package
mlbench for further info on SONAR), you write a file main_sonar.r in directory ClassifyTemplate:

file:///C:/Dokumente%20und%20Einstellungen/wolfgang/Anwendungsdaten/Microsoft/Word/Benchmark-Datasets.doc%23AppQSAR

CIOP Report 01-2011 Tuned Data Mining in R 6

main_sonar <- function(opts=NULL) {
 tdmPath <- "../tdm";
 source(paste(tdmPath,"source.tdm.r",sep="/")); source.tdm(tdmPath);

 if (is.null(opts)) {
 opts = tdmOptsDefaultsSet(); # set initial defaults for many elements of opts. See tdmOptsDefaults.r

 # for the list of those elements and many explanatory comments
 opts$filename = "sonar.txt"
 opts$data.title <- "Sonar Data"

 }
opts <- tdmOptsDefaultsFill (opts,".txt"); # fill in all opts params which are not yet set (see tdmOptsDefaults.r)

tdmGraAndLogInitialize(opts); # init graphics and log file

#===
PART 1: READ DATA
#===
cat1(opts,opts$filename,": Read data ...\n")
dset <- read.csv2(file=paste(opts$dir.data, opts$filename, sep=""), dec=".", sep=",",header=F)
 names(dset)[61] <- "Class" # 60 columns V1,...,V60 with input data,
 # one response column "Class" with levels ["M" (metal) | "R" (rock)]

response.variable <- "Class" # which variable is response variable

which variables are input variables (in this case all others):
input.variables <- setdiff(names(dset), c(response.variable))

#===
PART 2: Model building and evaluation
#===
result <- tdmClassifyLoop(dset,response.variable,input.variables,opts);

print summary output and attach certain columns (here: y, sd.y, dset) to list result:
result <- tdmClassifySummary(result,opts,dset);

tdmGraAndLogFinalize(opts); # close graphics and log file

result;

}

This function is invoked with

 result <- main_sonar();

The control flow will pass through the branch if (is.null(opts)), where all defaults for opts are set with
function tdmOptsDefaultsSet(). This specifies for example, that an RF model will be built. The dataset
will be divided in a training part (90%) and test part (10%), based on opts$TST.kind=”rand”,
opts$TST.frac=0.1. You need to specify only those things which differ from tdmOptsDefaultsSet(): in
this case the filename of the SONAR dataset. Since you do not specify anything from the opts$SRF-
block, you use the default SRF variable ranking (opts$SRF.kind =”xperc”, opts$SRF.Xperc=0.95). This
means that the most important columns containing about 95% of the overall importance will be
selected.

You need to specify what column in dset is response variable (classification target) and what columns
are used for input (in this case all the others, because the SONAR dataset does not have ID columns
or otherwise irrelevant columns).

CIOP Report 01-2011 Tuned Data Mining in R 7

Function tdmClassifyLoop() is started, it builds an RF model using the training data and evaluates it
on training and test data.

Some output:

sonar.txt : Train RF (importance) ...
Target levels: M R
sonar.txt : Saving sorted RF importance to file ./Output/sonar.txt.SRF.Class.Rdata ...
Variables sorted by importance (60):
[1] "V9" "V11" "V12" "V10" …
Dropped columns (8 [= 4.8% of total importance]):
[1] "V1" "V30" "V60" "V56" "V41" "V24" "V25" "V57"
Training cases (188):
 predicted
actual M R
 M 98 8
 R 22 60
total gain: 158.0 (is 0.840% of max. gain = 188.0)

Some graphics output:

Figure 1: RF-based variable importance for task
SONAR.

Figure 2: True/false classification for the
two classes M and R of task SONAR.

The two plots in Figure 1 show the RF-based importance, where MeanDecreaseAccuracy, which has
V9, V11 and V12 as the most important variables, is the more reliable measure. The right plot in
Figure 2 shows the true/false classifications on the test set (which is here however rather small, so
the results are not very reliable, a more reliable test set classification would be obtained with CV).

Phase 2: SPOT tuning on task SONAR
If you want to do a SPOT tuning on task SONAR, you should follow the steps described in TDMR
Workflow, Phase 2 and create the three small files sonar.conf, sonar.apd and sonar.roi. The files’
content may look for example like this:

sonar_01.conf:

alg.language = "sourceR"
alg.path="."
alg.func = "tdmStartSpot"

CIOP Report 01-2011 Tuned Data Mining in R 8

alg.resultColumn = "Y"
alg.seed = 1235

io.apdFileName = "sonar_01.apd"
io.roiFileName = "sonar_01.roi"
io.verbosity = 3;
auto.loop.steps = 50; # number of SPOT’s sequential generations
auto.loop.nevals = 100; # concurrently, max number of algo evaluations may be specified

init.design.func = "spotCreateDesignLhd";
init.design.size = 10; # number of initial design points
init.design.repeats = 1; # number of initial repeats

seq.merge.func <- mean;
seq.design.size = 100;
seq.design.retries = 15;
seq.design.maxRepeats = 2;
seq.design.oldBest.size <- 1;
seq.design.new.size <- 3;
seq.predictionModel.func = "spotPredictRandomForest";

report.func = "spotReportSens"

sonar_01.apd:

if (is.na(match("tdm",ls()))) tdm <- list();
tdm$mainFile <- "../../ClassifyTemplate/main_sonar.r";
tdm$mainCommand <- "result <- main_sonar(opts)";

opts = tdmOptsDefaultsSet(); # set initial defaults for many elements of opts.
opts$filename = "sonar.txt"
opts$data.title <- "Sonar Data"
opts$RF.mtry = 4
opts$NRUN = 1 # how many runs with different train & test samples - or -
 # how many CV-runs, if TST.kind="cv"
opts$GRAPHDEV="non";
opts$GD.RESTART=F;
opts$VERBOSE= opts$SRF.verbose = 0;

sonar_01.roi:

name low high type
CUTOFF1 0.1 0.80 FLOAT
CLASSWT2 5 15 FLOAT
XPERC 0.90 1.00 FLOAT

The three parameter CUTOFF1, CLASSWT2 and XPERC are tuned within the borders specified by
sonar_01.roi. Usually you should set opts$GRAPHDEV=”non” and opts$GD.RESTART=F to avoid any
graphic output and any graphics device closing from main_sonar.r, so that you get only the graphics
made by SPOT.

After this preparation, the SPOT tuning is started with:

script_phase2.r:

1

tdm=list(mainCommand="result<-main_sonar(opts)",mainFile="main_sonar.r");

opts <- NULL;

source("sonar_01.apd"); # read in opts-settings

source(tdm$mainFile);

1 Template available from inst/demo02sonar.

CIOP Report 01-2011 Tuned Data Mining in R 9

spotUserConfig = list(tdm=tdm,spot.fileMode=F, opts=opts);

spotConfig = spot("sonar_01.conf","auto",spotConfig=spotUserConfig);

It will generate the usual SPOT result files (see SPOT manual [Bart10e])

- sonar_01.res
- sonar_01.bst

The tuning will stop after 16 sequential steps
with the configuration CONFIG=58, because
the budget of auto.loop.nevals=100
evaluations is exhausted. The best solution can
be seen from the last line of sonar_01.bst (or
alternatively from the printout of
spotConfig$alg.currentBest).

With

 spot(“sonar_01.conf”,”rep”);

the results from a prior tuning run producing
sonar_01.res are read in again and a report
including a sensitivity plot (see Figure 3) is
made.

More Details:

When spot(“sonar_01.conf”,”auto”) is invoked, the following things happen:

 SPOT is started, reads from sonar_01.conf that
it has to call the inner function
 alg.func = "tdmStartSpot".

 tdmStartSpot(spotConfig) gets with the
elements tdm and opts of spotConfig the required information

tdm$mainFile <- "main_sonar.r";
tdm$mainCommand <- "result <- main_sonar(opts)";

changes to the directory of tdm$mainFile (current dir in the case of this example) and invokes the DM
template main_sonar.r to with result <- main_sonar(opts).

 Now tdm$mainCommand is started and runs the data mining process. The DM template main_sonar is
provided by the user. The only requirement of SPOT or other tuners for the function main_sonar is
that it returns in
 result$y
a suitable quantity to be minimized by SPOT.

More Details:

 For a new task TASK, the opts-part of .apd can usually be copied from the opts-part of main_TASK.

 Usually, TASK_02.apd, TASK_03.apd, … will start with source(TASK_01.apd,local=T) and will only

specify those elements of opts which need to be different.

 For reproducability of experiments each TDMR task should get its own task name TASK_01, TASK_02,
… and the associated set of files (.apd, .conf, .roi …) should kept unchanged for further reference. DO
NOT alter later the settings in a TDMR task file (unless you want to delete and overwrite the old
experiment), but create a new TASK_xx with its own set of files.

 If a new parameter appears in a .roi file which never appeared in any other .roi file before, a line has
to be added to tdmMapDesign.csv, specifying the mapping of this parameter to the corresponding
element of opts. (more details here)

 For the current developper version SPOT is loaded from source files (pre-defined locations, may need
adjustments in sourceSPOT.R). If you want to start SPOT simply from the CRAN package version, which

Figure 3: Sensitivity plot. Each ROI [low,high] is
mapped to the normalized ROI [-1,1] on the
abscissa.

CIOP Report 01-2011 Tuned Data Mining in R 10

has been installed as library in the usual way, set
 tdm$theSpotPath <- NA;
If you want to load SPOT from source files in pre-defined loacations (see sourceSPOT.R), set
 tdm$theSpotPath <- “USE.SOURCE”;
If you want to load SPOT from your own source directory, set tdm$theSpotPath to this directory.

 How does SPOT handle it, if confFile and spotConfig are both present, e.g. in a call
spot(confFile,"auto",spotConfig):

o Initial defaults for all elements in spotConfig are set inside SPOT (see spotGetOptions.R).
o If confFile exists (only then!), it is read and settings found in confFile overwrite the

defaults (see spotGetOptions.R).
o If spot is called with parameter spotConfig present, then the elements found in this

command line parameter overwrite the settings of step 2.

Phase 3: “The Big Loop” on task SONAR
To start “The Big Loop”, you configure a file script_all.R (a template is in inst/demo02sonar/), which
may look like this:

tdm <- list(tdmPath=NULL # from where to load TDMR: if NULL, load package TDMR,
 # else: source R-files from this dir
 , unbiasedFunc="unbiasedBestRun_C"
 , umode=c("CV") # ,"RSUB"
 , mainFile="main_sonar.r"
 , mainCommand="result <- main_sonar(opts)"
 , tuneMethod=c("spot","lhd") # ["spot" "cmaes" "bfgs" "lhd"]
 , finalFile="sonar.fin"
 , experFile=NULL # "sonar.exp"
 , nrun=3, nfold=2 # repeats and CV-folds for the unbiased runs
 , optsVerbosity=0 # the verbosity for the unbiased runs
 , withParams=TRUE
 , nExperim=2
 , parallelCPUs = 1 # [1] 1: sequential, >1: parallel with snowFall and this many cpus
);
runList = c("sonar_02.conf","sonar_03.conf");
spotList = NULL # list(); # =NULL: all in runList; =list(): none
spotStep = "auto";

envT <- tdmCompleteEval(runList,spotList,spotStep,tdm);

script_all.R specifies a list of TDMR tasks in runList (a list of .conf files), specifies a list of tuners in
tdm$tuneMethod, e.g. c(“spot”,“cmaes”), sets other values of tdm and calls tdmCompleteEval.

Here, this script will trigger the following sequence of experiments:

- sonar_02.conf is started with tuner (a) lhd and (b) spot
- sonar_03.conf is started with tuner (a) lhd and (b) spot

This sequence of 4 tuning experiments is repeated nExperim=2 times. The corresponding 8 result
lines are written to tdm$finalFile. If (tdm$experFile != NULL), these lines are also appended to file
tdm$experFile. The switch withParams=TRUE is only sensible if both .conf files have the same set of
parameters in their .roi file.

The result theFinals from the last experiment (4 result lines) is in file sonar.fin:

CONF TUNER CLASSWT2 XPERC NRUN NEVAL RGain.bst RGain.avg RGain.OOB sdR.OOB RGain.RSUB sdR.RSUB
sonar_02 lhd 12.026543 0.930197 3 36 86.70213 84.3676 84.4311 1.03715 83.73984 5.63268
sonar_02 spot 14.713475 0.981312 3 36 86.96809 84.6926 85.6287 1.03715 86.99187 7.04085
sonar_03 lhd 8.037636 0.954494 3 36 81.91489 78.6643 80.4391 1.82937 79.67480 7.45134
sonar_03 spot 7.375221 0.914740 3 35 81.91489 78.7082 78.8423 0.34571 74.79675 2.81634

CIOP Report 01-2011 Tuned Data Mining in R 11

Here CLASSWT2 and XPERC are the tuning parameters, the other columns are defined in Table 2.

In the case of the example above, the tuning process had a budget of NEVAL=36 model trainings,
resulting in a best solution with class accuracy RGain.bst (in %). The average class accuracy (mean
w.r.t. all design points) during tuning is RGain.avg. When the tuning is finished, the best solution is
taken and NRUN=3 unbiased evaluation runs are done with the parameters of the best solution.
Since the classification model in this example is RF (Random Forest), an OOB-error from the 3
trainings is returned, with average RGain.OOB and standard deviation sdR.OOB. Additionally,
NRUN=3 trainings are done with random subsampling (RSUB) of the data set in training and test set,
resulting in an average class accuracy on the test set RGain.RSUB and the corresponding standard
deviation in sdR.RSUB.

In this case the interpretation of the results is quite clear: The best configuration is sonar_02.conf
with TUNER spot, since this line contains the maximum for all columns RGain.bst, RGain.avg,
RGain.OOB and RGain.RSUB. Note that the standard deviation sdR.RSUB is in this case quite large
(because the test set is very small). A more reliable result might be obtained with “CV” instead of
“RSUB”.

Details:

 script_all.R should be created in and called from the TASK subdir (e.g. TDM.SPOT.d/sonar/). The .conf
files in runList should reside in the same directory and should be given w/o path (since TDMR will infer
other files, e.g. sonar_01.apd, from it).

 spotList is a list of .conf files for which the tuners will be started (NULL for all from runList). If a tuner is
not started for a certain .conf file it is assumed that its .bst file already exists from a prior run.

 spotStep is a list of strings (may be shorter than runList, then it is cyclically reused) which specifies the
SPOT step to be invoked. If e.g. the step is “rep” (“report”), then it is assumed that the .bst file already
exists.

Some more details for the developer:

 The unbiased evaluations are done for each element of tdm$umode by calling the function
unbiasedBestRun_*(…,umode,…) **=C for classification and *=R for regression]. The function
unbiasedBestRun_* reads in the best solution of a tuning run from .bst file, performs a re-run (training
+ test) with these best parameters.

 script_all.R in the form given above assumes that library TDMR is loaded. If you want instead to
‘source’ all necessary R-files from tdm$tdmPath (e.g. during development) OR if you want to prepare
for parallel execution (more details …), then add the following lines after the definition of tdm to
script_all.R:

 tdm$theSpotPath <- NA;

 start.tdm.path <- ifelse(is.null(tdm$tdmPath),

 .find.package("TDMR"),paste(tdm$tdmPath,"inst",sep="/"));

 source(paste(start.tdm.path,"start.tdm.r",sep="/"),local=T);

This will locate the script start.tdm.r (either in the directory of library TDMR or in the sources) and
execute it. In this way, script_all.R can be started directly at the beginning of an R-session, w/o a prior
require(TDMR). The line tdm$theSpotPath <- NA; means that SPOT is loaded as a package. If it
specifies instead the path to the SPOT source, then SPOT’s R-files will be ‘sourced’ from there.

 script_all.R starts the definition of list tdm. If some elements are not def’d, suitable defaults will be
added later to tdm at the beginning of tdmCompleteEval with function tdmDefaultsFill(tdm).

CIOP Report 01-2011 Tuned Data Mining in R 12

Extending TDMR

TDMR Tuner Concept

How to use different tuners
If you want to tune a TDMR-task with two tuners SPOT and CMA-ES: Simply specify

 tdm$tuneMethod = c(“spot”,”cmaes”)

in script_all.R and set the variable spotStep to “auto”. The tuning results (.bst and .res files) will be
copied into subdirs “spot” and “cmaes” of the directory from which you start script_all.R.

Table 4: Tuners availabe in TDMR

tdm$tuneMethod Description

spot Sequential Parameter Optimization Toolbox

lhd Latin Hypercube Design (truncated SPOT, all budget for the initial step)

cmaes Covariance Matrix Adaption ES

powell Powell’s Method (direct & local search)

bfgs Broyden, Fletcher, Goldfarb and Shannon method (direct & local search)

bobyqa direct & local search, with constraint handling

How to integrate new tuners
Originally TDMR was only written for SPOT as tuning method.

In November 2010, we started to add other tuners to aid the comparision with SPOT on the same
footing. As the first other tuner, we introduced CMA-ES (Niko Hansen, R-package by Olaf Mersmann
and others). Since comparision with SPOT is the main issue, CMA-ES was wrapped in such a way in
tdmDispatchTuner.r that the behaviour and output is very similar to SPOT.

This has the following implications which should also be obeyed when adding other tuners to TDMR:

 Each tuning method has a unique name (e.g. “spot”, “cmaes”): this name is an allowed entry
for tdm$tuneMethod and finals$TUNER and it is the name of a subdir in TDM.SPOT.d/TASK/.

 Each tuner writes result files (.bst, .res) in a fashion similar to SPOT. These result files are
copied to the above mentioned subdir at the end of tuning. This facilitates later comparision
of results from different tuners.

 Each tuner supports at least two values for spotStep: “auto” and “rep” (=”report”). In the
latter case it is assumed that .bst and .res already exist (in their subdir) and they are usually
analysed with spot(confFile,”rep”,…).

 Each tuner reads in the .conf file and infers from spotConfig the tuner settings (e.g. budget
for function calls, max repeats, …) and tries to make its tuning behaviour as similar to these
settings as possible.

For the current CMA-ES tuner the relevant source code for integration in TDMR is in functions
tdmDispatchTuner and cmaesTuner (both in tdmDispatchTuner.r) and in tdmStartCMA.r.

These functions may be used as templates for the integration of other tuners in the future.

TDMR Design Mappping Concept
Each variable appearing in.roi file (and thus in .des file) has to be mapped on its corresponding value
in list opts. This is done in the file tdmMapDesign.csv:

roiValue optsValue isInt

CIOP Report 01-2011 Tuned Data Mining in R 13

MTRY opts$RF.mtry 1

XPERC opts$SRF.Xperc 0

… … …

If a variable is defined with isInt=1, it is rounded in opts$... to the next integer even if it is a non-
integer in the design file.

The file tdmMapDesign.csv exists twice, once in ClassifyTemplate/ and once in RegressionTemplate/,
(because classification and regression might define different sets of parameters)

The base file tdmMapDesign.csv is read from <packageDir> = .find.package(“TDMR”).2 If in the
<dir_of_main_task> = dirname(tdm$mainFile) an additional file userMapDesign.csv exists, it is
additionally read in and added to the relevant data frame. The file userMapDesign.csv makes the
mapping modifiable and extendable by the user without the necessity to modify the corresponding
source file tdmMapDesign.r.

These files are read in when starting tdmCompleteEval via function tdmMapDesLoad and the
corresponding data frames are added to envT$map and envT$mapUser, resp. This is for later use by
function tdmMapDesApply; this function can called from the parallel slaves, which might have no
access to a file system.

How to add a new tuning variable
 add a new line to userMapDesign.csv or to tdmMapDesign.csv

 (optional) add a line to tdmOptsDefaultsSet(), if all existing and further tasks should have a
default setting for this variable

Details
 We have beneath {tdmMapDesLoad, tdmMapDesApply} a second pair of functions

{tdmMapDesSpot$load, tdmMapDesSpot$apply} with exactly the same functionality. Why? – The
second pair of functions is for use in tdmStartSpot(spotConfig) where we have no access to envT due
to the calling syntax of spot(). Instead the object tdmMapDesSpot store the maps in local, permanent
storage of this object’s environment. The first pair of functions is for use in tdmStartOther, especially
when called by a separate R process when using the tuner cma_j. In this case the local, permanent
storage mechanism does not work across different R sessions. Here we need the envT-based solution
of the first pair, since the environment envT can be restored across R sessions easily via save & load.

TDMR parallel computing concept

How to use parallel computing
TDMR supports parallel computing through the packages snow and snowfall [Knaus08, Knaus09].
Parallelization of TDMR’s phase-3-tasks is very easy, you simply have to set tdm$parallelCPUs to a
suitable value >1.

 We parallelize the tdmDispatchTuner-calls which are currently inside the 3-fold loop
{tdm$nExperim, runList, tdm$tuneMethod). Therefore, these loops are written as sapply
commands, which can be transformed to sfSapply.

 Four operating modes:

tdm$parallelCPUs tdm$fileMode mode

=1 FALSE sequential, everything is returned via
environment envT, no files are written

=1 TRUE sequential, everything is returned via
environment envT, and logged on several files

>1 FALSE parallel, everything is returned via environment

2 resp. from tdm$tdmPath/inst/ for the developer version.

CIOP Report 01-2011 Tuned Data Mining in R 14

envT, no files are written or read

>1 TRUE parallel, everything is returned via environment
envT, and logged on several files

{=1,TRUE} is the current state of the source code (May’2011).
{>1,TRUE} is the parallel mode viable on maanvs-clusters at GM.
[>1,FALSE} is the parallel mode needed for LIDO (TU DO). It requires more software redesign,
since the code should make no file access (no sourcing, no data set reading!) below the call
to tdmDispatchTuner.
The switch tdm$fileMode==FALSE is not yet ready (as of June’2011), but should be available
in the near future.

Environment envT
The environment envT is used to pass necessary information to and back from the parallel slaves. It
replaces in nearly all cases the need for file reading or file writing. (File writing is however still
possible for the sequential case or for parallel slaves supporting file access. File writing might be
beneficial to trace the progress of parallel or sequential tuning processes while they are running and
to log the resulting informations.)

Environment envT is constructed in tdmCompleteEval. Table 5 shows its elements and it shows in the
3rd column which function adds these elements to envT:

Table 5: Elements of environment envT

variable remark function

bst data frame with contents of last .bst file tdmStartOther or
spotTuner, lhdTuner

bstGrid list with all bst data frames, bstGrid[[k]]
retrieves the kth data frame

tdmCompleteEval or
populateEnvT

getBst(conf,tuner,n) function returning from bstGrid the bst

data frame for configuration file conf,

tuning method tuner and experiment n

tdmCompleteEval

res data frame with contents of last .res file tdmStart* or
tdmCompleteEval

resGrid list with all res data frames, resGrid[[k]]
retrieves the kth data frame

tdmCompleteEval or
populateEnvT

getRes(conf,tuner,n) function returning from resGrid the res

data frame for configuration file conf,

tuning method tuner and experiment n

tdmCompleteEval

result list with results of tdm$mainCommand as
called in the last unbiased evaluation, see
Table 3

unbiasedBestRun_C
or
unbiasedBestRun_R

theFinals data frame with one row for each res file,
see Table 2

tdmCompleteEval or
populateEnvT

tdm

opts

tunerVal the value of tdmDispatchTuner (which
can be a long list in case of SPOT)

tdmDispatchTuner

spotConfig tdmCompleteEval

nGrid number of elements in bstGrid, resGrid tdmCompleteEval

nTuner length(tdm$tuneMethod) tdmCompleteEval

CIOP Report 01-2011 Tuned Data Mining in R 15

nRunList length(runList) tdmCompleteEval

runList runList tdmCompleteEval

envT is used to pass information back and forth between different fcts of TDMR, where envT$opts
and envT$tdm pass info into tdmStart*, while envT$res and envT$bst are used to pass info back from
tdmStart* to the main level.

Details
 We have in tdmCompleteEval only one parallelization mode (parallel over experiments, tuners and

.conf files). We decided that it is sufficient to have one strategy for parallelization, for all values of
tdm$parallelCPUs. We decided that it is dangerous to have nested sfSapply-calls.

 When does sfSapply return? – The snowfall manual says that sfSapply first hands out nCPU jobs to the
CPUs, then waits for all (!) jobs to return and then hands out another nCPU jobs until all jobs are
finished. sfSapply returns when the last job is finished. Therefore it is not clear what happens with
nested sfSapply-calls and we make our design in such a way that no such nested calls appear.

 We added column NEXP (=envT$nExp) to tdm$finalFile and tdm$experFile. So it might be that older
.fin and .exp files can no longer be merged with the new ones.

 File writing is no longer necessary for the process, because all data needed are logged in environment
envT. But it may be beneficial for tracing the progress of a long-running process. If tdm$fileMode=
TRUE, each parallelizable branch makes its writing in a separate directory (e.g. spot/, cmaes/, … for
different tuner branches and/or 01/, 02/, 03, … for different experiments with seeds 1,2,3,…). A
master file might collect the information from the different files in the end.

 In case tdm$nExperim>1 we write now on different .fin files, e.g.
 sonar-e01.fin, sonar-e02.fin, …
This is to avoid that parallel executing tasks will remove or write on the same .fin file concurrently.

 How and when is the res data frame passed back from SPOT? (we get an error with spot.fileMode=F).
The bst data frame is in spotConfig$alg.currentBest. – Answer: With the new SPOT package version
(>0.1.1372) and with spot.fileMode==F, the res data frame is passed back in
spotConfig$alg.currentResult. The user function spotConfig$alg.func is responsible for writing this
data frame. We do this for both values of spot.fileMode: we start in fcts spotTuner and lhdTuner a
new data frame spotConfig$ alg.currentResult (initially NULL) and fill it consecutively in tdmStartSpot.

TDMR seed Concept
In a TDMR task there are usually several places where non-deterministic decisions are made and
therefore certain questions of reproducability / random variability arise:

1) Design point selection of the tuner,
2) Test/training-set division and
3) Model training (depending on the model, RF and neural nets are usually non-determininstic,

but SVM is deterministic).

Part 1) is in the case of SPOT tuning controlled by the variable spot.seed in the .conf file. You may set
spot.seed={any fixed number} for selecting exactly the same design points in each run. (The design
point selection is however dependent on the DM process: If this process is non-deterministic (i.e.
returns different y-values on the same initial design points, you will usually get different design
points from sequential step 2 on.) Or you set spot.seed=tdmRandomSeed() and get in each tuning
run different design points (even if you repeat the same tuning experiment and even for a
deterministic DM process).

In the case of CMA-ES or other tuning algorithms, we use set.seed(spotConfig$spot.seed)
right before we randomly select the initial design point and ensure in this way reproducibility.

Part 2) and 3) belong to the DM process and the TDMR software supports here three different cases
of reproducability:

CIOP Report 01-2011 Tuned Data Mining in R 16

a) Sometimes you want two TDMR runs to behave exactly the same (e.g. to see if a certain
software change leaves the outcome unchanged). Then you may set opts$TST.SEED={any
fixed number} and opts$MOD.SEED={any fixed number}.

b) Sometimes you want the test set selection (RSUB or CV) to be deterministic, but the model
training process non-deterministic. This is the case if you want to formulate problem tasks of
exactly the same difficulty and to see how different models – or the same model in different
runs – perform on these tasks. Then you may set opts$TST.SEED={any fixed number},
opts$MOD.SEED=NULL.

c) Sometimes you want both parts, test set selection and model training, to be non-
deterministic. This is if you want to see the full variability of a certain solution approach, i.e.
if you want to measure the degree of reproducability in a whole experiment. Then you may
set opts$TST.SEED= NULL; opts$MOD.SEED=NULL.

(The case {TST.SEED= tdmRandomSeed(); MOD.SEED=any value} is a fourth possibility, but it has – as
far as I can see – no practical application).

Here tdmRandomSeed is a function which returns a different integer seed each time it is called. This
is even true, if it is called multiple times within the same second (where a function like Sys.time()
would return the same number). This can easily happen in parallel execution mode, where processes
on different slaves usually will be started in the same second.

A second aspect of random variability: We usually want each run through main_TASK (loop over i
in 1:opts$NRUN in tdmClassifyLoop) and each repeat during tuning (loop over r in
1:des$REPEATS[k] in tdmStart*) to explore different random regions, even in the case where all
seed settings (spot.seed, opts$TST.SEED an opts$MOD.SEED) are fixed. We achieve this by storing
the loop variables i and r in opts$i and opts$rep, resp., and use in tdmClassify.r the specific
seeds

 newseed=opts$MOD.SEED+(opts$i-1)+opts$NRUN*(opts$rep-1);

and

 newseed=opts$TST.SEED+(opts$i-1)+opts$NRUN*(opts$rep-1);

In this way, each run through main_TASK gets a different seed. If opts$*.SEED is {any fixed number},
the whole process is however exactly reproducible.

Why is opts$MOD.SEED=tdmRandomSeed() and opts$MOD.SEED=NULL different? – The first
statement selects a random seed at the time of definition time of opts$MOD.SEED, but uses it then
throughout the whole tuning process, i.e. each design point evaluation within this tuning has the
same opts$MOD.SEED. The second statement, opts$MOD.SEED=NULL, is different: Each time we
pass through tdmClassify (start of response.variable-loop) we execute the statement

 set.seed(tdmRandomSeed())

which selects a new random seed for each design point and each run.

Details
(RNG = random number generator)

 If TST.SEED=NULL, the RNG seed will be set to (a different) number via tdmRandomSeed() in each pass
through the nrun-loop of tdmClassifyLoop / tdmRegressLoop (at start of loop).

for (opts$rep = 1 : des$REPEATS[k])

main_TASK

 for (opts$i = 1 : opts$NRUN)

tdmClassifyLoop

CIOP Report 01-2011 Tuned Data Mining in R 17

 If MOD.SEED= NULL, the RNG seed will be set to (a different) number via tdmRandomSeed() in each
pass through the response.variable-loop of tdmClassify / tdmRegress (at start of step 4.3 “model
training”).

 Before Nov’2010 the TDMR software would not modify RNG seed in any way if TST.SEED=NULL. But
we noticed that with a call from SPOT two runs would exactly produce the same results in this case.
The reason is that SPOT fixes the RNG seed for each configuration in the same way and so we got the
same model training and test set results. To change this, we moved to the new behaviour, where each

*.SEED=NULL leads to a “random” RNG-seed at appropriate places.

TDMR Graphic Device Concept

Utility Functions tdmGraphic*
These functions are defined in tdmGraphicUtils.r and should provide a consistent interface to
different graphics device choices.

The different choices for opts$GRAPHDEV are

 “pdf”: plot everything in one multipage pdf file opts$GRAPHFILE

 “png”: each plot goes into a new png file in opts$GD.PNGDIR

 “win”: each plot goes into a new window (X11())

 “non”: all plots are suppressed (former opts$DO.GRAPHICS=F)

 opts$GRAPHDEV

utility function “pdf” “png” “win” “non”

tdmGraphicInit open multipage
pdf

(create and)
clear PNGDIR

- -

tdmGraphicNewWin - open new png
file in PNGDIR

open new
window

-

tdmGraphicCloseWin - close png file - -

tdmGraphicCloseDev close all open pdf
devices

close all open
png devices

close all devices
(graphics.off())

-

tdmGraphicCloseWin does not close any X11()-window (because we want to look at it), but it closes
the last open .png file with dev.off(), so that you can look at this .png file with an image viewer.

GD.RESTART, Case 1: main_TASK solo
if GD.RESTART==F: No window is closed, no graphic device restarted.

If GD.RESTART==T we want the following behaviour:

 close initially any windows from previous runs

 not too many windows open (e.g. if NRUN=5, nfold=10, the repeated generation of windows
can easily lead to s.th. like 250 open windows)

 the important windows should be open long enough to view them (at least shortly)

 in the end, the last round of windows should remain open.

We achieve this behaviour with the following actions in the code for the case GD.RESTART==T:

 close all open windows when starting main_TASK

 close all open windows before starting the last loop (i==NRUN, k=the.nfold) of tdmClassify

 close all open windows when starting the graphics part (Part 4.7) of tdmClassify UNLESS we
are in the last loop (i==NRUN, k=the.nfold); this assures that the windows remain open
before the graphics part, that is during the time consuming training part.

 if GD.CLOSE==T and GD.GRAPHDEV!=”win”: close in the end any open .png or .pdf

CIOP Report 01-2011 Tuned Data Mining in R 18

GD.RESTART, Case 2: During SPOT-Run “auto”
This will normally have GD.RESTART=F: No window is closed, no graphic device restarted; but also
GD.GRAPHDEV=”non”, so that no graphic is issued from main_TASK, only the graphics from SPOT.

GD.RESTART, Case 3: During unbiased runs
This will normally have also GD.RESTART=F and GD.GRAPHDEV=”non”: No graphics. But you might as
well set GD.RESTART=T and choose any of the active GD.GRAPHDEV’s before calling
unbiaseBestRun_*, if you want the plots from the last round of unbiasedBestRun_*.

Summary
This report has shown how to use TDMR, the Tuned Data Mining framework in R. The examples
shown should make the reader familiar with the concepts and the workflow phases of TDMR. They
are deliberately made with fairly small datasets in order to facilitate quick reproducability. For results
on larger datasets the reader is referred to [Kone10a, Kone11b].

References
[Bart10e] T. Bartz-Beielstein. SPOT: An R package for automatic and interactive tuning of
optimization algorithms by sequential parameter optimization. Technical Report
http://arxiv.org/abs/1006.4645 . CIOP Technical Report 05-10, FH Köln, June 2010.

[Hans06] N. Hansen. The CMA evolution strategy: a comparing review. In: J. Lozano, P. Larranaga, I.
Inza, and E. Bengoetxea, editors, Towards a new evolutionary computation. Advances on estimation
of distribution algorithms, pages 75-102. Springer, 2006.

[Kone10a] W. Konen, P. Koch, O. Flasch, T. Bartz-Beielstein. Parameter-tuned data mining: A general
framework. In F. Hoffmann and E. Hüllermeier, editors, Proceedings 20. Workshop Computational
Intelligence. Universitätsverlag Karlsruhe, 2010.

[Kone11b] W. Konen, P. Koch, O. Flasch, T. Bartz-Beielstein. Tuned Data Mining: A Benchmark Study
on Different Tuners. CIOP Technical Report 02-11, FH Köln, January 2011.

[Knaus08] Jochen Knaus, Parallel computing in R with sfCluster/snowfall, TR IMBI Uni Freiburg,
http://www.imbi.uni-freiburg.de/parallel/.

[Knaus09] Knaus, J. and Porzelius, C. and Binder, H. and Schwarzer, G., Easier parallel computing in R
with snowfall and sfCluster. The R Journal, 1:5459, 2009.

[McKay79] McKay, M.D.; Beckman, R.J.; Conover, W.J. (May 1979). "A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output from a Computer Code" (JSTOR
Abstract). Technometrics (American Statistical Association) 21 (2): 239–245. doi:10.2307/1268522.
OSTI 5236110. ISSN 0040-1706. http://www.jstor.org/pss/1268522.

http://arxiv.org/abs/1006.4645
http://www.gm.fh-koeln.de/~konen/Publikationen/GMACI10_tunedDM.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/GMACI10_tunedDM.pdf
http://maanvs03.gm.fh-koeln.de/webpub/CIOPReports.d/Kone11b.d/tdm-cioprep.pdf
http://maanvs03.gm.fh-koeln.de/webpub/CIOPReports.d/Kone11b.d/tdm-cioprep.pdf
http://www.imbi.uni-freiburg.de/parallel/
http://www.jstor.org/pss/1268522
http://www.jstor.org/pss/1268522
http://en.wikipedia.org/wiki/JSTOR
http://en.wikipedia.org/wiki/Technometrics
http://en.wikipedia.org/wiki/American_Statistical_Association
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.2307%2F1268522
http://en.wikipedia.org/wiki/Office_of_Scientific_and_Technical_Information
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5236110
http://en.wikipedia.org/wiki/International_Standard_Serial_Number
http://www.worldcat.org/issn/0040-1706
http://www.jstor.org/pss/1268522

	The TDMR Framework: Tuned Data Mining in R
	Using TDMR
	Overview
	TDMR Workflow
	Phase 1: DM without SPOT
	Phase 2: Tuned Data Mining in R (TDMR)
	Phase 3: “The Big Loop”: Several TDMs with Unbiased Evaluations

	TDMR Experiment Concept
	TDMR Important Variables
	TDMR opts Concept
	TDMR RGain Concept
	Example Usage
	Phase 1: DM on task SONAR
	Phase 2: SPOT tuning on task SONAR
	Phase 3: “The Big Loop” on task SONAR

	Extending TDMR
	TDMR Tuner Concept
	How to use different tuners
	How to integrate new tuners

	TDMR Design Mappping Concept
	How to add a new tuning variable
	Details

	TDMR parallel computing concept
	How to use parallel computing
	Environment envT
	Details

	TDMR seed Concept
	Details

	TDMR Graphic Device Concept
	Utility Functions tdmGraphic*
	GD.RESTART, Case 1: main_TASK solo
	GD.RESTART, Case 2: During SPOT-Run “auto”
	GD.RESTART, Case 3: During unbiased runs

	Summary
	References

