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Abstract

The purpose of this text is to provide a simple manual for the
TBSSurvival package for R language. In short, we give some examples
on how to use the main functions of the package.
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1 Introduction

We assume the reader to be familiar with the survival estimation / reliability
problem. For more details we suggest the technical paper: Transform Both
Sides Model: A Parametric Approach, Polpo et al. 2012. In this document
we use as example a reliability analysis situation, but the methods will work
as fine with survival analysis.

The problem in view can be defined by time, an array of times of failure
(survival) or components (patients) and delta the event indicator, that is,
delta equals to one if an event happened at that time, or zero in case of
right-censoring. Furthermore, covariates can be present in the data set,
which can be used in a regression analysis, in the very much same way as
done by well-known functions such as survreg. First, we exemplify the use
of the methods without covariates.

Example 1 In this example we simulated data set with right-censored fail-
ure time. The problem is about an experiment with 30 machines. We observe
the failure time of these machines, but our experiment has a maximum time
of 6 week. After that, all machines that have not failed are considered to
be censored with respect to their failure time. For simplicity, we define the
failure time by a random variable with Gamma distribution.
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> time <- pmin(rgamma(30,10,2),rep(6,30))

> delta <- rep(1,30)

> for (i in 1:30) {

+ if (time[i] == 6) delta[i] <- 0

+ }

> data <- cbind(time,delta)

> data

time delta

[1,] 3.071913 1

[2,] 5.246828 1

[3,] 5.319838 1

[4,] 3.690964 1

[5,] 5.561896 1

[6,] 3.905557 1

[7,] 6.000000 0

[8,] 3.839161 1

[9,] 4.043061 1

[10,] 2.435072 1

[11,] 4.849857 1

[12,] 6.000000 0

[13,] 4.581559 1

[14,] 4.778270 1

[15,] 5.899024 1

[16,] 3.805206 1

[17,] 4.958891 1

[18,] 4.023899 1

[19,] 4.757719 1

[20,] 4.692185 1

[21,] 2.780329 1

[22,] 4.767577 1

[23,] 4.765207 1

[24,] 5.852793 1

[25,] 6.000000 0

[26,] 6.000000 0

[27,] 6.000000 0

[28,] 2.748356 1

[29,] 6.000000 0

[30,] 3.245861 1
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2 TBS Model

The TBS Model is defined as

gλ(log(T )) = gλ(θ(X)) + ε, (1)

where the function gλ(·) is the TBS defined by

gλ(u) =
sign(u)|u|λ

λ
, (2)

sign(u) = 1 if u ≥ 0 and sign(u) = −1 if u < 0, λ > 0, θ(X) is a function of
co-variables and the error has some distribution (ε ∼ Fε) with parameter ξ.
The error distributions currently implemented in the TBSSurvival package
are: normal (used with dist = "norm"), t-student ( dist = "t"), Cauchy (
dist = "cauchy"), double-exponential ( dist = "doubexp") and logistic (
dist = "logistic") distributions.

In case you have not yet done so, the first thing to do before using the
functions is to install and load the library.

> install.packages("TBSSurvival_VERSION.tar.gz",repos=NULL,type="source")

> library("TBSSurvival")

Example 2 Density, reliability and hazard functiosn for TBS model are
available using the commonly used notation: dtbs, ptbs, qtbs, rtbs, htbs.
The error distribution is passed as argument, as well some other parame-
ters such as λ (for the TBS), ξ (parameter of the error distribution) and
covariates’ weights β.

> x <- seq(0.1,10,0.1)

> plot(x, (1-ptbs(x,lambda=1,xi=sqrt(2),beta=1,

+ dist="norm")),

+ type="l",lwd=2,lty=1,col=2,ylim=c(0,1),xlab="t",

+ ylab="R(t)",main="Reliability",cex.lab=1.2)

> plot(x, (dtbs(x,lambda=1,xi=sqrt(2),beta=1,

+ dist="norm")),

+ type="l",lwd=2,lty=1,col=2,xlab="t",

+ ylab="f(t)",main="Density",cex.lab=1.2)

> plot(x, (htbs(x,lambda=1,xi=sqrt(2),beta=1,

+ dist="norm")),

+ type="l",lwd=2,lty=1,col=2,xlab="t",

+ ylab="h(t)",main="Hazard",cex.lab=1.2)
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Figure 1: Density, reliability and Hazard functions
(λ = 1; ε ∼ Normal(0, 22); β0 = 1).

> x <- seq(0.1,10,0.1)

> plot(x, (1-ptbs(x, lambda=1, xi=1, beta=1, dist="doubexp")),

+ type="l", lwd=2, lty=1, col=2, ylim=c(0,1), xlab="t",

+ ylab="R(t)", main="Reliability", cex.lab=1.2)

> plot(x, (dtbs(x, lambda=1, xi=1, beta=1, dist="doubexp")),

+ type="l", lwd=2, lty=1, col=2, xlab="t", ylab="f(t)",

+ main="Density", cex.lab=1.2)

> plot(x, (htbs(x, lambda=1, xi=1, beta=1,

+ dist="doubexp")), type="l", lwd=2,

+ lty=1, col=2, xlab="t", ylab="h(t)",

+ main="Hazard", cex.lab=1.2)

2.1 Error distribution

Table 1 presents the available error distributions. Note that the meaning of
the parameter changes according to the distribution being used. Moreover,
for the normal distribution, the parameter is σ (standard deviation) and not
σ2 (variance).
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Figure 2: Density, reliability and Hazard functions
(λ = 1; ε ∼ doubexp(1); β0 = 1).

Table 1: Error distribution.

Distribution Parameter Density function (fε(ε|ξ))
Normal ξ = σ (2πσ2)−1/2 exp

{
−ε2/(2σ2)

}
DoubExp ξ = b (2b)−1 exp {−|ε|/b}

t-Student ξ = η(d.f.) Γ((η+1)/2)
Γ(η/2)

√
πη

(
1 + ε2

η

)−(η+1)/2

Cauchy ξ = c
[
πc

(
1 + (ε/c)2

)]−1

Logistic ξ = s exp{−ε/s}
s[(1+exp{−ε/s})2]

The parametric space for ξ is (0,+∞) in all cases.

3 Estimation

The most important part is the parameter estimation of the TBS model.
There are two procedures available: Maximum Likelihood Estimation (MLE)
and Bayesian Estimation (BE). For illustration purposes, we will perform
the estimation with both methods for the simulated data in Example 1. Re-
member that we defined the observed failure time as time and the censor
indicator δ as delta.

3.1 MLE

In order to perform the estimation, following the common practice with
other survival analysis packages, the user has to build a formula with time
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and censoring indication (delta), which is then used to call the estimation
method itself:

> formula <- Surv(data[,1],data[,2]) ~ 1

> tbs.mle <- tbs.survreg.mle(formula,dist="norm", nstart=3,

+ method="Nelder-Mead")

> tbs.mle

$method

[1] "Nelder-Mead"

$par

[1] 1.1147249 0.1038346 1.5437541

$std.error

[1] 1.10145998 0.08345101 0.06142687

$log.lik

[1] -46.43379

$error.dist

[1] "norm"

$AIC

[1] 98.86759

$AICc

[1] 99.79067

$BIC

[1] 103.0712

$convergence

[1] TRUE

$time

[1] 3.071913 5.246828 5.319838 3.690964 5.561896 3.905557

[7] 3.839161 4.043061 2.435072 4.849857 4.581559 4.778270

[13] 5.899024 3.805206 4.958891 4.023899 4.757719 4.692185

[19] 2.780329 4.767577 4.765207 5.852793 2.748356 3.245861
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$error

[1] -0.435398577 0.120181485 0.134832510 -0.247697659

[5] 0.182101369 -0.189285047 -0.207037921 -0.153381941

[9] -0.667833168 0.037040855 -0.022805407 0.021378584

[13] 0.244831911 -0.216225707 0.060488758 -0.158317466

[17] 0.016842275 0.002253928 -0.535929553 0.019020597

[21] 0.018497278 0.236430826 -0.547517698 -0.379429602

$run.time

[1] 0.007216667

$call

tbs.survreg.mle(formula = formula, dist = "norm", method = "Nelder-Mead",

nstart = 3)

$formula

Surv(data[, 1], data[, 2]) ~ 1

Here, we compare the TBS model with the non-parametric Kaplan-Meier
estimator. The result is presented in the Figure 3.

> # Kaplan-Meier estimation

> km <- survfit(formula)

> plot(km,ylab="R(t)", xlab="t: number of cycles (in thousands)",

+ main="Reliability function (MLE)", conf.int=FALSE, lty=1,

+ lwd=1, xlim=c(min(data[,1]),max(data[,1])))

> t <- seq(min(data[,1]),max(data[,1]),

+ (max(data[,1])-min(data[,1])-0.01)/1000)

> legend(2.6,0.2,

+ c("Kaplan-Meier",

+ expression(textstyle(paste("TBS / ",sep="")) ~ epsilon

+ ~ textstyle(paste("~",sep="")) ~ Norm)),

+ col=c(1,2),lty=c(1,1),cex=1.1,lwd=c(1,2),bg="white")

> lines(t,1-ptbs(t, lambda=tbs.mle$par[1], xi=tbs.mle$par[2],

+ beta=tbs.mle$par[3],

+ dist=tbs.mle$error.dist), type="l",

+ lwd=2, col=2, lty=1)

In the following, we present a simple example on how to define covari-
ates to be used. In fact, we use the same framework of formulas as other
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Figure 3: TBS model (MLE).

survival packages. We also point out that different optimization methods
are available in order to maximize the likelihood with the TBS model. If
the argument method is not specific, all of them will be tried, and eventually
the best one will be returned. The output, saved in the variable s in the
following example, contains some score criteria and other useful information.

> library(survival)

> data(colon)

> ## Running MLE on colon (from survival package) with a covariate

> colon$age60=as.numeric(colon$age>60) #threshold defined from medical papers

> s=tbs.survreg.mle(Surv(colon$time,colon$status==1) ~ colon$age60,

+ dist="norm",method=c("Nelder-Mead"),nstart=3,verbose=FALSE)
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3.2 BE

When dealing with the Bayesian estimation, it is necessary to consider an
informative choice of priors, as well as the convergence rate of the MCMC
method, on which the estimation is based. However, we have experimented
with some reasonable non-informative priors, which have shown adequate re-
sults. Nevertheless, the user is entitled to choose prior.mean and prior.sd

for the normal distribution that is used as prior for the boldsymbolβ, a scale

parameter, and initial guesses for the previously mentioned parameters of
the model. Other well known arguments that are used my the Metropolis
Hastings can also be set. We refer to the technical paper for more details
about the priors.

> tbs.be <- tbs.survreg.be(formula,dist="norm",

+ guess.lambda=2,guess.xi=4,

+ guess.beta=1.5,burn=1000,

+ jump=10,size=1000,scale=0.06)

As a visual example, we construct the plots with the estimated reliability
and the 95% credible interval of High Posterior Density of the reliability
function. The result is presented in the Figure 4.

> aux.survival <- matrix(0,length(tbs.be$time),1000)

> for (j in 1:1000) {

+ aux.survival[,j] <-

+ c(1-ptbs(tbs.be$time,

+ lambda=tbs.be$post[j,1],

+ xi=tbs.be$post[j,2],

+ beta=tbs.be$post[j,3:length(tbs.be$post[1,])],

+ x=tbs.be$x,dist="norm"))

+ }

> survival <- matrix(0,length(tbs.be$time),8)

> for (i in 1:length(tbs.be$time)) {

+ survival[i,] <-

+ c(summary(aux.survival[i,]),

+ HPDinterval(as.mcmc(aux.survival[i,]),0.95))

+ }

> tbs.be$survival <- survival

> plot(km,ylab="R(t)",

+ xlab="t: number of cycles (in thousands)",

+ main="Reliability function (BE)", conf.int=FALSE,
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+ lty=1, lwd=1, xlim=c(min(data[,1]),max(data[,1])))

> legend(2.6,0.3,

+ c("Kaplan-Meier",

+ expression(textstyle(paste("TBS / ",sep="")) ~ epsilon

+ ~ textstyle(paste("~",sep="")) ~ Logistic),

+ "95% HPD Interval"),

+ col=c(1,2,2),lty=c(1,1,2),cex=1.1,lwd=c(1,2,2),

+ bg="white")

> lines(tbs.be$time,tbs.be$survival[,3],type="l",lwd=2,col=2,

+ lty=1)

> lines(tbs.be$time,tbs.be$survival[,7],type="l",lwd=2,col=2,

+ lty=2)

> lines(tbs.be$time,tbs.be$survival[,8],type="l",lwd=2,col=2,

+ lty=2)
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Figure 4: TBS model (BE).
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4 Remarks

This “manual” describes the basis of the TBSSurvival package, which is
mainly centered around the estimation methods. We invite the user to the
functions’ help pages (available with the package) and the technical paper
mentioned in the beginning of this document.
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