
Package ‘SteinerNet’
June 4, 2012

Version 1.0

Date 2012-5-22

Title Steiner approach for Biological Pathway Graph Analysis

License GPL-3

Author Afshin Sadeghi, Holger Froehlich

Maintainer Afshin Sadeghi <sadeghi@informatik.uni-bonn.de>

Depends R (>= 2.0), igraph , RBGL , limma

Imports igraph, RBGL, limma

Description A set of graph functions writen in R to perform steiner tree network data analysis on bio-
logical pathway data

R topics documented:
generate_st_samples . 1
steinertree . 3
steiner_comparison_plots . 5
steiner_simulation . 7

Index 9

generate_st_samples
generate_st_samples

Description

This function generates simulation data. It creates random graphs with randomly selected terminals.

1

2 generate_st_samples

Usage

generate_st_samples(test, graph, folder= NULL, listofterminaltest, repetition)

Arguments

test test selects the test type to make random data for it. the random walk for exact
algorithm makes subgraphs that include random terminals, but for heuristics it
selects random terminals on the base graph and returns the terminal set only

graph graph is the base graph for generating random subgraphs and random terminal
set.

folder folder specifies a folder name to store the simulated data inside it.
listofterminaltest

listofterminaltest is an input list. Elements of the list are number of
terminals to select for a simulation.

repetition repetition is a list of probabilites. Its length declares the number of el-
ements if random data set that is created for terminals. Each element of the
list is the probability of selecting a node as terminal while the random walk is
traversing the base graph.

Details

This function generates random data for two type of simulations. For experiments that include exact
algorithms, it generates random subgraphs with randomly selected terminals. Otherwise it returns
only a set of random terminals to be used with the base graph.

Test specifies the type of simulation. test can be exact or appr,

exact refers to generation of data for an experiment that includes exact Steiner tree algorithm.

appr refers to generation of data for a experiment that involves only approximate Steiner tree
algorithms.

If folder is NULL, it will use default value "steinerdata2" for folder when type is exact and
"steinerdata" when type is appr.

listofterminaltest in our study was made of 5, 8, 20, 50, 70 for comparing approximate
algorithms and it was 5, 8 for experiments that included exact Steiner tree algorithm. [1]

In our study, we repeated the tests 50 times, and we made the random walk to select a node to be
terminal with 0.5 probability. Therefore repetition in our comparison was a list of fifty 0.5
values.

Value

The function stores the random data in address that is stated in folder. When test is exact the
output includes random subgraphs and random set of terminals. When test is appr the function
returns random sets of terminals.

Author(s)

Afshin Sadeghi, Holger Froehlich

steinertree 3

References

1. Please refer to the paper that is published with this package.

Examples

library(SteinerNet)
g <- graph.ring(10)
#generate_st_samples("exact", g, "testfolder", c(2,3), c(.8,.8))

steinertree steinertree

Description

A function which involves a set of steiner tree algorithms on networks. This set involves an exact
algorithm and five heuristic algorithms.

Usage

steinertree(type, coloring = FALSE, ter_list = NULL, enumerate = FALSE, graph)

Arguments

type type specifies which steiner algorithm to use.

coloring coloring is a boolean value. When it is TRUE, the function will return a
list that consists of the result stiener tree and a copy of the input graph while
including the random terminals within the input graph are specified by coloring
of nodes. In this graph, green nodes would represent steiner nodes and red nodes
represent terminals.

ter_list ter_list is an input list of terminals. Steiner tree algorithm finds the result
according to terminals.

enumerate enumerate a boolean value to force the steiner tree function to return merged
enumerated solutions.

graph graph is an input igraph object which is delivered to one of the steiner tree
algorithms of the package.

Details

This function withholds six steiner tree algorithms for networks. type specifes the steiner algorithm
to deploy to the input graph and terminal set. type can be SP, KRU, RSP, EXA or SPM. The
explanation of the abbreviations is listed below.

SP refers to the shortest path heuristic algorithm. [1,2]

KRU exerts to Kruskal-Based Heuristic algorithm. [3]

4 steinertree

RSP exerts a random approximation algorithm developed by the package developers. [4]

EXA in single mode uses an exact algorithm to return one of the optimal solutions of the problem.
In enumerate mode, returns the merged enumerated solution. [4,5]

SPM in single mode returns one of heuristic enumeration algorithm solutions for the problem. In
enumerate mode, returns the merged enumerated solution.[4]

EXA and SPM algorithms can return a single solution or run in enumerating mode. The boolean
value of enumerate specefies one of the two cases. If this value is FALSE they return one of their
enumerated steiner solutions without merging it to other solutions. If it is TRUE they return the
merged enumerated solutions of the steiner tree problem.

According to our knowledge RSP, EXA Enumeration, SPM are represented for the first time in this
package and are new algorithms. [4]

ter_list value can be NULL. In this case, the function will observe graph vertex colors to find
terminals. To call the function in this approach, the terminal nodes should be colored in red and the
non-terminal nodes should be yellow.

This function handles input igraph objects which their vertices have labels and names. To apply
the function on graphs with no label and name, steinertree function automatically recognizes
non-labeled graph vertices and creates names and labels for them. The new labels and names for
vertices are created according to the vertice ID of each vertice.

Value

When coloring is FALSE returns a Steiner tree in form of a new igraph object. When coloring
is TRUE returns a list that consists of two objects. The first is a steiner tree and the second object is
a colored version of the input graph with distinguished steiner nodes and terminals.

Author(s)

Afshin Sadeghi, Holger Froehlich

References

1. Path heuristic and Original path heuristic ,Section 4.1.3 of the book "The Steiner tree Problem",
Petter,L,Hammer

2. "An approximate solution for the Steiner problem in graphs" , H Takahashi, A Matsuyama

3. F K. Hwang, D S. Richards and P Winter,"The steiner tree Problem", Kruskal-Based Heuristic
Section 4.1.4,ISBN: 978-0-444-89098-6

4. Please refer to the paper that is pulished with this package.

5. F K. Hwang, D S. Richards and P Winter,"The steiner tree Problem", Kruskal-Based Heuristic
Section 4.1.4, The Optimal solution for stiner trees on networks,ISBN: 978-0-444-89098-6.

Examples

#example 1
library(SteinerNet)
g <- graph.ring(10)
ter_list= c(1,2,9)
SPM=steinertree("SPM", FALSE, ter_list, TRUE, g)

steiner_comparison_plots 5

#example 2
g2 <- graph(c(0,2,1,2,2,3,3,4,5,6,3,6,2,7,2,5,2,6,5,8), directed=FALSE)
V(g2)$color="yellow"
V(g2)$color[c(1,4)]="red"
OP=steinertree("SP", TRUE, NULL, FALSE, g2)

#example 3: A case study with a sample graph and a given gene list

g <- graph(c(0,2,1,2,2,3,3,4,5,6,3,6,2,7,2,5,2,6,5,8), directed=FALSE)
V(g)$name=c(1058, 51203, 6515, 83879, 160897, 10531, 8659, 2947, 643008)
geneid_list= c(1058,83879, 160897,643008)
list =as.character(geneid_list)
#we include into the test those geneIDes who exist within the base graph.
r =1:(length(list))
t =sapply (r ,function(r) !is.na(match(list[r],c(g)[[9]][[3]]$name)))
IDlist1=list[t==TRUE]
ST1=steinertree("SP", FALSE,IDlist1, FALSE ,g)
#result1= graphEnt_Sym(ST1[[1]]) # converts the Gene entrez ID taken from the graph node "names" and store them as "labels" of the nodes
#tkplot(result1) # tkplot function displays labels instead of names

steiner_comparison_plots
steiner_comparison_plots

Description

This function plots the comparison results of Steiner tree algorithms excutions on simulated data.

Usage

steiner_comparison_plots (test_name, test_folder =NULL, outputname = NULL, listofterminaltest = NULL ,repetition= NULL)

Arguments

test_name test_name selects the plot type to creat. 14 type of comparison are available
to perform.

test_folder testfolder specifies a folder name to read the result of steiner tree simula-
tions.

outputname outputname is name of a pdf file to store the result.
listofterminaltest

listofterminaltest is an input list. Elements of the list are number of
terminals that are selected for a simulation.

repetition repetition is a list of probabilities. Its length declares the number of ele-
ments if random data set that is created for each terminal number.

6 steiner_comparison_plots

Details

This function creates 12 different comparison types and depicts them by plots. test_name spec-
ifies the type of comparison.

test_name can be on of the following character values.

exact refers to time and edge number comparison of Steiner tree algorithms including the exact
algorithm.

appr refers to time and edge number comparison of Steiner tree algorithms without the exact
algorithm.

Enum refers to time and edge number comparison of Steiner tree enumeration algorithms.

Enum-median-venn-node-edge refers edge and node number comparison of subgraphs made
by Steiner tree enumeration algorithms via Venn diagram.

org refers to edge number comparison of random subgraphs that are made by simulations.

org-dens-e refers to edge density comparison of random graphs that are made by random graph
generator.

appr-vfreq refers to vertex frequency comparison of Steiner tree algorithms without the exact
algorithm.

exact-vfreq refers to vertex frequency comparison of Steiner tree algorithms including the
exact algorithm.

Enum-vfreq refers to vertex frequency comparison of Steiner tree enumeration algorithms.

appr-density-e refers to edge density comparison of steiner tree algorithms excluding the
exact algorithm.

exact-density-e refers to edge density comparison of steiner tree algorithms including the
exact algorithm.

Enum-density-e refers to edge density comparison of steiner tree enumeration algorithms.

If testfolder is NULL, it will use default value "steinerdatae" for folder when test is exact
and "steinerdataenum" when test is enum.

When outputname is NULL, a default value would be used for output pdf file name with consid-
eration of selected type.

listofterminaltest in our study was made of 5, 8, 20, 50, 70 for comparing approximate
algorithms and it was 5, 8 for experiments that included exact Steiner tree algorithm. [1]

In our study, we repeated the tests 50 times, and we made the random walk to select a node to
be terminal with 0.5 probability while it traverses the base graph. Therefore repetition in
our comparison was a list of fifty 0.5 values. If repetition is NULL, the function regards the
repetition and listofterminaltest values that were used in our study.

Value

The function stores a resulted plot in a PDF file.

Author(s)

Afshin Sadeghi, Holger Froehlich

steiner_simulation 7

References

1. Please refer to the paper that is published with this package.

Examples

library(SteinerNet)
g <- graph.ring(10)
#generate_st_samples("exact", g, "testfolder", c(2,3), c(.8,.8))
#steiner_simulation("exact", "testfolder", c(2,3), c(.8,.8))
#steiner_comparison_plots ("exact", "testfolder", c(2,3), c(.8,.8))

steiner_simulation steiner_simulation

Description

This function executes Steiner algorithms on simulated data and stores their results into files.

Usage

steiner_simulation(test,listofterminaltest,repetition,testfolder = NULL)

Arguments

test test selects the test type to apply the simulation. It can be exact, appr, or enum.
listofterminaltest

listofterminaltest is an input list. Elements of the list are number of
terminals that are selected for a simulation.

repetition repetition is a list of probabilities. Its length declares the number of ele-
ments if random data set that is created for each terminal number.

testfolder testfolder specifies a folder name to read the simulated data from it and to
store Steiner tree algorithms results inside it.

Details

This function performs three type of experiments. Test specifies the type of comparison to perform.

test can be exact or appr or enum,

exact refers to executing the set of steiner tree algorithms including the exact algorithm.

appr forces to executing the set of steiner tree algorithms without the exact algorithm.

enum refers to to executing the set of steiner tree enumeration algorithms.

listofterminaltest in our study was made of 5, 8, 20, 50, 70 for comparing approximate
algorithms and it was 5, 8 for experiments that included exact Steiner tree algorithm. [1]

If testfolder is NULL, it will use default value "steinerdata2" for folder when test is exact
and "steinerdataenum" when test is enum.

In our study, we repeated the tests 50 times, and we made the random walk to select a node to be
terminal with 0.5 probability. Therefore repetition in our comparison was a list of fifty 0.5
values.

8 steiner_simulation

Value

The function stores the result of execution of Steiner trees and the time of their executions in an
address that is stated in testfolder.

Author(s)

Afshin Sadeghi, Holger Froehlich

References

1. Please refer to the paper that is published with this package.

Examples

library(SteinerNet)
g <- graph.ring(10)
#generate_st_samples("exact", g, "testfolder", c(2,3), c(.8,.8))
#steiner_simulation("exact", "testfolder", c(2,3), c(.8,.8))

Index

∗Topic graphs, protein interaction,
network, pathway data
graph, steiner tree

generate_st_samples, 1
steiner_comparison_plots, 5
steiner_simulation, 7
steinertree, 3

generate_st_samples, 1
generate_st_samples, character,

igraph object,
character, list, list
(generate_st_samples), 1

generate_st_samples, character,
igraph object, missing,
list, list
(generate_st_samples), 1

steiner_comparison_plots, 5
steiner_comparison_plots,

character, character ,
character, list, list
(steiner_comparison_plots),
5

steiner_comparison_plots,
character, character,
character, missing,
missing
(steiner_comparison_plots),
5

steiner_comparison_plots,
character, character,
missing, list, list
(steiner_comparison_plots),
5

steiner_comparison_plots,
character, character,
missing, missing,
missing

(steiner_comparison_plots),
5

steiner_comparison_plots,
character, missing,
missing, missing,
missing
(steiner_comparison_plots),
5

steiner_simulation, 7
steiner_simulation, list, list,

character
(steiner_simulation), 7

steiner_simulation, list, list,
missing
(steiner_simulation), 7

steinertree, 3
steinertree,boolean,boolean,list,boolean,graph

(steinertree), 3
steinertree,charahter,missing,list,boolean,graph

(steinertree), 3
steinertree,missing,boolean,list,boolean,graph

(steinertree), 3
steinertree,missing,character,list,boolean,graph

(steinertree), 3
steinertree,missing,missing,boolean,graph

(steinertree), 3
steinertree,missing,missing,missing,boolean,graph

(steinertree), 3
steinertree,missing,missing,missing,graph

(steinertree), 3

9

	generate_st_samples
	steinertree
	steiner_comparison_plots
	steiner_simulation
	Index

