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1 Introduction

The R package SimCorMultRes is suitable for simulation of correlated multinomial responses (with three
or more nominal or ordinal response categories) and of correlated binary responses conditional on a model
specification for the marginal probabilities. The simulation methods employed herein are extending existing
threshold approaches that give rise to regression models for independent binary, nominal or ordinal responses.
This vignette describes briefly the threshold approaches that give rise to the implemented marginal models
and offers simple examples that illustrate the use of SimCorMultRes.

2 Notation

Let Yit be the binary or multinomial response for subject i (i = 1, . . . , N) at the measurement occasion t
(t = 1, . . . , T ), and let xit be the associated covariates vector. Note that we assume that Yit ∈ {0, 1} for
binary responses and Yit ∈ {1, 2, . . . , J ≥ 3} for multinomial responses.

3 Correlated Nominal Responses

The function rmult.bcl() simulates correlated nominal responses under the marginal baseline-category logit
model

log

[
Pr(Yit = j|xit)

Pr(Yit = J |xit)

]
= (βtj0 − βtJ0) + (βtj − βtJ)′xit = β∗tj0 + β∗′tjxit, (1)

where βtj0 is the j-th category-specific intercept at the t-th measurement occasion and βtj is the j-th
category-specific parameter vector at the t-th measurement occasion. The popular identifiability constraints
βtJ0 = 0 and βtJ = 0 for all t imply that β∗tj0 = βtj0 and β∗tj = βtj for all j = 1, . . . , J − 1.

Define
Uitj = βtj0 + β′tjxit + eitj ,

where the random variables {eitj} satisfy the following conditions:

1. Marginally, eitj follows a standard extreme value distribution for all i, t and j.

2. Random variables associated with different subjects are independent, i.e., ei1t1j1 and ei2t2j2 are inde-
pendent provided that i1 6= i2.

3. Category-specific random variables for each subject at a given measurement occasion are independent
(assumption of choice independence), i.e., eitj1 and eitj2 are independent provided that j1 6= j2.

4. Subject-specific random variables measured at different occasions may be correlated, i.e., eit1j1 and
eit2j2 may be correlated provided that t1 6= t2.

It can be shown that using the threshold

Yit = j ⇔ Uitj = max{Uit1, . . . , UitJ}
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correlated nominal responses that satisfy the marginal baseline-category logit model (1) are generated.
For example, suppose that we want to simulate nominal responses from the marginal baseline-category

logit model

log

[
Pr(Yit = j|xit)

Pr(Yit = 4|xit)

]
= βj0 + βj1xi1 + βj2xit2

where N = 500, T = 3, (β10, β11, β12, β20, β21, β22, β30, β31, β32) = (1, 2, 1.5, 3, 4, 3.5, 5, 6, 5.5) and xit =

(xi1, xit2)′ for all i and t, with xi1
iid∼ N(0, 1) and xit2

iid∼ N(0, 1). For simplicity, assume that {eitj} are
independent random variables. The following R code is used to simulate nominal responses under this
sampling scheme

> library(SimCorMultRes)

> set.seed(1)

> ncategories <- 4

> N <- 500

> clsize <- 3

> betas <- c(1, 2, 1.5, 3, 4, 3.5, 5, 6, 5.5, 0, 0, 0)

> x1 <- rep(rnorm(N), each = clsize)

> x2 <- rnorm(N * clsize)

> xdata <- data.frame(x1, x2)

> cor.matrix <- diag(1, 12)

> CorNorRes <- rmult.bcl(clsize = clsize, ncategories = ncategories, betas = betas,

+ xformula = ~x1 + x2, xdata = xdata, cor.matrix = cor.matrix)

The simulated clustered nominal responses for the first six subjects are

> head(CorNorRes$Ysim)

[,1] [,2] [,3]

[1,] 3 2 4

[2,] 3 3 3

[3,] 1 4 3

[4,] 3 3 3

[5,] 4 3 3

[6,] 3 4 3

The same task without utilizing the NORTA method:

> library(evd)

> rlatent <- rmvevd(n = N, dep = 1, model = "log", d = clsize * ncategories)

> CorNorRes <- rmult.bcl(clsize = clsize, ncategories = ncategories, betas = betas,

+ xformula = ~x1 + x2, xdata = xdata, rlatent = rlatent)

> head(CorNorRes$Ysim)

[,1] [,2] [,3]

[1,] 2 4 4

[2,] 3 3 3

[3,] 4 4 3

[4,] 3 3 3

[5,] 3 3 2

[6,] 2 3 3

4 Correlated Ordinal Responses

Generation of correlated ordinal responses is feasible under either a marginal cumulative link model or a
marginal continuation-ratio model.
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4.1 Marginal cumulative link model

The function rmult.clm() simulates correlated ordinal responses under the marginal cumulative link model

Pr(Yit ≤ j|xit) = F (βtj0 + β′txit) (2)

where F is a cumulative distribution function (cdf), βtj0 is the j-th category-specific intercept at the t-th
measurement occasion and βt is the regression parameter vector at the t-th measurement occasion. The
category-specific intercepts at each measurement occasion are assumed to be monotone increasing, that is

−∞ = βt00 < βt10 < βt20 < · · · < βt(J−1)0 < βtJ0 =∞

for all t.
Define

Uit = −β′txit + eit,

where the random variables {eit} satisfy the following conditions:

1. Marginally, eit follows the distribution specified by F for all i and t.

2. Random variables associated with different subjects are independent, i.e., ei1t1 and ei2t2 are independent
provided that i1 6= i2.

3. Subject-specific random variables measured at different occasions may be correlated, i.e., eit1 and eit2
may be correlated provided that t1 6= t2.

It can be shown that using the threshold

Yit = j ⇔ βt(j−1)0 < Uit ≤ βtj0

correlated ordinal responses that satisfy the marginal cumulative link model (2) are generated.
For example, suppose that we want to simulate correlated ordinal responses from the marginal cumulative

probit model
Pr(Yit ≤ j|xit) = Φ(βj0 + βt1xi)

with N = 500, T = 4, (β10, β20, β30, β40) = (−1.5,−0.5, 0.5, 1.5), (β11, β21, β31, β41) = (1, 2, 3, 4), xit = xi
iid∼

N(0, 1) for all i and t, and a latent correlation matrix equal to
1.00 0.85 0.50 0.15
0.85 1.00 0.85 0.50
0.50 0.15 1.00 0.85
0.15 0.85 0.50 1.00

 .

Here Φ denotes the cumulative distribution function of the standard normal distribution. The following R
code generates the clustered ordinal responses under this configuration

> set.seed(12345)

> N <- 500

> clsize <- 4

> intercepts <- c(-1.5, -0.5, 0.5, 1.5)

> betas <- matrix(c(1, 2, 3, 4), 4, 1)

> x <- rep(rnorm(N), each = clsize)

> cor.matrix <- toeplitz(c(1, 0.85, 0.5, 0.15))

> CorOrdRes <- rmult.clm(clsize = clsize, intercepts = intercepts, betas = betas,

+ xformula = ~x, cor.matrix = cor.matrix, link = "probit")

The simulated clustered ordinal responses for the first six subjects are

> head(CorOrdRes$Ysim)
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[,1] [,2] [,3] [,4]

[1,] 1 2 2 1

[2,] 1 1 1 1

[3,] 4 3 3 3

[4,] 3 3 4 5

[5,] 5 4 2 1

[6,] 5 5 5 5

4.2 Marginal continuation-ratio model

The function rmult.crm() simulates correlated ordinal responses under the marginal continuation-ratio
model

Pr(Yit = j|Yit ≥ j,xit) = F (βtj0 + β
′

txit) (3)

where βtj0 is the j-th category-specific intercept at the t-th measurement occasion, βt is the regression
parameter vector at the t-th measurement occasion and F is a cdf.

Define
Uitj = −β′txit + eitj ,

where the random variables {eitj} satisfy the following conditions:

1. Marginally, eitj follows the distribution specified by F for all i, t and j.

2. Random variables associated with different subjects are independent, i.e., ei1t1j1 and ei2t2j2 are inde-
pendent provided that i1 6= i2.

3. Category-specific random variables for each subject at a given measurement occasion are independent,
i.e., eitj1 and eitj2 are independent provided that j1 6= j2 (local independence assumption).

4. Subject-specific random variables measured at different occasions may be correlated, i.e., eit1j1 and
eit2j2 may be correlated provided that t1 6= t2.

It can be shown that using the threshold

Yit = j, given Yit ≥ j ⇔ Uitj ≤ βtj0

correlated ordinal responses that satisfy the marginal continuation-ratio model (3) are generated.
Suppose we want to simulate ordinal multinomial responses under the marginal continuation-ratio probit

model
Pr(Yit = j|Yit ≥ j,xit) = Φ(βj0 + βxit)

with N = 500, T = 4, (β10, β20, β30, β40, β) = (−1.5,−0.5, 0.5, 1.5, 1) and xit = xit
iid∼ N(0, 1) for all i and

t. To simplify matters further, suppose that {eitj} are independent. The following R code generates the
clustered ordinal responses under this configuration

> set.seed(1)

> N <- 500

> clsize <- 4

> intercepts <- c(-1.5, -0.5, 0.5, 1.5)

> cor.matrix <- diag(1, 16)

> x <- rnorm(N * clsize)

> CorOrdRes <- rmult.crm(clsize = clsize, intercepts = intercepts, betas = 1,

+ xformula = ~x, cor.matrix = cor.matrix, link = "probit")

>

The simulated clustered ordinal responses for the first six subjects are

> head(CorOrdRes$Ysim)
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[,1] [,2] [,3] [,4]

[1,] 2 3 3 2

[2,] 1 4 1 1

[3,] 2 2 1 1

[4,] 3 5 2 2

[5,] 2 1 3 1

[6,] 3 3 2 5

5 Correlated Binary Responses

The function rbin() simulates correlated binary responses under the marginal model specification

Pr(Yit = 1|xit) = F (βt0 + β′txit) (4)

where βt0 is the intercept at measurement occasion t, βt is the parameter vector at measurement occasion t
and F is a cdf.

Define
Uit = β′txit + eit,

where the random variables {eit} satisfy the following conditions:

1. Marginally, eit follows the distribution specified by F for all i and t.

2. Random variables associated with different subjects are independent, i.e., ei1t1 and ei2t2 are independent
provided that i1 6= i2.

3. Subject-specific random variables may be correlated, i.e., eit1 and eit2 may be correlated provided that
t1 6= t2.

It can be shown that using the threshold

Yit = 1⇔ Uit ≤ βt0 + 2β′txit

correlated binary responses that satisfy the marginal model (4) are generated.
Suppose that the goal is to simulate correlated binary responses from the marginal probit model

Pr(Yit = 1|xit) = Φ(0.2xi) (5)

where N = 5000, T = 4, xit = xi
iid∼ N(0, 1) for all i and t, and latent correlation matrix

1.00 0.90 0.90 0.90
0.90 1.00 0.90 0.90
0.90 0.90 1.00 0.90
0.90 0.90 0.90 1.00

 .

The following R code generates the clustered binary responses under this configuration

> set.seed(123)

> N <- 5000

> clsize <- 4

> intercepts <- 0

> betas <- 0.2

> cor.matrix <- toeplitz(c(1, 0.9, 0.9, 0.9))

> x <- rep(rnorm(N), each = clsize)

> CorBinRes <- rbin(clsize = clsize, intercepts = intercepts, betas = betas,

+ xformula = ~x, cor.matrix = cor.matrix, link = "probit")
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To verify that the simulated clustered binary responses satisfy the marginal model (5), a binary GEE model
can be fitted

> library(gee)

> binGEEmod <- gee(y ~ x, family = binomial("probit"), id = id, data = CorBinRes$simdata)

(Intercept) x

0.002636705 0.204827031

> summary(binGEEmod)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Probit

Variance to Mean Relation: Binomial

Correlation Structure: Independent

Call:

gee(formula = y ~ x, id = id, data = CorBinRes$simdata, family = binomial("probit"))

Summary of Residuals:

Min 1Q Median 3Q Max

-0.7571225 -0.4867496 0.2562934 0.4865769 0.7325948

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 0.002636705 0.008929290 0.2952872 0.01572132 0.1677153

x 0.204827031 0.009114596 22.4724192 0.01610695 12.7166857

Estimated Scale Parameter: 1.000165

Number of Iterations: 1

Working Correlation

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

Now consider the same set-up as in marginal model (5) but with the cdf of the logistic function instead of
Φ. Here is one way to achieve simulation of correlated binary responses under this configuration without
employing the NORTA method:

> set.seed(123)

> library(evd)

> rlatent1 <- rmvevd(N, dep = sqrt(1 - 0.9), model = "log", d = clsize)

> rlatent2 <- rmvevd(N, dep = sqrt(1 - 0.9), model = "log", d = clsize)

> rlatent <- rlatent1 - rlatent2

> CorBinRes <- rbin(clsize = clsize, intercepts = intercepts, betas = betas,

+ xformula = ~x, rlatent = rlatent)

> binGEEmod <- gee(y ~ x, family = binomial("logit"), id = id, data = CorBinRes$simdata)

(Intercept) x

0.002196042 0.261082668
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> summary(binGEEmod)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Logit

Variance to Mean Relation: Binomial

Correlation Structure: Independent

Call:

gee(formula = y ~ x, id = id, data = CorBinRes$simdata, family = binomial("logit"))

Summary of Residuals:

Min 1Q Median 3Q Max

-0.6999249 -0.4918525 0.2916543 0.4912009 0.6830804

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 0.002196042 0.01425978 0.1540024 0.02510421 0.08747701

x 0.261082668 0.01457592 17.9119179 0.02551444 10.23274335

Estimated Scale Parameter: 1.000124

Number of Iterations: 1

Working Correlation

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

6 Citation Information

> citation("SimCorMultRes")

To cite the R package 'SimCorMultRes' in publications, please use:

Touloumis, A. (2016) SimCorMultRes: Simulates Correlated Multinomial

Responses, R package version 1.4.1,

URL=http://CRAN.R-project.org/package=SimCorMultRes.

A BibTeX entry for LaTeX users is

@Manual{,

title = {SimCorMultRes: Simulates Correlated Multinomial Responses},

author = {Anestis Touloumis},

year = {2016},

url = {http://CRAN.R-project.org/package=SimCorMultRes},

note = {R package version 1.4.1},

}
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