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Abstract

The SharpeR package provides basic functionality for testing signif-
icance of the Sharpe ratio of a series of returns, and of the Markowitz
portfolio on a number of possibly correlated assets.[13] The goal of the
package is to make it simple to estimate profitability (in terms of risk-
adjusted returns) of strategies or asset streams.

1 The Sharpe ratio and Optimal Sharpe ratio

Sharpe defined the ‘reward to variability ratio’, now known as the ‘Sharpe ratio’,
as the sample statistic

ζ̂ =
µ̂

σ̂
,

where µ̂ is the sample mean, and σ̂ is the sample standard deviation. [13] The
Sharpe ratio was later redefined to include a ‘risk-free’ or ‘disastrous rate of
return’: ζ̂ = (µ̂− r0) /σ̂.

It is little appreciated in quantitative finance that the Sharpe ratio is iden-
tical to the sample statistic proposed by Gosset in 1908 to test for zero mean
when the variance is unknown. [3] The ‘t-test’ we know today, which includes
an adjustment for sample size, was formulated later by Fisher. [2] Knowing that
the Sharpe ratio is related to the t-statistic provides a ‘natural arbitrage,’ since
the latter has been extensively studied. Many of the interesting properties of
the t-statistic can be translated to properties about the Sharpe ratio.

Also little appreciated is that the multivariate analogue of the t-statistic,
Hotelling’s T 2, is related to the Markowitz portfolio. Consider the following
portfolio optimization problem:

max
ŵ:ŵ>Σ̂ŵ≤R2

ŵ>µ̂− r0√
ŵ>Σ̂ŵ

, (1)

where µ̂, Σ̂ are the sample mean vector and covariance matrix, r0 is the risk-
free rate, and R is a cap on portfolio ‘risk’ as estimated by Σ̂. (Note this differs
from the traditional definition of the problem which imposes a ‘self-financing
constraint’ which does not actually bound portfolio weights.) The solution to
this problem is

ŵ∗ =
R√

µ̂>Σ̂−1µ̂
Σ̂−1µ̂.
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The Sharpe ratio of this portfolio is

ζ̂∗ =
ŵ∗
>µ̂− r0√
ŵ∗
>Σ̂ŵ∗

=

√
µ̂>Σ̂−1µ̂− r0

R
=
√
T 2/n− r0

R
,

where T 2 is Hotelling’s statistic, and n is the number of independent observa-
tions (e.g., ‘days’) used to construct µ̂. The term r0/R is a deterministic ‘drag’

term that merely shifts the location of ζ̂∗, and so we can (mostly) ignore it when

testing significance of ζ̂∗.
Under the (typically indefensible) assumptions that the returns are generated

i.i.d. from a normal distribution (multivariate normal in the case of the portfolio

problem), the distributions of ζ̂ and ζ̂2∗ are known, and depend on the sample
size and the population analogues, ζ and ζ2∗ . In particular, they are distributed
as rescaled non-central t and F distributions. Under these assumptions on the
generating processes, we can perform inference on the population analogues
using the sample statistics.

The importance of each of these assumptions (viz. homoskedasticity, inde-
pendence, normality, etc.) can and should be checked. [10, 12] The reader must
be warned that this package is distributed without any warranty of any kind,
and in no way should any analysis performed with this package be interpreted
as implicit investment advice by the author(s).

The units of µ̂ are ‘returns per time,’ while those of σ̂ are ‘returns per square
root time.’ Consequently, the units of ζ̂ are ‘per square root time.’ Typically
the Sharpe ratio is quoted in ‘annualized’ terms, i.e., yr−1/2, but the units are
omitted. I believe that units should be included as it avoids ambiguity, and
simplifies conversions.

There is no clear standard whether arithmetic or geometric returns should
be used in the computation of the Sharpe ratio. Since arithmetic returns are
always greater than the equivalent geometric returns, one would suspect that
arithmetic returns are always used when advertising products. However, I sus-
pect that geometric returns are more frequently used in the analysis of strategies.
Geometric returns have the attractive property of being ‘additive’, meaning that
the geometric return of a period is the sum of those of subperiods, and thus the
sign of the arithmetic mean of some geometric returns indicates whether the
final value of a strategy is greater than the initial value. Oddly, the arithmetic
mean of arithmetic returns does not share this property.

On the other hand, arithmetic returns are indeed additive contemporane-
ously : if x is the vector of arithmetic returns of several stocks, and ŵ is the
dollar proportional allocation into those stocks at the start of the period, then
x> ŵ is the arithmetic return of the portfolio over that period. This holds even
when the portfolio holds some stocks ‘short.’ Often this portfolio accounting is
misapplied to geometric returns without even an appeal to Taylor’s theorem.

2 Using the sr Class

An sr object encapsulates one or more Sharpe ratio statistics, along with the
degrees of freedom, the rescaling to a t statistic, and the annualization and units
information. One can simply stuff this information into an sr object, but it is
more straightforward to allow as.sr to compute the Sharpe ratio for you.
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library(SharpeR)

# suppose you computed the Sharpe of your

# strategy to be 1.3 / sqrt(yr), based on 1200

# daily observations. store them as follows:

my.sr <- sr(sr = 1.3, df = 1200 - 1, ope = 252, epoch = "yr")

print(my.sr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## Sharpe 1.30 0.46 2.8 0.0023 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# multiple strategies can be tracked as well.

# one can attach names to them.

srstats <- c(0.5, 1.2, 0.6)

dim(srstats) <- c(3, 1)

rownames(srstats) <- c("strat. A", "strat. B", "benchmark")

my.sr <- sr(srstats, df = 1200 - 1, ope = 252, epoch = "yr")

print(my.sr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## strat. A 0.50 0.46 1.1 0.1377

## strat. B 1.20 0.46 2.6 0.0045 **

## benchmark 0.60 0.46 1.3 0.0953 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Throughout, ope stands for ‘Observations Per Epoch’, and is the (average)
number of returns observed per the annualizatin period, called the epoch. At
the moment there is not much hand holding regarding these parameters: no
checking is performed for sane values.

The as.sr method will compute the Sharpe ratio for you, from numeric,
data.frame, xts or lm objects. In the latter case, it is assumed one is performing
an attribution model, and the statistic of interest is the fit of the (Intercept)

term divided by the residual standard deviation. Here are some examples:

set.seed(as.integer(charToRaw("set the seed")))

# Sharpe's 'model': just given a bunch of

# returns.

returns <- rnorm(253 * 8, mean = 3e-04, sd = 0.01)

asr <- as.sr(returns, ope = 253, epoch = "yr")

print(asr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## returns 0.56 0.35 1.6 0.056 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# a data.frame with a single strategy

asr <- as.sr(data.frame(my.strategy = returns), ope = 253,

epoch = "yr")

print(asr)

## SR/sqrt(yr) Std. Error t value Pr(>t)
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## my.strategy 0.56 0.35 1.6 0.056 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When a data.frame with multiple columns is given, the Sharpe ratio of each
is computed, and they are all stored:

# a data.frame with multiple strategies

asr <- as.sr(data.frame(strat1 = rnorm(253 * 8), strat2 = rnorm(253 *

8, mean = 4e-04, sd = 0.01)), ope = 253, epoch = "yr")

print(asr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## strat1 -0.043 0.354 -0.12 0.549

## strat2 0.573 0.354 1.62 0.053 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here is an example using xts objects. In this case, if the ope is not given,
it is inferred from the time marks of the input object.

require(quantmod)

get.ret <- function(sym, warnings = FALSE, ...) {
# getSymbols.yahoo will barf sometimes; do a

# trycatch

trynum <- 0

while (!exists("OHCLV") && (trynum < 7)) {
trynum <- trynum + 1

try(OHLCV <- getSymbols(sym, auto.assign = FALSE,

warnings = warnings, ...), silent = TRUE)

}
adj.names <- paste(c(sym, "Adjusted"), collapse = ".",

sep = "")

lrets <- diff(log(OHLCV[, adj.names]))

# chop first

lrets[-1, ]

}
get.rets <- function(syms, ...) {

some.rets <- do.call("cbind", lapply(syms, get.ret,

...))

}
# quantmod::periodReturn does not deal properly

# with multiple columns, and the straightforward

# apply(mtms,2,periodReturn) barfs

my.periodReturn <- function(mtms, ...) {
per.rets <- do.call(cbind, lapply(mtms, function(x) {

retv <- periodReturn(x, ...)

colnames(retv) <- colnames(x)

return(retv)

}))
}
some.rets <- get.rets(c("AAPL", "IBM", "A", "C"), from = "2001-01-01")

print(as.sr(some.rets))
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## SR/sqrt(yr) Std. Error t value Pr(>t)

## AAPL.Adjusted 0.8032 0.2845 2.83 0.0024 **

## IBM.Adjusted 0.3338 0.2843 1.17 0.1203

## A.Adjusted -0.0072 0.2843 -0.03 0.5101

## C.Adjusted -0.2737 0.2843 -0.96 0.8321

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The annualization of an sr object can be changed with the reannualize

method. The name of the epoch and the observation rate can both be changed.
Changing the annualization will not change statistical significance, it merely
changes the units.

some.rets <- get.rets(c("XOM"), from = "2001-01-01")

yearly <- as.sr(some.rets)

monthly <- reannualize(yearly, new.ope = 21, new.epoch = "mo.")

print(yearly)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## XOM.Adjusted 0.32 0.28 1.1 0.13

# significance should be the same, but units

# changed.

print(monthly)

## SR/sqrt(mo.) Std. Error t value Pr(>t)

## XOM.Adjusted 0.091 0.082 1.1 0.13

2.1 Attribution Models

When an object of class lm is given to as.sr, the fit (Intercept) term is
divided by the residual volatility to compute something like the Sharpe ratio. In
terms of Null Hypothesis Significance Testing, nothing is gained by summarizing
the sr object instead of the lm object. However, confidence intervals on the
Sharpe ratio are quoted in the more natural units of reward to variability, and
in annualized terms (or whatever the epoch is.)

As an example, here I perform a CAPM attribution to the monthly returns of
BRK-B. Note that the statistical significance here is certainly tainted by selection
bias, a topic beyond the scope of this note.

# get the returns (see above for the function)

some.rets <- get.rets(c("BRK-B", "SPY"), from = "1996-05-09")

# make them monthly:

mo.rets <- my.periodReturn(exp(cumsum(some.rets)),

period = "monthly", type = "arithmetic")

# look at both of them together:

both.sr <- as.sr(mo.rets)

print(both.sr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## BRK.B.Adjusted 0.54 0.24 2.2 0.013 *

## SPY.Adjusted 0.53 0.24 2.2 0.015 *
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# confindence intervals on the Sharpe:

print(confint(both.sr))

## 2.5 % 97.5 %

## BRK.B.Adjusted 0.064 1

## SPY.Adjusted 0.054 1

# perform a CAPM attribution, using SPY as 'the

# market'

linmod <- lm(BRK.B.Adjusted ~ SPY.Adjusted, data = mo.rets)

# convert attribution model to Sharpe

CAPM.sr <- as.sr(linmod, ope = both.sr$ope, epoch = "yr")

# statistical significance does not change

# (though note the sr summary prints a 1-sided

# p-value)

print(summary(linmod))

##

## Call:

## lm(formula = BRK.B.Adjusted ~ SPY.Adjusted, data = mo.rets)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.16792 -0.03261 -0.00388 0.02850 0.20641

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.00554 0.00385 1.44 0.15

## SPY.Adjusted 0.53633 0.08279 6.48 6.9e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.054 on 203 degrees of freedom

## Multiple R-squared: 0.171,Adjusted R-squared: 0.167

## F-statistic: 42 on 1 and 203 DF, p-value: 6.88e-10

print(CAPM.sr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## linmod 0.35 0.25 1.4 0.076 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# the confidence intervals tell the same story,

# but in different units:

print(confint(linmod, "(Intercept)"))

## 2.5 % 97.5 %

## (Intercept) -0.002 0.013

print(confint(CAPM.sr))

## 2.5 % 97.5 %

## linmod -0.13 0.83
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2.2 Testing Sharpe and Power

The function sr test performs one- and two-sample tests for significance of
Sharpe ratio. Paired tests for equality of Sharpe ratio can be performed via the
sr equality test, which applies the tests of Leung et al. or of Wright et al.
[8, 16]

# get the sector 'spiders'

some.rets <- get.rets(c("XLY", "XLE", "XLP", "XLF",

"XLV", "XLI", "XLB", "XLK", "XLU"), from = "1999-01-01")

# make them monthly:

mo.rets <- my.periodReturn(exp(cumsum(some.rets)),

period = "monthly", type = "arithmetic")

# one-sample test on utilities:

XLU.monthly <- mo.rets[, "XLU.Adjusted"]

print(sr_test(XLU.monthly), alternative = "two.sided")

##

## One Sample sr test

##

## data: XLU.monthly

## t = 1.6, df = 172, p-value = 0.1096

## alternative hypothesis: true signal-noise ratio is not equal to 0

## sample estimates:

## [,1]

## XLU.Adjusted 0.12

## attr(,"names")

## [1] "Sharpe ratio of XLU.monthly"

# test for equality of Sharpe among the different

# spiders

print(sr_equality_test(some.rets))

##

## test for equality of Sharpe ratio, via chisq test

##

## data: some.rets

## T2 = 4.3, contrasts = 8, p-value = 0.8299

## alternative hypothesis: true sum squared contrasts of SNR is not equal to 0

# perform a paired two-sample test via sr_test:

XLF.monthly <- mo.rets[, "XLF.Adjusted"]

print(sr_test(x = XLU.monthly, y = XLF.monthly, ope = 12,

paired = TRUE))

##

## Paired sr-test

##

## data: XLU.monthly and XLF.monthly

## t = 0.95, df = 172, p-value = 0.3457

## alternative hypothesis: true difference in signal-noise ratios is not equal to 0

## sample estimates:

## difference in Sharpe ratios

## 0.28
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The power of the one-sample test for Sharpe ratio follows a form first pub-
lished by Johnson and Welch:[4]

n =
c

ζ2
,

where the constant c depends on the type I and type II rates and whether one
is performing a one- or two-sided test. A handy mnemonic instantiation of this
rule, similar to ‘Lehr’s rule,’ [15, 7] is e ≈ nζ2, where ζ is the population signal-
to-noise ratio, e is Euler’s number, and n is the sample size, in the same units
as ζ. That is, if one measures SNR in annualized units, then n is the number of
years. The relative error in this approximation for determining the sample size
is shown in Figure 1, as a function of ζ; the error is smaller than one percent in
the tested range. Note that Euler’s number appears here coincidentally, as it is

nearly equal to
[
Φ−1 (0.95)

]2
.

ope <- 253

zetas <- seq(0.1, 2.5, length.out = 101)

ssizes <- sapply(zetas, function(zed) {
x <- power.sr_test(n = NULL, zeta = zed, sig.level = 0.05,

power = 0.5, ope = ope)

x$n/ope

})
plot(zetas, 100 * ((exp(1)/zetas^2) - ssizes)/ssizes,

ylab = "error in mnemonic rule (as %)")

The power rules are sobering indeed. Suppose you were a hedge fund man-
ager whose investors threatened to perform a one-sided t-test after one year. If
your strategy’s signal-to-noise ratio is less than 1.65yr−1/2 (a value which should
be considered “very good”), your chances of ‘passing’ the t-test are less than
fifty percent.

3 Using the sropt Class

The class sropt stores the ‘optimal’ Sharpe ratio, which is that of the optimal
(‘Markowitz’) portfolio, as defined in Equation 1, as well as the relevant degrees
of freedom, and the annualization parameters. Again, the constructor can be
used directly, but the helper function is preferred:

# from a matrix object:

ope <- 253

n.stok <- 7

n.yr <- 8

# somewhat unrealistic: the returns are

# independent.

some.rets <- matrix(rnorm(n.yr * ope * n.stok), ncol = n.stok)

asro <- as.sropt(some.rets, ope = ope)

print(asro)

## SR/sqrt(yr) T^2 value Pr(>T^2)

## Sharpe 0.61 3 0.89
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Figure 1: The percent error of the power mnemonic e ≈ nζ2 is plotted versus ζ.
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# from an xts object

some.rets <- get.rets(c("IBM", "AAPL", "A", "C", "SPY",

"XOM"), from = "2001-01-01")

asro <- as.sropt(some.rets)

print(asro)

## SR/sqrt(yr) T^2 value Pr(>T^2)

## Sharpe 1.1 14 0.027 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

One can compute confidence intervals for the population parameter ζ∗ =df√
µ>Σ−1µ, called the ‘optimal signal-noise ratio’, based on inverting the non-

central F -distribution. Estimates of ζ∗ can also be computed, via Maximum
Likelihood Estimation, or a ‘shrinkage’ estimate. [5, 14]

# confidence intervals:

print(confint(asro, level.lo = 0.05, level.hi = 1))

## 5 % 100 %

## [1,] 0.26 Inf

# estimation

print(inference(asro, type = "KRS"))

## [,1]

## [1,] 0.82

print(inference(asro, type = "MLE"))

## [1] 0.86

A nice rule of thumb is that, to a first order approximation, the MLE of ζ∗ is
zero exactly when ζ̂2∗ ≤ p/n, where p is the number of assets. [5, 14] Inspection

of this inequality confirms that ζ̂∗ and n can be expressed ‘in the same units’,
meaning that if ζ̂∗ is in yr−1/2, then n should be the number of years. For
example, if the Markowitz portfolio on 8 assets over 7 years has a Sharpe ratio
of 1yr−1/2, the MLE will be zero. This can be confirmed empirically as below.

ope <- 253

zeta.s <- 0.8

n.check <- 1000

df1 <- 10

df2 <- 6 * ope

rvs <- rsropt(n.check, df1, df2, zeta.s, ope, drag = 0)

roll.own <- sropt(z.s = rvs, df1, df2, drag = 0, ope = ope,

epoch = "yr")

MLEs <- inference(roll.own, type = "MLE")

zerMLE <- MLEs <= 0

crit.value <- 0.5 * (max(rvs[zerMLE])^2 + min(rvs[!zerMLE])^2)

aspect.ratio <- df1/(df2/ope)

cat(sprintf("empirical cutoff for zero MLE is %2.2f yr^{-1}\n",
crit.value))
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## empirical cutoff for zero MLE is 1.67 yr^{-1}

cat(sprintf("the aspect ratio is %2.2f yr^{-1}\n",
aspect.ratio))

## the aspect ratio is 1.67 yr^{-1}

3.1 The Haircut

Care must be taken interpreting the confidence intervals and the estimated
optimal SNR. This is because ζ∗ is the maximal population SNR achieved by
any portfolio; it is at least equal to, and potentially much larger than, the SNR
achieved by the portfolio based on sample statistics, ŵ∗. There is a gap or
‘haircut’ due to mis-estimation of the optimal portfolio. One would suspect
that this gap is worse when the true effect size (i.e., ζ∗) is smaller, when there
are fewer observations (n), and when there are more assets (p).

I define the haircut as the quantity

h =df 1− ŵ∗
>µ

ζ∗
√
ŵ∗
>Σŵ∗

= 1−

(
ŵ∗
>µ

ν∗>µ

)( √
ν∗>Σν∗√
ŵ∗
>Σŵ∗

)
, (2)

where ν∗ is the population optimal portfolio, positively proportional to Σ−1µ.
Modeling the haircut is not straightforward because it is a random quantity
which is not observed. That is, it mixes the unknown population parameters Σ
and µ with the sample quantity ŵ∗, which is random.

When n/p is large, the following is a reasonable approximation to the dis-
tribution of h: √

p− 1 tan (arcsin (1− h)) ≈ t
(√
nζ∗, p− 1

)
, (3)

where t (x, y) is a non-central t-distribution with non-centrality parameter x
and y degrees of freedom. This approximation can be found by ignoring all
variability in the sample estimate of the covariance matrix, that is by assuming
that the sample optimal portfolio was computed with the population covariance:
ŵ∗ ∝ Σ−1µ̂. Because mis-estimation of the covariance matrix should contribute
some error, I expect that this approximation is a ‘stochastic lower bound’ on the
true haircut. Numerical simulations, however, suggest it is a fairly tight bound
for large n/p. (I would be willing to guess that the true distribution involves a
non-central F -distribution, but the proof is beyond me at the moment.)

Here I look at the haircut via Monte Carlo simulations:

require(MASS)

# simple markowitz.

simple.marko <- function(rets) {
mu.hat <- as.vector(apply(rets, MARGIN = 2, mean,

na.rm = TRUE))

Sig.hat <- cov(rets)

w.opt <- solve(Sig.hat, mu.hat)

retval <- list(mu = mu.hat, sig = Sig.hat, w = w.opt)
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return(retval)

}
# make multivariate pop. & sample w/ given

# zeta.star

gen.pop <- function(n, p, zeta.s = 0) {
true.mu <- matrix(rnorm(p), ncol = p)

# generate an SPD population covariance. a hack.

xser <- matrix(rnorm(p * (p + 100)), ncol = p)

true.Sig <- t(xser) %*% xser

pre.sr <- sqrt(true.mu %*% solve(true.Sig, t(true.mu)))

# scale down the sample mean to match the zeta.s

true.mu <- (zeta.s/pre.sr[1]) * true.mu

X <- mvrnorm(n = n, mu = true.mu, Sigma = true.Sig)

retval = list(X = X, mu = true.mu, sig = true.Sig,

SNR = zeta.s)

return(retval)

}
# a single simulation

sample.haircut <- function(n, p, ...) {
popX <- gen.pop(n, p, ...)

smeas <- simple.marko(popX$X)

# I have got to figure out how to deal with

# vectors...

ssnr <- (t(smeas$w) %*% t(popX$mu))/sqrt(t(smeas$w) %*%

popX$sig %*% smeas$w)

hcut <- 1 - (ssnr/popX$SNR)

# to compute the plugin estimator, estimate

# zeta.star

asro <- sropt(z.s = sqrt(t(smeas$w) %*% smeas$mu),

df1 = p, df2 = n)

zeta.hat.s <- inference(asro, type = "KRS") # or 'MLE', 'unbiased'

return(c(hcut, zeta.hat.s))

}

# set everything up

set.seed(as.integer(charToRaw("496509a9-dd90-4347-aee2-1de6d3635724")))

ope <- 253

n.sim <- if (LONG.FORM) 2048 else 512

n.stok <- 8

n.yr <- 4

n.obs <- ceiling(ope * n.yr)

zeta.s <- 1.2/sqrt(ope) # optimal SNR, in daily units

# run some experiments

system.time(experiments <- replicate(n.sim, sample.haircut(n.obs,

n.stok, zeta.s)))

## user system elapsed

## 5.74 0.14 5.69

hcuts <- experiments[1, ]

print(summary(hcuts))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.01 0.21 0.32 0.36 0.46 1.47
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# haircut approximation in the equation above

qhcut <- function(p, df1, df2, zeta.s, lower.tail = TRUE) {
1 - sin(atan((1/sqrt(df1 - 1)) * qt(p, df = df1 -

1, ncp = sqrt(df2) * zeta.s, lower.tail = !lower.tail)))

}
# if you wanted to look at how bad the plug-in

# estimator is, then uncomment the following (you

# are warned): zeta.hat.s <- experiments[2,];

# qqplot(qhcut(ppoints(length(hcuts)),n.stok,n.obs,zeta.hat.s),hcuts,

# xlab = 'Theoretical Approximate Quantiles',

# ylab = 'Sample Quantiles');

# qqline(hcuts,datax=FALSE,distribution =

# function(p) { qhcut(p,n.stok,n.obs,zeta.hat.s)

# }, col=2)

# qqplot;

qqplot(qhcut(ppoints(length(hcuts)), n.stok, n.obs,

zeta.s), hcuts, xlab = "Theoretical Approximate Quantiles",

ylab = "Sample Quantiles")

qqline(hcuts, datax = FALSE, distribution = function(p) {
qhcut(p, n.stok, n.obs, zeta.s)

}, col = 2)

I check the quality of the approximation given in Equation 3 by a Q-Q plot
in Figure 2. For the case where n = 1012 (4 years of daily observations), p = 8
and ζ∗ = 1.2yr−1/2, the t-approximation is very good indeed.

The median value of the haircut is on the order of 32%, meaning that the
median population SNR of the sample portfolios is around 0.82yr−1/2. The
maximum value of the haircut over the 2048 simulations, however is 1.47, which
is larger than one; this happens if and only if the sample portfolio has negative
expected return: ŵ∗

>µ < 0. In this case the Markowitz portfolio is actually
destroying value because of modeling error: the mean return of the selected
portfolio is negative, even though positive mean is achievable.

The approximation in Equation 3 involves the unknown population param-
eters µ and Σ, but does not make use of the observed quantities µ̂ and Σ̂. It
seems mostly of theoretical interest, perhaps for producing prediction intervals
on h when planning a trading strategy (i.e., balancing n and p). A more prac-

tical problem is that of estimating confidence intervals on ŵ>µ/
√
ŵ>Σ−1ŵ

having observed µ̂ and Σ̂. In this case one cannot simply plug-in some estimate
of ζ∗ computed from ζ̂∗ (via MLE, KRS, etc.) into Equation 3. The reason is
that the error in the approximation of ζ∗ is not independent of the modeling
error that causes the haircut.

3.2 Approximating Overfit

A high-level sketch of quant work is as follows: construct a trading system with
some free parameters, θ, backtest the strategy for θ1, θ2, . . . , θm, then pick the θi
that maximizes the Sharpe ratio in backtesting. ‘Overfit bias’ (variously known
as ‘datamining bias,’ ‘garbatrage,’ ‘backtest arb,’ etc.) is the upward bias in
one’s estimate of the true signal-to-noise of the strategy parametrized by θi∗ due
to one using the same data to select the strategy and estimate it’s performance.
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Figure 2: Q-Q plot of 2048 simulated haircut values versus the approximation
given by Equation 3 is shown.
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[1][Chapter 6]
As an example, consider a basic Moving Average Crossover strategy. Here θ

is a vector of 2 window lengths. One longs the market exactly when one moving
average exceeds the other, and shorts otherwise. One performs a brute force
search of all allowable window sizes. Before deciding to deploy money into the
MAC strategy parametrized by θi∗ , one has to estimate its profitability.

There is a way to roughly estimate overfit bias by viewing the problem as
a portfolio problem, and performing inference on the optimal Sharpe ratio. To
do this, suppose that xi is the n-vector of backtested returns associated with
θi. (I will assume that all the backtests are over the same period of time.)
Then approximately embed the backtested returns vectors in the subset of a p-
dimensional subspace. That is, by a process like PCA, make the approximation:

{x1, . . . ,xm} ≈ K ⊂ L =df {Yŵ | ŵ ∈ Rp }

Abusing notation, let ζ̂ (θ) be the sample Sharpe ratio associated with param-

eters θ, and also let ζ̂ (x) be the Sharpe ratio associated with the vector of
returns x. Then make the approximation

ζ̂ (θ∗) =df max
θ1,...,θm

ζ̂ (θi) ≈ max
x∈K

ζ̂ (x) ≤ max
x∈L

ζ̂ (x) = ζ̂∗.

This is a conservative approximation: the true maximum over L is presumably
much larger than ζ̂ (θ∗). One can then use ζ̂ (θ∗) as ζ̂∗ over a set of p assets,
perform inference on ζ∗, which, by a series of approximations as above, is an
approximate upper bound on ζ (θ∗).

This approximate attack on overfitting will work better when one has a good
estimate of p, when m is relatively large and p relatively small, and when the
linear approximation to the set of backtested returns is good. Moreover, the
definition of L explicitly allows shorting, whereas the backtested returns vectors
xi may lack the symmetry about zero to make this a good approximation. By
way of illustration, consider the case where the trading system is set up such
that different θ produce minor variants on a clearly losing strategy: in this case
we might have ζ̂ (θ∗) < 0, which cannot hold for ζ̂∗.

One can estimate p via Monte Carlo simulations, by actually performing
PCA, or via the ‘SWAG’ method. Surprisingly, often one’s intuitive estimate of
the true ‘degrees of freedom’ in a trading system is reasonably good.

require(TTR)

# brute force search two window MAC

brute.force <- function(lrets, rrets = exp(lrets) -

1, win1, win2 = win1) {
mtms <- c(1, exp(cumsum(lrets))) # prepend a 1.

# do all the SMAs;

SMA1 <- sapply(win1, function(n) {
SMA(mtms, n = n)

})
symmetric <- missing(win2)

if (!symmetric)

SMA2 <- sapply(win2, function(n) {
SMA(mtms, n = n)

})
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mwin <- max(c(win1, win2))

zeds <- matrix(NaN, nrow = length(win1), ncol = length(win2))

upb <- if (symmetric)

length(win1) - 1 else length(win1)

# 2FIX: vectorize this!

for (iidx in 1:upb) {
SM1 <- SMA1[, iidx]

lob <- if (symmetric)

iidx + 1 else 1

for (jidx in lob:length(win2)) {
SM2 <- if (symmetric)

SMA1[, jidx] else SMA2[, jidx]

trades <- sign(SM1 - SM2)

dum.bt <- trades[mwin:(length(trades) -

1)] * rrets[mwin:length(rrets)] # braindead backtest.

mysr <- as.sr(dum.bt)

zeds[iidx, jidx] <- mysr$sr

if (symmetric)

zeds[jidx, iidx] <- -zeds[iidx, jidx] # abuse symmetry of arithmetic returns

}
}
retv <- max(zeds, na.rm = TRUE)

return(retv)

}
# simulate one.

sim.one <- function(nbt, win1, ...) {
lrets <- rnorm(nbt + max(win1), sd = 0.01)

retv <- brute.force(lrets, win1 = win1, ...)

return(retv)

}
# set everything up

set.seed(as.integer(charToRaw("e23769f4-94f8-4c36-bca1-28c48c49b4fb")))

ope <- 253

n.yr <- 4

n.obs <- ceiling(ope * n.yr)

n.sim <- if (LONG.FORM) 2048 else 512

win1 <- c(2, 4, 8, 16, 32, 64, 128, 256)

# run them

system.time(max.zeds <- replicate(n.sim, sim.one(n.obs,

win1)))

## user system elapsed

## 22.070 0.004 22.116

# qqplot;

qqplot(qsropt(ppoints(length(max.zeds)), df1 = 2, df2 = n.obs),

max.zeds, xlab = "Theoretical Approximate Quantiles",

ylab = "Sample Quantiles")

qqline(max.zeds, datax = FALSE, distribution = function(p) {
qsropt(p, df1 = 2, df2 = n.obs)

}, col = 2)
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Figure 3: Q-Q plot of 2048 achieved optimal Sharpe ratio values from brute
force search over both windows of a Moving Average Crossover under the null
of driftless log returns with zero autocorrelation versus the approximation by a
2-parameter optimal Sharpe ratio distribution is shown.
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Here I illustrate the quality of the approximation for the two-window simple
MAC strategy. I generate log returns which are homoskedastic, driftless, and
have zero autocorrelation. In this case, every MAC strategy has zero expected
return (ignoring trading costs). In spite of this deficiency in the market, I find
the best combination of window sizes by looking at 4 years of daily data. By
selecting the combination of windows with the highest Sharpe ratio, then using
that maximal value as an estimate of the selected model’s true signal-noise-
ratio, I have subjected myself to overfit bias. I repeat this experiment 2048
times, then Q-Q plot the maximal Sharpe ratio values over those experiments
versus an optimal Sharpe ratio distribution assuming p = 2 in Figure 3. The
fit is reasonable except in the case where the maximal in-sample Sharpe ratio is
very low (recall that it can be negative for this brute-force search, whereas the
optimal Sharpe ratio distribution does not produce negative values). This case
is unlikely to lead to a trading catastrophe, however.

It behooves me to replicate the above experiment ‘under the alternative,’
e.g., when the market has autocorrelated returns, to see if the approximation
holds up when ζ∗ > 0. I leave this for future iterations. Instead, I apply the
p = 2 approximation to the brute-force MAC overfit on SPY.

# is MAC on SPY significant?

SPY.lret <- get.ret("SPY", from = "1995-01-01")

mysr <- as.sr(SPY.lret) # just to get the ope

print(mysr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## SPY.Adjusted 0.43 0.23 1.9 0.032 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# try a whole lot of windows:

win1 <- seq(4, 204, by = 10)

zeds <- brute.force(SPY.lret, win1 = win1)

asro <- sropt(z.s = zeds, df1 = 2, df2 = length(SPY.lret) -

max(win1), ope = mysr$ope)

print(asro)

## SR/sqrt(yr) T^2 value Pr(>T^2)

## Sharpe 0.61 6.5 0.04 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

print(inference(asro, type = "KRS"))

## [1] 0.5

The Sharpe ratio for SPY over this period is 0.43yr−1/2. The optimal Sharpe
ratio for the tested MAC strategies is 0.61yr−1/2. The KRS estimate (using
the p = 2 approximation) for the upper bound on signal-to-noise of the optimal
MAC strategy is only 0.5yr−1/2. [5] This leaves little room for excitement about
MAC strategies on SPY.
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4 Distribution Functions

There are dpqr functions for the Sharpe ratio distribution, as well as the ‘opti-
mal Sharpe ratio’ distribution. These are merely rescaled non-central t and F
distributions, provided for convenience, and for testing purposes. See the help
for dsr and dsropt for more details.
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