
SINGLE Package Vignette

Ricardo Pio Monti, Christoforos Anagnostopoulos and Giovanni Montana

December 8, 2013

Given multiple longitudinal time series we are often interested in quantifying the rela-
tionship between the time series over time. For example, given fMRI data corresponding to
various regions of interest in the brain we may be interested in measuring their statistical
dependencies over time. These relationships can subsequently be summarised as graphs or
networks where each node corresponds to a time series (e.g., a BOLD time series for a region
of interest) and edges between nodes (or their absence) provide information regarding the
nature of the relationship. Here we present a short tutorial and introduction to using the
R package SINGLE to estimate such dynamic graphs over time from noisy time series data.
The SINGLE package provides an implementation of the Smooth Incremental Graphical Lasso
Estimation algorithm, full details of which can be found in [Monti et al., 2013].

1

1 Introduction

There is an increasing interest in summarising the relationships between time series using
undirected graphs. Here each node represents a time series (e.g., this can be the BOLD time
series for a brain region) and the edge structure serves to summarise the statistical relationship
between nodes. Edge structure is commonly estimated using partial correlations. In this
case, the absence of an edge between two nodes implies that the two nodes are conditionally
independent given all other nodes.

However it is often the case that only a global graph is estimated using the entire time
series. Whilst this may be appropriate in some scenarios, it is often the case that we expect
the statistical dependencies between nodes to change over time. A clear example of this can be
seen by considering fMRI time series of a subject performing alternating tasks: we naturally
expect the relationship between brain regions to change depending on task.

In this vignette, we introduce the SINGLE package which can be used to estimate dynamic
graphs from noisy time series data. The remainder of this vignette is organised as follows:
in Section 2 we give a brief motivating example to show the capabilities of the SINGLE
algorithm. In Section 3 we give a brief background description of the SINGLE algorithm.
Finally, in Section 4 we give a more detailed description of each of the functions in the
SINGLE package.

2 Motivating example

Here we present a brief motivational example to show the capabilities of the SINGLE algorithm
and the functionality of the SINGLE package.

First we simulate non-stationary data in order to test the performance of the SINGLE
algorithm. We simulate the data using the generate_random_data funciton:

> library('SINGLE')
> set.seed(1)

> sim = generate_random_data(ROI=5, length_=50, seg=3, sparsity=.1, str=-.6)

Here sim is a list of length two. The first entry contains a matrix of simulated non-stationary
data and the second contains an array which summaries the true correlation structure over
time. Thus sim$data is a matrix with 5 columns and 150 rows. For example, this could
correspond to fMRI data from 5 regions of interest over a time. As mentioned previously each
column represents a node in our graph and each row is a chronologically ordered observation.
Thus sim$data[i,j] is the ith observation of the jth node.

The true partial correlation structure over time is stored in the array sim$true_cov. We
also note that this dataset contains two changepoints, one at the 50th observation and the
other at the 100th. We can view the correlation structure for at the first observations as
follows:

> sim$true_cov[,,1]

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0 0 0 0 -0.6

[2,] 0.0 1 0 0 0.0

2

[3,] 0.0 0 1 0 0.0

[4,] 0.0 0 0 1 0.0

[5,] -0.6 0 0 0 1.0

We can now run the Smooth Incremental Graphical Lasso Estimation (SINGLE) algorithm
to estimate the network structure over time. The SINGLE algorithm requires the input of
three intuitive parameters. Parameters λ1 and λ2 control the level of sparsity and temporal
homogeneity respectively. They can be estimated by minimising AIC over a given range of
values. The final parameter is h, the choice of width for the Gaussian kernel. This can be
estimated using the choose_h function which calculates the look-ahead log-likelihood.

> data = sim$data

> h_G = choose_h(data=data, sample_size=30, kernel="gaussian",

+ h_lower=20, h_upper=100, h_step=10)

> h_W = choose_h(data=data, sample_size=30, kernel="window",

+ h_lower=20, h_upper=100, h_step=10)

We note that the choice of kernel allows the user to alternative between a Gaussian kernel
and a sliding window.

The SINGLE algorithm can then be implemented in one of two ways. Firstly, we can
simply input the data as well as the estimated width together with λ1 and λ2 parameters as
follows:

> S = SINGLE(data=data, h=h_G, l1=.75, l2=0.5)

This automatically uses a Gaussian kernel to estimate sample covariance matrices. Al-
ternatively, we can directly supply the SINGLE function with an array C of sample covariance
matrices. This allows us to run the SINGLE algorithm on any arbitrary choice of sample
covariance matrices. For example, we could use a sliding window to estimate covariance
matrices. This can be achieved using the get_kern_cov function as follows:

> C_slid = get_kern_cov(data=data, h=h_W, kernel="window")

> S_slid = SINGLE(data=data, C=C_slid, l1=.75, l2=0.5)

Sample covariance matrices provided

This gives the SINGLE function greater flexibility and allows the user to easily compare
performance across difference widths, h, as well as using different kernels. Of course the values
of λ1 and λ2 would need to be estimated for each choice of h and kernel. The SINGLE function
also returns the AIC and BIC for specified parameters λ1 and λ2.

We can see that the estimated partial correlations accurately reflect the true network
structure (stored in sim$true_cov). We also note that the estimated partial correlation is
lower than 0.6, this is due to the presence of the sparsity (λ1) penalty. Given this is a simulated
example we can assess the performance of the SINGLE algorithm using precision, recall and
F scores over time using the precision_recall function:

3

> plotSINGLE(object=S, index=c(1,2,3,4,5), x.axis = seq(1,150), n.row=2,

+ col.names=seq(1,5), fix.axis=TRUE)

0 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 1 2

0 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 1 3

0 100
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

PC: 1 4

0 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 1 5

0 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 2 3

0 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 2 4

0 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 2 5

0 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 3 4

0 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 3 5

0 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 4 5

Figure 1: Estimated partial correlations for simulated example

3 Background

We assume to have obtained time series denoted by X1, . . . , XT , where each vector Xi ∈ R1×p

contains the measurements for each of the p variables of interest at the ith time point. We
are interested in inferring a sequence of graphs {G1, G2, . . . , GT } where each Gi = (V,Ei)
corresponds to the functional connectivity between nodes, V , at time i. The edge structure,
E, is determined using partial correlations.

The SINGLE algorithm has the following two desirable properties: (a) each graph Gi is
sparse thus allowing for accurate and interpretable estimates of the underlying graphs, and
(b) the structure of the estimates graphs varies smoothly over time1.

At any given time point, we assume that the random vector Xi follows a multivariate
Gaussian distribution, however both the mean and the covariance of this distribution are
assumed to be dependent on the time index. We write Si to denote the estimated covariance

1we note that the extent of sparsity and smoothness can be determined by the user

4

> result = precision_recall(true_cov=sim$true_cov, estimated_cov=S$P_)

> plot(result$F1, type='l', ylim=c(0,1), ylab='',
+ main='F Score', xlab='Time')

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F Score

Time

Figure 2: Plot of the F score over time for the SINGLE algorithm on simulated data

matrix at time i.
The set of partial correlations is summarised in the precision (inverse covariance) matrix.

Thus our objective is equivalent to obtaining a sequence of time-dependent estimates of pre-
cision matrices, Θ̂1, . . . , Θ̂T , where each Θ̂i = S−1i . The Smooth Incremental Graphical Lasso
(SINGLE) obtains these estimates by solving a constrained optimisation problem which bal-
ances goodness-of-fit, sparsity and temporal smoothness. This is achieved by formulating the
following objective function:

f({Θ̂}) =

T∑
i=1

[
−log det Θ̂i + trace (SiΘ̂i)

]
+ λ1

T∑
i=1

||Θ̂i||1 + λ2
∑
|i−j|<k

||Θ̂i − Θ̂j ||1, (1)

where {Θ̂} = {Θ̂1, . . . , Θ̂T } contains all the precision matrices indexed by time. By taking a
closer look at the objective function we can gain a clear understanding of what the SINGLE
algorithm is looking to achieve. The first sum is proportional to the sum of negative log

5

likelihoods of the estimated precision matrices. The first penalty term regularised by λ1
corresponds to the Graphical Lasso penalty and ensures sparsity in the estimated graphical
structure by imposing a penalty on the sum of absolute entries in each Θ̂i. On the other
hand it, the second penalty function regularised by λ2, ensures smoothness by penalising the
differences between temporally adjacent networks. This penalty can be seen as an extension
of the Fused Lasso penalty from the context of penalised regression (i.e., in the Fused Lasso
we penalise |βi−βi+1| and here this is extended to the difference over graphs). It is the choice
of parameter k that governs the extent over which we expect there to be smoothness in the
functional connectivity structure over time. It follows that a large choice of k will penalise
changes over a longer period of time and thus result in smoother estimates.

The SINGLE estimation procedure consists of two independent steps performed in se-
quence: initially, recursive estimates of the covariance matrices S1, . . . , ST are obtained using
a Gaussian kernel; then an iterative optimisation algorithm is run until convergence in order
to produce a sequence of estimated graphs. Full details of the SINGLE algorithm are given
in [Monti et al., 2013].

4 The SINGLE package

In this section we give a more detailed description of each of the functions contained in the
SINGLE package.

4.1 generate_random_data

This function allows for the generatation of data with a random correlation structure that
is piecewise continuous. This is achieved using Vector Autoregressive Processes (VAR). The
choice of VAR processes here is motivated by their ability to encode autocorrelation within a
time series as well as cross-correlations across time series. Network structure can be simulated
according to either Erdos-Renyi random graphs or Barabasi-Albert scale-free networks. This
choice is specified by mode input in the generate_random_data funciton.

First a random correlation structure is simulated. This is then used to simulate a VAR
process with the given correlation structure.

As shown in the motivational example, we can easily simulate data using this function:

> sim_ER = generate_random_data(ROI=5, length_=50, mode='ER', seg=3, sparsity=.1)

> sim_BA = generate_random_data(ROI=5, length_=50, mode='BA', seg=3, sparsity=.1)

We note that while the number of piecewise continuous segments of data and their lengths
can be specified using seg and length_ respectively. Random data with segments of different
lengths can be generated using the generate_random_data command several times as follows:

> sim1 = generate_random_data(ROI=5, length_=25, mode='BA', seg=1, sparsity=.15)

> sim2 = generate_random_data(ROI=5, length_=75, mode='BA', seg=1, sparsity=.15)

> data = rbind(sim1$data, sim2$data)

This function depends on both the igraph [Csardi and Nepusz, 2006] and dse packages
[Gilbert, 2006] for simulating random networks and VAR processes respectively.

6

4.2 SINGLE

The SINGLE function is the main function within the SINGLE package and provides an imple-
mentation of the SINGLE algorithm. We note that this function requires the input of the
following user-specified parameters:

1. h: This is the width, h, used in the Gaussian kernel. The choice of this radius is
particularly important. Setting h to be too large will result in overly smooth estimates
whereas choosing h to be too small will result in noisy estimation. The optimal choice
of h can be estimated using the choose_h function.

2. l1: This is value of λ1 in the SINGLE objective function. Increasing the value of λ1
will increase the sparsity of the estimated dynamic networks.

3. l2: This is the value of λ2 in the SINGLE objective. Increasing the value of λ2 will
encourage sparsity in the difference of temporally adjacent networks, thus resulting in
smoother estimates.

4. C: This is an optional input of an array of estimated sample covariance matrices. These
can be estimated in any arbitrary manner.

As shown in Section 2 the SINGLE algorithm can be run as follows:

> set.seed(1)

> sim = generate_random_data(ROI=5, length_=50, seg=3, sparsity=.1, str=-.6)

> data = sim$data

> S = SINGLE(data=data, h=50, l1=.75, l2=0.5)

Since the SINGLE algorithm relies on the Fused Lasso for one step of its iterative optimi-
sation this function depends on the flsa package [Hoefling, 2013].

4.3 precision_recall

The precision_recall function allows us to measure the performance of the SINGLE algo-
rithm. Precision is defined as the fraction of reported edges which are true edges while recall
is defined as the fraction of true edges which are correctly reported. It follows that the closer
precision and recall are to 1 the better the performance. Finally we also define the F score
as follows:

F = 2 · P ·R
P +R

,

where P and R refer to the precision and recall respectively.
This function calculates the precision and recall for an iteration of the SINGLE algorithm

at each observation. That is, at the ith observation the precision, recall and F score is cal-
culated by comparing the true correlation structure at the time and the correlation structure
estimated by the SINGLE algorithm.

The precision_recall function is run directly on the array of estimated precision ma-
trices (S$P_ in the example above) as follows:

> result = precision_recall(true_cov=sim$true_cov, estimated_cov=S$P_)

7

4.4 plotSINGLE

The plotSINGLE function allows for the visualisation of the estimated correlation structures
over time. This is achieved by plotting the pairwise partial correlations between each of the
nodes. Since there may be a potentially large number of nodes (resulting in an even larger
number of pairwise correlations to plot) the plotSINGLE function allows the user to specify
a subset of nodes to plot using its index command. In the example from before we plot the
partial correlations for all nodes. Alternatively, we could plot only the partial correlations
between the 1st, 3rd and 5th nodes as follows:

> plotSINGLE(object=S, index=c(1,2,3,5), x.axis = seq(1,150), n.row=2,

+ col.names=c(1,2,3,5), fix.axis=TRUE)

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 1 2

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 1 3

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 1 5

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 2 3

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 2 5

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC: 3 5

Figure 3: Estimated partial correlations for simulated example discussed previously

4.5 choose_h

The choose_h function allows the user to estimate the optimal kernel width using look-ahead
log-likelihood. We define

L−1(i;h) = −1

2
log det (Si−1)−

1

2
(Xi − µi−1)TS−1i−1(Xi − µi−1) (2)

8

as the estimated look-ahead log-likelihood for the ith observation for some fixed choice of h.
We note that both µi−1 and Si−1 are estimated with the ith observation removed. It follows
that calculating L−1(h) for all observations is computationally expensive, thus in order to
save computational effort we sample a subset of observations R ⊆ {2, . . . , T}. The optimal
value of h can then be estimated by choosing h to maximise the following score function:

CV (h) =
∑
i∈R
L−1(i;h), (3)

where in order to reduce the variability of estimated look-ahead log-likelihoods we use the
same sample R to calculate each CV (h).

The sample_size input in the choose_h function determines the size of subset R and the
inputs h_lower, h_upper and h_step determine the values over which we calculate CV (h).

4.6 get_kern_cov

The get_kern_cov function allows the user to estimate sample covariance matrices for a
given data using either a Gaussian kernel or sliding window of any given width. The following
formula is used to estimate sample covariance matrices:

µi =

∑T
j=1Kh(i, j) ·Xj∑T

j=1Kh(i, j)
, (4)

Si =

∑T
j=1Kh(i, j) · (Xj − µj)T (Xj − µj)∑T

j=1Kh(i, j)
. (5)

where Kh(·, ·) is a kernel function.

References

G. Csardi and T. Nepusz. The igraph software package for complex network research. Inter-
Journal, Complex Systems:1695, 2006. URL http://igraph.sf.net.

P. D. Gilbert. Brief User’s Guide: Dynamic Systems Estimation distributed with the
dse package, 2006. URL http://cran.r-project.org/web/packages/dse/vignettes/

dse-guide.pdf.

H. Hoefling. flsa: Path algorithm for the general Fused Lasso Signal Approximator, 2013.
URL http://CRAN.R-project.org/package=flsa. R package version 1.05.

R. P. Monti, P. Hellyer, D. Sharp, R. Leech, C. Anagnostopoulos, and G. Montana. Estimating
Time-varying Brain Connectivity Networks from Functional MRI Time Series. Preprint,
2013.

9

