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R SDisc is integrated set of tools and methods to identify homogeneous profiles/subtypes
in data distribution by cluster analysis. It includes methods for data treatment and pre-
processing, repeated cluster analysis, model selection, model reliability and reproducibility
assessment, profiles characterization and validation by visual and table summaries. It ap-
plies particularly to the search for more homogeneous profiles in cohort studies.

This Vignette is an interactive documentation on the R SDisc package. The first
part referred to as Hands on R SDisc, describes step by step with the help of several
examples, how to carry an SDisc analysis. The second part referred to as About subtype
discovery analysis with SDisc, presents different instances of research searching for more
homogeneous patient profiles, an analysis use case, the rationale of the SDisc package,
and the orientation of our ongoing developments around the SDisc package. In the last
section of part 2, we point you to several important links with respect to subtype analyses
and SDisc.

apply: clinical heterogeneity, complex diseases, patient profiles, complex interactions,
phenotypes
infer: validate, evaluate, reproduce, κ, χ2-association testing, odd ratios, rank, stability
analyse: cluster, mixture model, EM, hierarchical clustering, exploratory data analysis,
data transform, repeat, characterize, compare, visualize
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Introduction

The time and the expertise to perform robust subtyping inferences in data are often
regarded as limiting factors for the range of analysis hypothesis considered. Indeed, not
only competence in cluster analysis is required but also in exploratory data analysis,
regression, statistical testing, computational statistics, classifier training and testing, data
visualization and scientific programming. Identifying data subtypes is therefore greatly
interdisciplinary. Hence, SDisc addresses an essential demand, originally emanating from
clinical research, for an integrated scenario performing the different steps of a subtyping
analysis.

With SDisc, analyzes also become more straightforward and therefore more accessible
to many investigators. The well-defined data structures of the package greatly enhances
the analysis reproducibility, whereas with the public release of the package, research teams
from elsewhere can benefit of a tested scenario to perform their own analyzes. Addition-
ally, more data analysis hypotheses than before are considered. For instance, adjusting
the data preparation at an advanced stage is now possible and only requires new input
settings for the scenario. The next calculation will update the graphics, the measurements
and the statistics which, in turn, may enable to compare different data treatments at a
meta-level.

The possible domains of application are in clinical research on complex pathologies
like Osteoarthritis, Parkinson’s disease and aggressive brain tumor diagnosis. For these
pathologies, more homogeneous patient subtypes is expected to help to break down the
existing clinical heterogeneity and thus further enhance the understanding of their under-
lying mechanisms. Hence, the discovered subtypes may help to advance the development
of new treatment strategies.

Moreover, SDisc confronts particularly with clinical research requirements in terms
of data analysis. It considers the validity aspect of the inference steps carried out in
the course of a subtyping analysis, the accessibility facet to enable non-expert computer
scientist to perform and/or reproduce analyzes independently and straightforwardly, as
well as the availability aspect by the distribution of the generic solution as a documented
open source R package.
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1 Hands on R SDisc

> library(SDisc)

by using mclust, you accept the license agreement in the LICENSE file
and at http://www.stat.washington.edu/mclust/license.txt

1.1 Datasets

mixt3 is a matrix of three independent vectors of length 50, which follow the normal
distribution having for parameters respectively N (0, 1), N (3, 5), N (−2, 4).

> set.seed(6014)
> mixt3 <- matrix(c(rnorm(50), rnorm(50, mean = 3, sd = 5), rnorm(50, mean = -2,

sd = 4)), 50, 3)

normdep is a matrix composed of five variables. The first variable is normal with
N (0, 1). The second variable represents the time element of which, the last variable
depends upon. We add to this dependent variable an additional noise which we refer to
as epsilon. To summary:

vDependent = 2× time+ ε (1)

> set.seed(6015)
> epsilon <- runif(50)
> time <- sample(1:5, 50, replace = TRUE)
> vDependent <- 2 * time + epsilon
> normdep <- matrix(c(rnorm(50), time, epsilon, vDependent, vDependent), 50,

5)
> colnames(normdep) <- c("vNormal", "time", "epsilon", "vDependentOrig", "vDependent")

The iris data set gives the measurements in centimeters of the variables sepal length
and width and petal length and width, respectively, for 50 flowers from each of three
species of iris. The species are Iris setosa, versicolor, and virginica.

> library(datasets)
> help("iris")

The state data sets relate to the 50 states of the United States of America. The
state.x77 matrix has 50 rows and 8 columns giving the population estimate as of July 1st
of 1975, the Income per capita in 1974, the illiteracy in 1970 as a percent of the popula-
tion, the life expectancy in years in the years 1969-71, the murder and non-negligent
manslaughter rate per 100,000 population in 1976, the percent of high-school gradu-
ates in 1970 the mean number of days with minimum temperature below freezing in
the years 1931-1960 in the capital or the large city, land area in square miles. Fur-
ther, in complement to state.x77, we add the geo-localisation center from each state
expressed in terms of longitude and latitude. The address of the geolocalisation database
is http://www.maxmind.com/app/state_latlon

> state.loc <- read.csv("state.latlon.csv", row.names = 1)
> state <- data.frame(state.x77[, hclust(dist(t(state.x77)))$order], name = row.names(state.x77),

latitude = NA, longitude = NA)
> row.names(state) <- state.abb
> naRows <- row.names(state.loc)[(!row.names(state.loc) %in% row.names(state))]

LIACS, Leiden University, NL 4/24
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> state <- rbind(state, matrix(NA, length(naRows), ncol(state), dimnames = list(naRows,
colnames(state))))

> state[, c("latitude", "longitude")] <- state.loc[row.names(state), c("latitude",
"longitude")]

Orchard sprays represents an experiment which wasconducted to assess the potency of
various constituents of orchard sprays in repelling honeybees, using a Latin square design.

> help("OrchardSprays")

> osprays <- OrchardSprays

1.2 Configure and transform the data

> settingsMixt3 <- SDDataSettings(mixt3)

> settingsNormdep <- SDDataSettings(normdep)
> settingsNormdep[, "tFun"] <- c("mean sd", "", "", "", "lm(vDependent~time)")

> SDDataSettings(iris, latex = TRUE)

oddGroup inCAnalysis tFun vParGroup vParY vHeatmapY
Sepal.Length Sepal.Length TRUE mean sd varGroup1 1 1
Sepal.Width Sepal.Width TRUE mean sd varGroup1 2 2
Petal.Length Petal.Length TRUE mean sd varGroup1 3 3
Petal.Width Petal.Width TRUE mean sd varGroup1 4 4

Species Species TRUE mean sd varGroup1 5 5

Table 1: SDDataSettings

> SDDataSettings(iris, asCSV = TRUE)
> SDDataSettings(iris, asCSV = "irisSettings.csv")
> settingsIris <- SDDataSettings(iris)
> settingsIris["Species", ] <- c(NA, FALSE, NA, NA, NA, NA)

> settingsState <- SDDataSettings(state, asCSV = "stateSettings.csv")
> settingsState <- read.csv2("stateSettingsEdited.csv", row.names = 1)

> settingsOsprays <- SDDataSettings(osprays)
> settingsOsprays["treatment", ] <- NA

> dMixt3 <- SDData(mixt3, settings = settingsMixt3, prefix = "Mixt3")
> dNormdep <- SDData(normdep, settings = settingsNormdep, prefix = "Normdep")
> dState <- SDData(state, settings = settingsState, prefix = "state")

Yet, when calling SDisc, a call is immediately made to SDData. It results that an SDisc
analysis holds a unique SDData container, i.e. the dataset. As such, the data of an SDisc
analysis can be extracted with the SDData method. To illustrate this later, we do not
process at this moment the state and osprays datasets with SDData.
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Figure 1: Mixt3, boxplots of the variables of the factor varGroup1.
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Figure 2: Mixt3, histograms of the variables of the factor varGroup1.
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v2 v3 v1
26 3.76 -2.74 -0.01
36 1.36 -9.46 -0.93
22 -3.77 -3.76 2.61

Table 2: Mixt3, extract of the original data matrix.

v2 v3 v1
26 0.18 -0.14 0.10
36 -0.38 -1.80 -0.74
22 -1.58 -0.40 2.50

Table 3: Mixt3, extract of the transformed data matrix.

1.3 Explore and summary the data

> print(dMixt3, rseed = 6013, latex = TRUE)

> plot(dMixt3, latex = TRUE)

> summary(dMixt3, latex = TRUE)

mean sd
v1 -1.20e-01 1.09e+00
v2 3.01e+00 4.28e+00
v3 -2.15e+00 4.05e+00

Table 4: Mixt3 summary of the different data treatments operated on the data.

> print(dNormdep, rseed = 6013, latex = TRUE)

epsilon vDependent time
26 0.40 10.40 5.00
36 0.24 8.24 4.00
22 0.54 10.54 5.00

Table 5: Normdep, extract of the original data matrix.

> plot(dNormdep, latex = TRUE)

> summary(dNormdep, q = "lm", latex = TRUE, sanitize = FALSE)

> summary(dNormdep, q = "mean|sd", latex = TRUE)

> naPattern(dState, latex = TRUE)
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Figure 3: Normdep, boxplots of the variables of the factor varGroup1.
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Figure 4: Normdep, histograms of the variables of the factor varGroup1.
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epsilon vDependent time
26 0.40 -0.00 5.00
36 0.24 0.18 4.00
22 0.54 -0.15 5.00

Table 6: Normdep, extract of the transformed data matrix.

(Intercept) (SE; Pr(>|t|)) time (SE; Pr(>|t|)) R2 (adj-R2; N)
vDependent time 0.53 (0.09; 9.1e-07) 1.97 (0.03; 8.4e-51) 0.99 (0.99; 50)

Table 7: Normdep summary of the different data treatments operated on the data.

mean sd
vNormal -1.82e-01 9.02e-01

Table 8: Normdep summary of the different data treatments operated on the data.

isNA isNotMissing naRate
AS 9.00 2.00 81.82
DC 9.00 2.00 81.82
MP 9.00 2.00 81.82
PR 9.00 2.00 81.82
VI 9.00 2.00 81.82

Table 9: state, index of the cases presenting missing values along with the number of missings
and non-missings; the cases with a missing value represent 9.09% of the available cases.
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1.4 Predict new data

> set.seed(6016)
> epsilon <- runif(30)
> time <- sample(1:5, 30, replace = TRUE)
> vDependent <- 2 * time + epsilon
> mat <- matrix(c(rnorm(30), time, epsilon, vDependent, vDependent), 30, 5)
> colnames(mat) <- c("vNormal", "time", "epsilon", "vDependentOrig", "vDependent")
> dNormdepPredicted <- predict(dNormdep, newdata = mat, prefix = "NormdepPredicted")
> summary(dNormdepPredicted, q = "lm", latex = TRUE, sanitize = FALSE)

(Intercept) (SE; Pr(>|t|)) time (SE; Pr(>|t|)) R2 (adj-R2; N)
vDependent time 0.53 (0.09; 9.1e-07) 1.97 (0.03; 8.4e-51) 0.99 (0.99; 50)

Table 10: NormdepPredicted summary of the different data treatments operated on the data.

> summary(dNormdepPredicted, q = "mean|sd", latex = TRUE)

mean sd
vNormal -1.82e-01 9.02e-01

Table 11: NormdepPredicted summary of the different data treatments operated on the data.

1.5 Model repeatedly the data for clusters

> xNormdep <- SDisc(dNormdep)

Prepare the data

Modeling for clusters
EII,3,6013 VII,3,6013 EII,4,6013 VII,4,6013 EII,5,6013 VII,5,6013 EII,3,6014 VII,3,6014 EII,4,6014 VII,4,6014 EII,5,6014 VII,5,6014 EII,3,6015 VII,3,6015 EII,4,6015 VII,4,6015 EII,5,6015 VII,5,6015
Collect BICs (likelihood) of the models

Save modeling into Normdep/IMAGE.RData

Save best models as CSV files

Normdep/tables/MM-EII,5,6015.csv

Normdep/tables/MM-EII,5,6013.csv

Normdep/tables/MM-VII,5,6013.csv

Normdep/tables/MM-VII,5,6014.csv

Normdep/tables/MM-VII,4,6014.csv

> xState <- SDisc(state, settings = settingsState, prefix = "state", cFunSettings = list(modelName = c("EII",
"VII", "VEI", "VVI"), G = 3:5, rseed = 6013:6023))
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Prepare the data

Modeling for clusters
EII,3,6013 VII,3,6013 VEI,3,6013 VVI,3,6013 EII,4,6013 VII,4,6013 VEI,4,6013 VVI,4,6013 EII,5,6013 VII,5,6013 VEI,5,6013 VVI,5,6013 EII,3,6014 VII,3,6014 VEI,3,6014 VVI,3,6014 EII,4,6014 VII,4,6014 VEI,4,6014 VVI,4,6014 EII,5,6014 VII,5,6014 VEI,5,6014 VVI,5,6014 EII,3,6015 VII,3,6015 VEI,3,6015 VVI,3,6015 EII,4,6015 VII,4,6015 VEI,4,6015 VVI,4,6015 EII,5,6015 VII,5,6015 VEI,5,6015 VVI,5,6015 EII,3,6016 VII,3,6016 VEI,3,6016 VVI,3,6016 EII,4,6016 VII,4,6016 VEI,4,6016 VVI,4,6016 EII,5,6016 VII,5,6016 VEI,5,6016 VVI,5,6016 EII,3,6017 VII,3,6017 VEI,3,6017 VVI,3,6017 EII,4,6017 VII,4,6017 VEI,4,6017 VVI,4,6017 EII,5,6017 VII,5,6017 VEI,5,6017 VVI,5,6017 EII,3,6018 VII,3,6018 VEI,3,6018 VVI,3,6018 EII,4,6018 VII,4,6018 VEI,4,6018 VVI,4,6018 EII,5,6018 VII,5,6018 VEI,5,6018 VVI,5,6018 EII,3,6019 VII,3,6019 VEI,3,6019 VVI,3,6019 EII,4,6019 VII,4,6019 VEI,4,6019 VVI,4,6019 EII,5,6019 VII,5,6019 VEI,5,6019 VVI,5,6019 EII,3,6020 VII,3,6020 VEI,3,6020 VVI,3,6020 EII,4,6020 VII,4,6020 VEI,4,6020 VVI,4,6020 EII,5,6020 VII,5,6020 VEI,5,6020 VVI,5,6020 EII,3,6021 VII,3,6021 VEI,3,6021 VVI,3,6021 EII,4,6021 VII,4,6021 VEI,4,6021 VVI,4,6021 EII,5,6021 VII,5,6021 VEI,5,6021 VVI,5,6021 EII,3,6022 VII,3,6022 VEI,3,6022 VVI,3,6022 EII,4,6022 VII,4,6022 VEI,4,6022 VVI,4,6022 EII,5,6022 VII,5,6022 VEI,5,6022 VVI,5,6022 EII,3,6023 VII,3,6023 VEI,3,6023 VVI,3,6023 EII,4,6023 VII,4,6023 VEI,4,6023 VVI,4,6023 EII,5,6023 VII,5,6023 VEI,5,6023 VVI,5,6023
Collect BICs (likelihood) of the models

Save modeling into state/IMAGE.RData

Save best models as CSV files

state/tables/MM-VVI,4,6022.csv

state/tables/MM-VVI,4,6017.csv

state/tables/MM-VII,4,6015.csv

state/tables/MM-VII,4,6023.csv

state/tables/MM-VII,4,6014.csv

> xOsprays <- SDisc(osprays, settings = settingsOsprays, prefix = "osprays",
cFunSettings = list(modelName = c("EII", "VII", "VEI"), G = 3:6, rseed = 6013:6023))

Prepare the data

Modeling for clusters
EII,3,6013 VII,3,6013 VEI,3,6013 EII,4,6013 VII,4,6013 VEI,4,6013 EII,5,6013 VII,5,6013 VEI,5,6013 EII,6,6013 VII,6,6013 VEI,6,6013 EII,3,6014 VII,3,6014 VEI,3,6014 EII,4,6014 VII,4,6014 VEI,4,6014 EII,5,6014 VII,5,6014 VEI,5,6014 EII,6,6014 VII,6,6014 VEI,6,6014 EII,3,6015 VII,3,6015 VEI,3,6015 EII,4,6015 VII,4,6015 VEI,4,6015 EII,5,6015 VII,5,6015 VEI,5,6015 EII,6,6015 VII,6,6015 VEI,6,6015 EII,3,6016 VII,3,6016 VEI,3,6016 EII,4,6016 VII,4,6016 VEI,4,6016 EII,5,6016 VII,5,6016 VEI,5,6016 EII,6,6016 VII,6,6016 VEI,6,6016 EII,3,6017 VII,3,6017 VEI,3,6017 EII,4,6017 VII,4,6017 VEI,4,6017 EII,5,6017 VII,5,6017 VEI,5,6017 EII,6,6017 VII,6,6017 VEI,6,6017 EII,3,6018 VII,3,6018 VEI,3,6018 EII,4,6018 VII,4,6018 VEI,4,6018 EII,5,6018 VII,5,6018 VEI,5,6018 EII,6,6018 VII,6,6018 VEI,6,6018 EII,3,6019 VII,3,6019 VEI,3,6019 EII,4,6019 VII,4,6019 VEI,4,6019 EII,5,6019 VII,5,6019 VEI,5,6019 EII,6,6019 VII,6,6019 VEI,6,6019 EII,3,6020 VII,3,6020 VEI,3,6020 EII,4,6020 VII,4,6020 VEI,4,6020 EII,5,6020 VII,5,6020 VEI,5,6020 EII,6,6020 VII,6,6020 VEI,6,6020 EII,3,6021 VII,3,6021 VEI,3,6021 EII,4,6021 VII,4,6021 VEI,4,6021 EII,5,6021 VII,5,6021 VEI,5,6021 EII,6,6021 VII,6,6021 VEI,6,6021 EII,3,6022 VII,3,6022 VEI,3,6022 EII,4,6022 VII,4,6022 VEI,4,6022 EII,5,6022 VII,5,6022 VEI,5,6022 EII,6,6022 VII,6,6022 VEI,6,6022 EII,3,6023 VII,3,6023 VEI,3,6023 EII,4,6023 VII,4,6023 VEI,4,6023 EII,5,6023 VII,5,6023 VEI,5,6023 EII,6,6023 VII,6,6023 VEI,6,6023
Collect BICs (likelihood) of the models

Save modeling into osprays/IMAGE.RData

Save best models as CSV files

osprays/tables/MM-VEI,3,6020.csv

osprays/tables/MM-VEI,3,6014.csv

osprays/tables/MM-VEI,3,6021.csv

osprays/tables/MM-VEI,3,6017.csv

osprays/tables/MM-VEI,3,6018.csv

1.6 Rank the models by their likelihood

> summary(bicTable(xNormdep), latex = TRUE)

> summary(bicTable(xState), latex = TRUE)

> print(bicTable(xState), modelName = "VII", G = 4, latex = TRUE)

> summary(bicTable(xOsprays), latex = TRUE)
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EII VII
3 7.11 (7.11, 7.17) 4.85 (4.85, 4.85)
4 4.77 (4.77, 5.52) 2.48 (2.51, 4.01)
5 0.00 (0.00, 4.60) 0.80 (0.81, 3.43)

Table 12: Normdep, model EII,5,6015 shows the highest BIC score over: the repeated random
starts, type of model and number of component.

EII VII VEI VVI
3 10.21 (10.21, 10.21) 3.98 (3.98, 7.76) 5.67 (5.67, 9.65) 3.09 (3.09, 10.97)
4 4.44 (4.44, 12.13) 1.58 (1.58, 7.53) 2.93 (2.93, 8.62) 0.00 (0.36, 9.78)
5 4.60 (4.66, 12.51) 2.99 (2.99, 3.74) NA (4.04, 5.34) 2.16 (2.17, 9.58)

Table 13: state, model VVI,4,6022 shows the highest BIC score over: the repeated random
starts, type of model and number of component.

modelName G rseed BIC relativeBic
VII,4,6015 VII 4 6015 -980.58 1.58
VII,4,6023 VII 4 6023 -980.58 1.58
VII,4,6014 VII 4 6014 -980.58 1.58
VII,4,6018 VII 4 6018 -980.58 1.58
VII,4,6022 VII 4 6022 -980.58 1.58
VII,4,6020 VII 4 6020 -980.58 1.58
VII,4,6017 VII 4 6017 -980.58 1.58
VII,4,6016 VII 4 6016 -980.58 1.58
VII,4,6013 VII 4 6013 -980.58 1.58
VII,4,6019 VII 4 6019 -980.58 1.58
VII,4,6021 VII 4 6021 -1057.22 9.52

Table 14: state, models whose relative BIC score difference is less than 5%.

EII VII VEI
3 1.54 (1.54, 1.55) 2.32 (2.32, 2.40) 0.00 (0.00, 1.83)
4 3.11 (3.11, 3.53) 3.77 (4.01, 5.25) 2.07 (2.07, 2.62)
5 4.50 (4.54, 5.05) 6.00 (6.00, 7.80) 4.55 (4.55, 5.40)
6 5.61 (5.61, 7.02) 7.58 (7.58, 8.71) 6.49 (6.49, 8.17)

Table 15: osprays, model VEI,3,6020 shows the highest BIC score over: the repeated random
starts, type of model and number of component.

1.7 Compare the most likely models and assess ther stability

> print(xNormdep, latex = TRUE)

> print(xState, latex = TRUE)

> print(xState, m1 = 1, m2 = bestModel(xState, modelName = "VII", G = 4)[1],
latex = TRUE)
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5 4 2 1 3
2 14
5 12
3 11
1 6
4 7

Table 16: Normdep, the comparison of model EII,5,6015 and EII,5,6013 exhibits a random
index 100.0 (a κ = 100.0 , and a relative degree of association V = 100.0% with pχ2 = 0.0005,
χ2 = 200.0).

4 1 2 3
3 17 1
4 10
1 4 10
2 2 4 2

Table 17: state, the comparison of model VVI,4,6022 and VVI,4,6017 exhibits a random
index 82.8 (a κ = 74.7 , and a relative degree of association V = 77.8% with pχ2 = 0.0005,
χ2 = 90.9).

2 4 1 3
1 22 9 4
2 10 1
3 4

Table 18: state, the comparison of model 1 and VII,4,6015 exhibits a random index 85.1 (a
κ = 78.7 , and a relative degree of association V = 80.6% with pχ2 = 0.0005, χ2 = 65.0).

> print(xOsprays, latex = TRUE)

1 2 3
1 32
2 4
3 28

Table 19: osprays, the comparison of model VEI,3,6020 and VEI,3,6014 exhibits a random
index 100.0 (a κ = 100.0 , and a relative degree of association V = 100.0% with pχ2 = 0.0005,
χ2 = 128.0).
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Figure 5: state, visual representation of model VVI,4,6022.

1.8 Exhibit the most characteristic features of each subtype

> plot(xState, latex = TRUE)

> plot(xOsprays, latex = TRUE)

> summary(xState, q = 1, latex = TRUE)

> summary(xOsprays, q = 1, latex = TRUE)

1.9 Validate the discovered subtypes

> summary(xOsprays, type = "chi2test", target = "treatment", latex = TRUE)
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Figure 6: osprays, visual representation of model VEI,3,6020.
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1 2 3 4
Geo 1.77 4.01 1.09 -12.60

latitude 0.37 0.44 2.67 -12.21
Life -0.32 1.29 -0.27 -0.29

longitude 2.32 0.40 -1.99 0.80
SocioEconomic 2.00 11.93 -0.09 -12.21

Table 20: state, (Bayesian) oddratios for the main factors in model VVI,4,6022.

1 2 3
colpos 1.31 -1.35 -0.55

decrease -11.10 9.12 10.95
rowpos 1.36 -10.51 -0.50

Table 21: osprays, (Bayesian) oddratios for the main factors in model VEI,3,6020.
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Connecticut 
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Utah Indiana 
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Carolina Oklahoma 
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Florida Hawaii

Hawaii Alaska 
Oregon Washington 
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Idaho Utah Arizona

Vermont New Hampshire 
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Island Maine

1.10 Test the reproducibility of discovered subtypes on new
data

• use predict.SDisc; TODO example

1.11 Install R SDisc

> install.packages("SDisc", dep = TRUE)
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1 2 3
1 2.000 -0.707 -1.871
2 2.000 -0.707 -1.871
3 1.500 -0.707 -1.336
4 1.000 -0.707 -0.802
5 -1.500 0.707 1.336
6 -1.500 0.707 1.336
7 -1.500 -0.707 1.871
8 -2.000 2.121 1.336

Table 22: For treatment: pχ2 = 0.000 (χ2 = 48.3) in model VEI,3,6020.

> library(SDisc)

R CMD INSTALL SDisc_1.18.tar.gz
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2 About subtype discovery analysis with SDisc

In this second part of the SDisc vignette, we first present several application domains
where the discovery of homogeneous subtypes is of interest, we then report a use case of a
subtype analysis, we detail the rationale of the SDisc package, we outline the orientations
of our current developments, and we provide several links that relate to SDisc and subtype
discovery.

2.1 Instances of domains searching for homogeneous subtypes

In the following, we report the rationale of subtype discovery data analyzes by reviewing
a number of domains facing this problem, in medical research (Mol LUMC, Neu LUMC,
Psy LUMC, SOCO), in chemoinformatics (Pharma-IT) and in recycling (CIFASIS). For
each application domain we motivate the research target.

Osteoarthritis (OA) Searching for subtypes in the distribution of OA may allow to
study the spread of the disease across different sites and to show whether it is stochastic
or follows a particular pattern. Such subtypes could contribute to elucidate the clinical
heterogeneity of OA [?] and therefore enhance the identification of the disease pathways
(genetics, pathophysiological mechanisms).

Parkinson’s disease (PD) Among PD patients, there is marked heterogeneity in the
clinical phenotype which differs in the presence, the severity, and the progression rate of
the various features while differences are also observed in other clinical variables like age
at onset [?]. This clinical heterogeneity may indicate the existence of subtypes, whose
identification may advance our understanding of the underlying pathological mechanisms
of PD and thus, advance the development of more focused treatment strategies.

Major depressive disorders (MDD) and anxiety disorders (ANX) According
to the tripartite model, depression and anxiety symptoms are classified into three di-
mensions reflecting: a common factor of negative affect, and disorder/specific dimensions
lack of positive affect (MDD) and somatic arousal (ANX) [?]. As there is substantial
heterogeneity in these diagnostic categories, identifying more homogeneous subtypes of
MDD/ANX based on symptom profiles could help to find prognostic factors, risk factors,
and treatment strategies.

Glioblastoma and metastasis We attempt to find discriminative subtypes of aggres-
sive brain tumors using long echo term spectroscopy data. In particular, we search for
frequencies of the spectrum making the signals of these pathologies similar and, as a re-
sult, difficult to discriminate. Further, as the underlying heterogeneity of the glioblastoma
pathology remains uncharacterized at large, subtypes of this brain tumor may enhance
our understanding of the different forms of glioblastoma. Last, as effective patient care
orientation depends on accurate medical diagnosis, new subtypes of these pathologies may
provide a basis to improve their correct discrimination.

Additional analyzes The purpose of the Pharma-IT analysis is to identify subtypes in
databases of molecules. As molecules are classified into a number of complex bioactivity
classes, an automatic subtyping of the molecules, grouping them based on their similarity,
may help to further understand those classes.
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Second, with the CIFASIS, an automatic classifier is searched for capable to discrimi-
nate between different classes of plastics. In this analysis, the search for subtypes in the
distribution of spectroscopy measurements is susceptible to report the most discrimina-
tive spectra frequencies, first, and second, to identify whether spectra subtypes exhibit a
structure in correlation with the different classes of plastics.

2.2 A subtype analysis use case

The scenario illustrated by Figure 7, starts with a data preparation step where close
collaboration with the domain experts is required to obtain a description of the data.
These are written into a settings file that defines how to transform each variable, which
variable to include in the cluster modeling, how to summarize variables graphically and
statistically. To facilitate the task of writing that file, the package implements a function
that generates default settings.

Next, a preliminary subtype discovery analysis is performed to test the flow of sta-
tistical inferences, and to commence the discussion with the research team. A graphic
report of the data container is produced, which enables exploratory data analysis (EDA).
It creates box plots, histograms, and several other variable-specific statistics. To charac-
terize the mixture models, the scenario assembles a number of statistics and of graphics.
This output enables to complete with the research team a first instructional walk over the
whole inference process.
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Figure 7: The data mining scenario consists in a sequence of five steps [Colas et al., 2008a]: the
data preparation, the cluster modeling based on [?, ?], the model selection, the characterization
and comparison of the subtypes and the relevance evaluation. On top of each step, we illustrate
some of the tables and graphics it can produces. For more details, see the vignette documentation
[Colas, 2009b].

Subsequently, the subtype discovery can be adjusted given considerations over the
number of samples, the number of dimensions, the calculation time, the evaluation of
the significance of the subtypes by some statistical test (e.g. a χ2 test of association or
of goodness of fit, a risk ratio) or the posterior characterization of the subtypes. This
adjustment may involve additional validation data, alternative data processing, filtering
of outliers, re-organization of the graphics. Thus, it may require the preparation of a new

LIACS, Leiden University, NL 19/24



SDisc vignette 2 About subtype discovery analysis with SDisc

settings file and a new data container. The moment these considerations are fixed, a new
analysis is performed.

In the succeeding, we present a résumé of the subtyping inference carried out on a
cohort study of patients with PD.

The clinical presentation of PD was described by 13 variables from which the
variability explained by the disease duration was removed. Standard scores
were taken and a model based cluster analysis was repeated from 50 differ-
ent starting points, for 3, 4 and 5 clusters and for 5 differently parameterized
Gaussian models. It resulted in 750 estimated models. Cluster average PD
patterns were visualized using parallel coordinates and heat maps. The dis-
tributions of patients in the different cluster solutions were cross-compared in
terms of association tables and of a χ2-based coefficient of nominal association
(Cramer’s V). Finally, the consistency of the subtypes was evaluated for the
reproducibility between the assessments of year one and two.

2.3 An R package to identify subtypes in data

The R platform for statistical computing [?] as well as the BioConductor project for
the comprehension and the analysis of genomic data [?] are two projects that gained
widespread exposure in the last years. This exposure is partly the result of the abundance
of data sources in need of analysis and of a growing demand for analysis reproducibility.

For both projects, Figure 8 portrays the growing number of new submissions over
the years. It shows the wide acceptance, and thus the relevance, of the R platform for
statistical computing as a means to publish scientific programs. In parallel, the BioCon-
ductor initiative successfully attracted the creation of softwares in bioinformatics. Yet,
for both projects the number of new submissions is reducing. A first hypothesis is that
the field of bioinformatics and statistical computing is reaching maturity. A second one
is that the total software production is reaching some limit. Or, else, new packages are
no longer systematically added to those two repositories, of which SDisc would represent
an illustrative example as it was initially submitted to the NBIC gforge.
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Figure 8: The number of new submissions attained 300 packages per year in 2007 and 2008
for the CRAN, and 68 for BioConductor. Yet, in 2008 and 2009, the number of new submissions
is slowing down for both projects.

Thus, SDisc fits in the trend to make available and open source the software used to
perform a data analysis. Further, as it was applied to very different application areas,
the subtyping problem appears recurrent and thus, very general. Last, the variety of data
types analyzed also demonstrates the scenario’s flexibility.
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2.4 Methodology and orientation of new SDisc developments

2.4.1 Research process for the development of new features in R SDisc

When applying the scenario to a growing number of application areas, we develop new
methods and extend others to carry out subtype discovery analyzes on new data types
and to report field-specific subtype validation methods. Consequently, in what follows,
we describe our development methodology to extend the scenario’s functionalities.

First, we implement a prototype of the new functionality using the real data of the
new application. We update the prototype functionalities gradually, from a field-specific
procedure to a more general one. Then, we re-design the procedure as a function, which
enables its re-use in other contexts. Ultimately, we implement that procedure and the
data structure in an object-oriented mode of programming which in turn, will improve
its reliability and guarantee its generality. Later, as the new function stabilizes, or when
another application area utilizes it, we include it into the development source code of
the package. Periodically, we submit the development source code to the subversion

system. Before each release of a new version that freezes the functionalities, we update
the documentation.

2.4.2 SDisc research orientations

First, to work on the robustness and thus on the accuracy of the inferences made in
the course of a subtype discovery analysis, we want to extend and systematize the use
of state of the art computational statistics methods. Second, to enhance the scenario’s
accessibility to a public of non-scientific programmers, to make more straightforward the
data analysis, and to guarantee their reproducibility, we want to improve the integration
of the scenario. Further on, we describe both aspects.

Robustness In the following, we first discuss computational statistics methods for di-
mension reduction and second, for subtype characterization.

In problems where the target class is known, the χ2 test of association can measure
the discriminative potential of a dimension. In the case of subtype discovery, we regard
χ2 testing as a means to reduce the dimension of the problem, and thus, to focus the
analysis to its most relevant dimensions. Yet, the likelihood to falsely report a dimension
as discriminative increases with the number of tests performed. To tackle this problem, as
presented in [?] (Chap. 5), the family-wise error rate must be controlled. Consequently,
we estimate the tail probabilities for the proportion of false positives (TPPFP) [?] by
resampling the original set of measurements and then, repeating the estimation of the
χ2 statistics (p-value). Our proposal is to implement both cut-off thresholding of the
quantiles of p and dimension-ranking for a per class selection.

A t-test can assess the significance of a mean difference observed between a null dis-
tribution, composed of the original data, and the one of the subtypes. In the case of
subtype discovery, we use t-testing to identify the most singular features of each subtype.
Still, as we repeat t-testing over a large number of features, the likelihood increases with
the number of tests to falsely report features as significant. To address this issue, we
control the family-wise error rate by way of repeated t-testing and cut-off thresholding
based on p-value’s quantiles (TPPFP). However, the exactness of the t-test depends on
the accuracy of the test statistics, i.e. the population mean and variance of the null dis-
tribution, and therefore on the normality of the data distribution. To elude the normality
assumption and improve the robustness of the statistics, as in [?], we want to estimate
the null distribution statistics by a resampling-based method and then perform TPPFP.
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Integration To effectively integrate the software components of subtype discovery, we
first describe source code factorization, and second, third-party software components in-
corporation. Next, we report various instruments to make the software accessible.

We are looking to further factorize the source code of the package by relying more
systematically on object-oriented programming. Previously developed elements become
re-usable, thus avoiding code functional redundancies, which is a typical source of pro-
gramming errors and inconsistencies. Increasing the level of abstraction of the program-
ming also enables to extend more easily the functionalities because it is no longer neces-
sary to know the whole software to contribute new functionalities. Further, the software
maintainability enhances because inner object routines are modifiable so long the fields
interacting with external components are preserved.

Re-use of other research groups software represents, too, a means to extend the func-
tionalities. For subtype discovery, we foresee the potent integration of four packages.
First, MLInterfaces [?] that is an uniform interface to machine learning code for data in
Bioconductor containers may enable to standardize the use of machine learning in subtype
discovery [?]. Second, MCRestimate that calculates misclassification error rates by cross
validation may complement effectively MLInterfaces for machine learning calculations
[?]. Third, the multtest package implementing resampling-based multiple hypothesis
testing represents the state of the art in terms of multiple testing software [?]. Last,
sweave that enables to create and update reports after changes in the data or the anal-
ysis, can make uniform the software output [?]. Apart from these packages, we also
want to take advantage of the generic R language mechanisms for plotting, printing and
summarizing R objects.

Along with about 1800 other projects, we host SDisc on the Comprehensive R Archive
Network (CRAN) [?]. We publish SDisc by means of a vignette [Colas, 2009b], a manual,
the software source code and package binaries for Windows, Linux, and MacOSX. To
guarantee reproducibility of the analyzes performed with previous versions of the software,
we also make available older versions of the package; see archives.

2.5 Assistance, feature request, bug report and SDisc reviewing

• to ask for consultancy in subtype discovery, assistance in the use of SDisc or new fea-
tures in SDisc, contact F Colas, Dr [Colas, 2009a, Colas et al., 2008a, Colas et al., 2008b]

• to submit a review about R SDisc, go to CRANtastic
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[Colas, 2009b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 The number of new submissions attained 300 packages per year in 2007
and 2008 for the CRAN, and 68 for BioConductor. Yet, in 2008 and 2009,
the number of new submissions is slowing down for both projects. . . . . . 20
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