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Abstract

This paper introduces the R package SAVE which implements statistical methodology
for the analysis of computer models. Namely, the package includes routines that perform
emulation, calibration and validation of this type of models. The methodology is Bayesian
and is essentially that of Bayarri, Berger, Paulo, Sacks, Cafeo, Cavendish, Lin, and Tu
(2007). The package is available through the Comprehensive R Archive Network, CRAN.
We illustrate its use with a real data example.
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1. The analysis of complex computer models

Complex computer models are implementations of sophisticated mathematical models that
aim at reproducing a particular real process. The R package SAVE (Statistical Analysis
and Validation Engine) implements statistical methodology developed for the analysis of this
type of models, which is based on Craig, Goldstein, Seheult, and Smith (1996), Kennedy
and O’Hagan (2001), Kennedy, O’Hagan, and Higgins (2002), Higdon, Kennedy, Cavendish,
Cafeo, and Ryne (2004), and most directly on Bayarri et al. (2007). The package is available
through the Comprehensive R Archive Network, CRAN.

The following aspects of the statistical analysis of a computer model are addressed in SAVE:

� Emulation. A crucial characteristic of these models is that they are often computa-
tionally very demanding and a single run may take several minutes to complete. It is
then important to produce fast approximations to the output of these models, and these
approximations are referred to as emulators.

� Calibration. Computer models usually depend on a vector of unknown inputs that
needs to be specified before the model can be run. Calibration refers to the process of
determining estimates of these calibration parameters based on field observations of the
real process.

� Validation. Ultimately, we want to assess the degree to which the computer model
is an effective surrogate for the real process. We do so by producing predictions of
reality and associated tolerance bounds, which measure the degree of the accuracy of
said predictions.
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Related R packages include BACCO, Hankin (2005), and the suite of Dice packages: DiceKrig-
ging and DiceOptim (Roustant, Ginsbourger, and Deville 2012), DiceEval (Dupuy and Helbert
2013) and DiceDesign (Franco, Dupuy, Roustant, Damblin, and Iooss 2013). DiceKrigging
computes estimates of Gaussian process parameters, and our package takes advantage of its
functionalities, while DiceOptim is dedicated to optimimization of complex computer models
based on krigging models. DiceDesign facilitates the construction of space-filling designs for
computer experiments. DiceEval tackles the problem of validation but follows an approach
that is quite different from ours; in particular, it is not Bayesian.

BACCO is a package that is similar to ours in its goals. However, it implements the methodol-
ogy in Kennedy and O’Hagan (2001) which, although Bayesian, is distinct from that of Bayarri
et al. (2007), the one we implement [BACCO also implements the methods in Kennedy and
O’Hagan (2000), which is a topic we do not cover]. The most important distinction between
BACCO and SAVE is that we explore the posterior distribution of the parameters of the sta-
tistical model using simulation-based techniques, namely Markov chain Monte Carlo, whereas
BACCO relies either on analytical or on numerical integration. In that sense, with SAVE one
can for instance explore the posterior distribution of calibration parameters, which often have
a physical meaning, and take advantage of all the benefits that come with simulation-based
inference. This will be illustrated in Section 4.

We should note that the SAVE package relies on C code to perform computer intensive
calculations. Additionally, in order to maintain numerical stability as much as possible, we
make from our own C code extensive calls to numerical routines written in Fortran, notably
those available from BLAS and LAPACK.

The rest of this paper is organized as follows. In the next section we describe the statistical
methodology establishing links with the package. In Section 3 we describe the structure of
the package, and in Section 4 we illustrate its use in the context of a real example. Technical
details are, whenever possible, relegated to the appendices.

2. Introducing the statistical framework

Denote the output of the computer model by yM (x,u), where x is a vector of controllable
inputs and u is a vector of unknown calibration and/or tuning parameters in the model. We
have access to the data obtained by evaluating the computer model at a design set consisting of
N points DM = {(x1,u1), . . . , (xN ,uN )}. We denote by yM the vector of model evaluations.

A preliminary but central question in the analysis is the construction of an emulator of the
computer model, that is, a method to produce estimates of the output at untested configu-
rations along with an associated measure of uncertainty. This is stage I of the analysis of a
computer model. For this task, we follow the popular strategy (cf. Sacks, Welch, Mitchell, and
Wynn (1989), Kennedy and O’Hagan (2000) and Bayarri et al. (2007)) of using a Gaussian
process-based response-surface approximation to the model output. This approach results in
that, conditional on yM and on a set of parameters specifying the Gaussian process, yM (·)
follows a Gaussian process with mean and covariance functions which are available in closed
form. The approach that SAVE currently implements for emulating yM (·) estimates the un-
known parameters, denoted by θM and θL, by maximum likelihood, using the R package
DiceKrigging (Roustant et al. 2012).

Analytic expressions for the mean and covariance functions can be found in Appendix A,
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along with a description of the parameters θM and θL. In practical terms, the output of the
computer model at a set of untested configurations (given yM and the parameter estimates)
follows a multivariate normal distribution with known mean vector and covariance matrix.
The function predictcode returns iid draws from this multivariate distribution, along with
its mean vector and covariance matrix.

Field data consists of noisy observations of the real process, possibly with replicates. To be
more precise, we have a design set DF = {x?1, . . . ,x?n} and we observe

yF (x∗j ) = yR(x∗j ) + εj , j = 1, . . . , n

where yR(·) represents the real process and εj are independent and identically distributed
N(0, 1/λF ) random variables. Notice that the field data may contain replicates, that is,
independent measurements of the experiment using the same configuration of the controllable
inputs. We denote the set of field observations by yF .

Calibrating a model stands for finding estimates of the vector of calibration parameters based
on field observations of the real phenomenon. This is achieved by postulating a statistical
model relating the output of the model and the real phenomenon which introduces the notion
of model discrepancy (cf. Craig, Goldstein, Seheult, and Smith (1997), Kennedy and O’Hagan
(2001) and Goldstein (2010)), namely,

yR(x) = yM (x,u?) + b(x) , (1)

where b(x) stands for the bias or discrepancy function, and u? is the unknown value of the
calibration vector which we are ultimately interested in estimating. For ease of notation we
refer to u? simply as u.

The approach that this package implements is (partially) Bayesian and therefore requires the
specification of a prior for all the unknown quantities that appear in the statistical model,
namely, b(·), u, and λF . In line with Bayarri et al. (2007), we specify these priors in a fashion
that requires very little input from the user. An exception is the prior on u which should reflect
expert opinion about the calibration parameter. Details of the prior specification are available
in Appendix B. Let (u, λb,βb, λF ) ≡ (u,θF ) denote the vector of unknown parameters at this
stage of the analysis, which we refer to as stage II. (The bias function b(·) gets a Gaussian
process prior; λb denotes the precision and the vector βb controls the correlation structure of
this process.)

The posterior distribution is obtained using Markov chain Monte Carlo (MCMC) methods and
is ultimately represented by a sample of correlated draws, which we denote by {ui,θFi , i =
1, . . . ,M}. Details on the sampling method used are described in Appendix C. The SAVE
function that implements this task is called bayesfit.

Once the posterior distribution of all the unknowns in the model is obtained, we can proceed
to validate the computer model at DV , a set of configurations for the controllable inputs. To
do so, we must obtain draws from the distribution∫

f(yM (DV
u ), b(DV ) | yM ,yF ,u,θF ) π(u,θF | yM ,yF ) du dθF (2)

which are obtained by drawing the vectors yMi , bi from f(yM (DV
ui

), b(DV ) | yM ,yF ,ui,θFi )

for every (ui,θ
F
i ) in the previously constructed MCMC sample drawn from the posterior
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distribution. The SAVE function that performs this task is called predictreality. Above,
the set DV

u corresponds to the design that results from augmenting each of the configurations
in DV with the vector u for the calibration parameter. In general, we denote by h(D) the
vector that results from evaluating the function h at the elements of D.

Having obtained the sample {yMi , bi, i = 1, . . . ,M}, we can compute several quantities which
will aid us in the validation task (Bayarri et al. 2007):

� The bias-corrected prediction of the real process (i.e., reality ) at DV

ŷR =
1

M

M∑
i=1

(yMi + bi)

� The tolerance bars measuring the accuracy of ŷR as a predictor of yR(DV ) are computed
as follows: pick γ ∈ (0, 1); then, compute τ = (τ(x) : x ∈ DV ) such that (1−γ)×100%
of the samples satisfy

|ŷR − (yMi + bi)| ≤ τ ,
with the inequality interpreted in a component-wise fashion. We can then state that,
for each x ∈ DV , Pr(|yR(x)− ŷR(x)| < τ(x) | yF ,yM ) = γ.

� The pure-model prediction of reality at DV is obtained by selecting an estimate of u,
û, say, which can be, for instance, its posterior mean or median. Then, output of the
model at DV

û is computed by either actually running the model or by exercising the
emulator. Function predictcode obtains draws from the emulator, but also returns the
mean vector of the emulator, which can be used as an estimate of the output of the
model. Denote this estimate by ŷM .

� The tolerance bars measuring the accuracy of ŷM as a predictor of yR(DV ) are computed
in a similar fashion: pick γ ∈ (0, 1); then, compute τ = (τ(x) : x ∈ DV ) such that
(1− γ)× 100% of the samples satisfy

|ŷM − (yMi + bi)| ≤ τ

with the inequality interpreted in a component-wise fashion. We can then state that,
for each x ∈ DV , Pr(|yR(x)− ŷM (x)| < τ(x) | yF ,yM ) = γ.

� It is also possible to estimate the bias associated with the pure-model prediction, bû =
yR(DV ) − ŷM : samples from its posterior predictive distribution can be obtained by
computing {yMi + bi − ŷM} so that a point estimate is b̂û = ŷR − ŷM and γ pointwise
credible intervals can be determined by computing the associated γ/2× 100% and (1−
γ/2)× 100% sample quantiles.

The SAVE function that, given DV and a posterior estimate of u, computes the bias-corrected
prediction, the pure-model prediction, associated tolerance bounds and estimated bias func-
tion is called validate.

3. An overview of SAVE

There are three high-level functions in SAVE which allow the user to perform all the tasks
described in the previous section: SAVE, bayesfit and validate. In general,
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� SAVE creates an object of the class SAVE-class and essentially sets up the problem by
filling out a number of slots of this object. The data structures are set up (more on this
below). Maximum likelihood calculations are performed using DiceKriging (Roustant
et al. 2012). These calculations serve two purposes: fit the emulator of the computer
model, and aid in the specification of the prior of θF (cf. Appendix B).

� bayesfit produces a sample from the posterior distribution of the parameters λF , λb

and u (βb is fixed at an estimate throughout the analysis, cf. Appendix B). It takes
as an argument an object of the class SAVE-class that has been created using SAVE,
and returns a copy of this object but with several additional slots filled out. These slots
pertain to the MCMC sample obtained.

� validate ultimately produces the bias-corrected prediction, the pure-model prediction,
associated tolerance bounds and estimated bias function for any set of configurations
for the controllable inputs and a posterior estimate of the vector of calibration inputs.
It performs this task based on the information contained in an object of the class
SAVE-class which has been produced by a call of the function bayesfit.

Two additional functions are available in SAVE, but these can be considered low-level routines.
The function predictcode produces i.i.d. draws from the emulator evaluated at a set of design
points, along with its mean vector and covariance matrix. It expects as an argument an object
of the class SAVE-class. The function predictreality expects as an argument an object of
the class SAVE-class which has been produced by the function bayesfit, i.e., containing an
MCMC sample. It outputs draws from the distribution in (2) for a design set of configurations
for the controllable inputs of the problem. These functions are internally called by validate,
but can be utilized to further explore the problem.

The output of each of these functions can be appropriately summarized by customized calls
to print, summary, plot and show.

The data is handled in the following way. SAVE assumes that there are two R data frames
loaded: one containing all the field data, and another containing all the model data. The
response and the input variables in the designs are identified by the names associated with
each of these data frames, so they must be consistent. For illustrative purposes, consider
the synthetic example in Figure 1. The data frame at the top of the figure contains the
field data and the one at the bottom contains the model data. If we decide to analyze the
problem where the response is the variable is expand; controllable inputs are temp, press
and weight; and calibration inputs are delta1 and shift, then we must call the func-
tion SAVE with arguments, field.data = field, model.data = model, response.name =

"expand", controllable.names = c("temp", "press", "weight"), calibration.names

= c("delta1", "shift"). Notice that not all the columns present in the data frames are
incorporated in this analysis.

4. An example

In this section we illustrate the use of the package with an analysis of a real example. It
is the so-called spotweld example originally analyzed in Bayarri et al. (2007). We refer the
interested reader to that paper for complete details on the application.
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data frame called field containing the field data

temp press weight expand height

1 35.1 2.65 600 84.1 5.1
2 35.1 2.75 600 90.6 9.2
3 35.1 2.65 600 80.4 6.1
...

...
...

...
...

...
n 30.3 2.65 700 83.4 7.1

data frame called model containing the model data

temp press weight delta1 shift expand delta2

1 23.2 2.12 629.1 0.22 -1.1 99.1 0.22
2 43.7 2.11 711.0 0.84 -0.9 70.1 0.83
...

...
...

...
...

...
...

...
N 34.4 2.12 700.1 0.49 -0.8 67.6 0.33

Figure 1: Synthetic example: the data frame at the top of the figure is called field and contains the

field data; the data frame at the bottom of the figure is called model and contains the model data

In Figure 2 you can find a schematic representation of the spot welding process. Two sheets of
metal of a particular thickness (G) are compressed by two electrodes under a certain applied
load (L). Electric current of magnitude C is passed through said electrodes and the heat
produced by the current flow causes the surfaces under pressure to melt. After cooling, a weld
nugget is formed and as a result the two metal sheets are welded together. The scientists are
interested in the diameter of this nugget (N).

Included in the package are two datasets, spotweldfield and spotweldmodel that pertain,
respectively, to field experiments and computer model experiments associated with this prob-
lem. After loading the package (library(SAVE)), the dataframes can be loaded using the com-
mands data(spotweldfield,package="SAVE") and data(spotweldmodel,package="SAVE").
Notice that the columns of the data frames are appropriately named, and that the computer
model features an additional input, named t, which is a calibration input related to contact
resistance.

We start this analysis with setting up the problem by creating sw— an object of the class
SAVE-class— using the function SAVE:

R> sw <- SAVE(response.name="N", controllable.names=c("C", "L", "G"),

+ calibration.names=c("t"), field.data=spotweldfield,

+ model.data=spotweldmodel, mean.formula=as.formula("~1"),

+ bestguess=list(t=4.0))

Here we are specifying which columns correspond to the response and which correspond to
the controllable and the calibration inputs. Additionally, we are also

� setting the mean function of the Gaussian process approximation to the output of the
computer model as a constant (with the option mean.formula=as.formula("~1")) and

� providing an estimate of the vector of calibration inputs as a list (bestguess), which
will be used in specifying the prior for θF — see Appendix B for further details.

The object sw has now been created and several of its slots have been filled. The easiest way
of accessing that information is by means of the command summary(sw).
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Figure 2: Schematic representation of the spotwelding process

Since at this point the emulator has been fitted, we could now use the function predictcode

to predict the output of the computer model at a set of input configurations — more on this
later. Instead, we will proceed to fit the Bayesian model (1) relating reality to computer
model. To do so, we use the function bayesfit:

R> swbayes <- bayesfit(object=sw, prior=c(uniform("t", upper=8,

+ lower=0.8)), n.iter=20000, n.burnin=100,

+ n.thin=2)

We have created a new object — swbayes — but instead we could have updated the object
we have just created, sw. Notice that we need to specify a prior for the calibration parameter
t, and also options pertaining to the MCMC algorithm. We have set a uniform prior for the
calibration parameter, 20000 iterations for the MCMC with a burn-in period of 100 iterations,
and a thinning of 2. Other options were left at the corresponding defaults — cf Appendix C
for additional details.

The object swbayes now contains not only the estimates previously computed using SAVE but
also a sample from the posterior distribution of the calibration parameter t and of the field
and bias precisions, λF and λb, respectively. To display this information we can again resort
to the command summary(swbayes). We can however also plot the samples obtained:

� plot(swbayes, option="trace") will give us the traceplots;
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� plot(swbayes, option="calibration") will produce an histogram of the posterior
samples of the calibration parameters and corresponding priors: see Figure 3; and,

� plot(swbayes, option="precision") will plot histograms of the posterior samples of
the field and bias precisions. These histograms also include a plot of the prior and of
the estimates that are used in constructing the prior, see Figure 4.
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Figure 3: Posterior distribution of the calibration parameter t. The dotted line corresponds
to the prior used.

Additionally, we can of course access the raw data. By running the command slotNames(swbayes)

we get a description of the names of all the slots of the object swbayes, and it’s then clear
how to obtain the MCMC samples: swbayes@mcmcsamples.

After fitting the Bayesian model, we can finally produce predictions of reality and also assess
the quality of pure-model predictions of reality. The package SAVE provides a very convenient
function that performs all these calculations. To illustrate its use in the present example,
please consider the following R code:

R> load <- c(4.0,5.3); curr <- seq(from=20,to=30,length=20); g <- c(1,2)

R> xnew <- as.data.frame(expand.grid(curr,load,g))
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Figure 4: Posterior distribution of the precisions. The dashed vertical lines indicate the
estimates of the parameters; the dash-dot lines indicate the priors used.

R> names(xnew)<-c("C","L","G")

R>

R> valsw <- validate(object=swbayes,newdesign=xnew,

+ calibration.value="mean",n.burnin=100)

We first construct the design of controllable inputs at which we want to predict reality. For
four combinations of load and thickness of the metal plates, we want to predict the weld
diameter as a function of current. Regarding the pure-model prediction, we are setting the
calibration parameters at the corresponding posterior mean. The resulting object valsw

contains a slot named validate where a matrix is stored. This matrix contains as columns
the pure-model prediction of reality (pure.model) and associated tolerance bound (tau.pm);
the estimate of the bias associated with the pure-model prediction and pointwise credible
interval for that unknown (bias.Lower and bias.Upper); the bias-corrected prediction of
reality (bias.corrected) and associated tolerance bounds (tau.bc). This information can
be accessed using summary(valsw) but can also be plotted (plot(valsw)) — you can find
the plot in Figure 5. Depending on the problem, this default plot will not always be the
most appropriate way of displaying the estimates. Nevertheless, since we have access to
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the estimates, we can certainly construct customized plots for any problem at hand. As an
example, in Figure 6 we can find a plot of the pure-model prediction and associated tolerance
bounds as a function of current for the 4 different combinations of load and thickness. The
circles correspond to the appropriate field observations.
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Figure 5: Default validation plot. The plot at the top contains the pure-model predictions
(circles) at each of the input configurations in xnew and associated 90% tolerance bounds.
The middle plot depicts an estimate of the bias of these pure-model estimates. The bottom
plot contains the bias-corrected prediction (circles) and associated 90% tolerance bounds.

As stated above, validate is a function which calls two low-level functions, predictcode and
predictreality. There may be situations where one must directly call these functions. We
illustrate this in what follows.

Imagine that one is interested in understanding how the nugget diameter N varies with the
current C. One might assess this variation by looking at the derivative of N with respect to C.
Let’s do that for G=1 and L=4. We start by predicting reality at an equally-spaced grid of C
values between 20 and 30:

R> load <- 4; g <- 1; curr <- seq(from=20, to=30, length=80)

R> xnew <- expand.grid(curr,load,g)
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Figure 6: Customized validation plot. Here we can see the pure-model for 4 different com-
binations of load and thickness as a function of current. The dotted lines indicate the 90%
tolerance bounds and the circles represent the observed field data correspoding to that par-
ticular combination of controllable inputs.

R> names(xnew) <- c("C","L","G")

R>

R> prsw <- predictreality(object=swbayes, newdesign=xnew)

The object prsw has slots named modelpred and biaspred where the draws from (2), which we
have denoted in Section 2 by yMi , bi, are stored. We now obtain the corresponding derivatives
with respect to current of each of these draws, to finally obtain draws from the corresponding
derivative of reality:

R> delta <- diff(curr)[1]

R> model <- prsw@modelpred

R> dmodel <- diff(t(model))/delta

R> bias <- prsw@biaspred

R> dbias <- diff(t(bias))/delta

R>
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R> dreal <- dmodel + dbias

These draws can be summarized by computing the corresponding mean and tolerance bounds
as explained in Section 2. This is plotted in Figure 7.
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Figure 7: Bias-corrected prediction of the derivative of N with respect to C — the estimate is
the solid line; the dashed lines are the 90% tolerance bounds. The pure-model prediction is
the dash-dotted line.

Additionally, we can use predictcode to obtain draws from the emulator evaluated at a
posterior estimate of the calibration input, t. This allows us to produce the pure-model
estimate of the derivative:

R> u <- 3.2; load <- 4; g <- 1;

R> xnewpure <- expand.grid(curr,load,g,u)

R> names(xnewpure) <- c("C","L","G","t")

R>

R> pmsw <- predictcode(object=swbayes,newdesign=xnewpure,n.iter=20000)

R>

R> puremodel <- pmsw@samples

R> dpuremodel <- diff(t(puremodel))/delta
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The mean of the samples in dpuremodel is the pure-model prediction of the derivative. This
is plotted in Figure 7. Notice how the two estimates, pure-model and bias-corrected, are in
this case even qualitatively different.
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A. Details on the emulator

We assume that a priori yM (·) follows a stationary Gaussian process with mean and covariance
functions governed by unknown parameters θL and θM = (λM ,αM ,βM ), respectively. The
mean function of the Gaussian process is assumed to be of the form Ψ′(·)θL where Ψ(z) is a
specified k × 1 vector function of the input z = (x,u) and θL is a k × 1 vector of unknown
regression parameters. This mean function is specified through the argument mean.formula

of the SAVE function. Note that one of the restrictions of SAVE is that Ψ can only be function
of x, the vector of controllable inputs.

The parameter λM is the precision (the inverse of the variance) of the Gaussian process
and the other parameters (αM ,βM ) control the correlation function of the Gaussian process,
which we assume to be of the form

cM (z, z?) = exp

− d∑
j=1

βMj |zj − zj?|
αM
j

 .

Here, d is the number of coordinates in z = (x,u), the αMj are numbers between 0 and 2,

and the βMj are positive parameters.

After observing yM , the conditional posterior distribution of yM given the hyperparameters,
f(yM (·) | yM ,θL,θM ), is a Gaussian process with updated mean and covariance functions
given respectively

E[yM (z) | yM ,θL,θM ] = Ψ′(z)θL + rz
′(ΓM )−1(yM −XθL)

COV[ yM (z), yM (z?) | yM ,θL,θM ] =
1

λM
cM (z, z?)− rz ′(ΓM )−1rz? ,

where rz
′ = 1

λM
(cM (z, z1), . . . , c

M (z, zN )), ΓM is given above and X is the matrix with
rows Ψ′(z1), . . . ,Ψ

′(zN ).

To obtain an emulator for yM , we replace in the formulae above the unknown parameter
values by the corresponding maximum likelihood estimates.
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B. Details on the stage II prior

The stage II unknowns are b(·), the bias function, u, the vector of calibration parameters,
and λF , the precision of the field measurement error. The prior for u is specified using expert
knowledge. Currently, the distributional choices are limited to uniform and normal, this last
one truncated to an interval. This enters the function bayesfit through argument prior.

The prior for the bias is a stationary zero-mean Gaussian process with covariance λb and
correlation function given by

cb(x,x?) = exp

− p∑
j=1

βbj |xj − xj?|2
 .

Here, p is the number of coordinates in x, and the βbj are positive parameters. Let βb =

(βb1, . . . , β
b
p). We need to specify a prior for θF = (λb, βb, λF ), and we do so in a nearly

automatic fashion as follows: we start by selecting a best guess for the vector of calibration
parameters, denoted by ũ, which is the argument bestguess is function SAVE. Then, using
the emulator, we predict the output of the computer model at DF

ũ, denoted yM (DF
ũ). Next,

treat yF −yM (DF
ũ) as a realization of a Gaussian process with a nugget, namely as a realization

of a multivariate normal with mean zero and covariance matrix cb(DF )/λb + I/λF to get

maximum likelihood estimates λ̂b, β̂
b
, λ̂F . Then,

� βb is fixed throughout the analysis at β̂
b
;

� λb and λF are independent exponentially distributed quantities centered at a multiple
of the corresponding estimates, λ̂b and λ̂F . This multiple is set through the parameter
mcmcMultmle in bayesfit and its purpose is to allow the user to specify a prior which
is relatively flat in the region where the posterior distribution accumulates.

The function SAVE computes these maximum likelihood estimates (with the help of the package
DiceKriging, Roustant et al. (2012)) and stores these in the slot mle of the corresponding
object of class SAVE-class.

C. Details on the MCMC

Full details on the sampling mechanism can be found in Bayarri et al. (2007). The algorithm
implemented in SAVE requires very little input apart from the necessary length of the sim-
ulation, burn-in and thinning numbers. This is because all unknowns are sampled directly
from their full conditionals with the exception of the vector of calibration parameters. This
vector is sampled using a Metropolis-Hastings step, for which the user needs to decide on
three aspects:

� The proposal distribution is a mixture between the prior and a local move. The user
needs to specify the probability of sampling from the prior, which is argument prob.prop
of the bayesfit function;

� The algorithm performs a fixed number of Metropolis-Hastings steps before deciding
on a move; the user must set this number, and this is argument nMH of the bayesfit

function;
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� The package implements two alternative methods: method=2 specifies that computer
model and bias are analytically integrated out before sampling u; this is the default
and preferred method. If method=1, these vectors are not integrated out.
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